1
|
Galota F, Marcheselli S, De Biasi S, Gibellini L, Vitetta F, Fiore A, Smolik K, De Napoli G, Cardi M, Cossarizza A, Ferraro D. Impact of High-Efficacy Therapies for Multiple Sclerosis on B Cells. Cells 2025; 14:606. [PMID: 40277931 PMCID: PMC12025603 DOI: 10.3390/cells14080606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative autoimmune disorder of the central nervous system characterized by demyelination and neurodegeneration. Traditionally considered a T-cell-mediated disease, the crucial role of B lymphocytes in its pathogenesis, through different mechanisms contributing to inflammation and autoreactivity, is increasingly recognized. The risk of long-term disability in MS patients can be reduced by an early treatment initiation, in particular with high-efficacy therapies. The aim of this review is to provide an overview of the mechanisms of action of high-efficacy therapies for MS, with a focus on their impact on B cells and how this contributes to the drugs' efficacy and safety profiles. Anti-CD20 monoclonal antibodies, Alemtuzumab, Cladribine and sequestering therapies encompassing Natalizumab and S1P receptors modulators will be discussed and emerging therapies, including Bruton's Tyrosine Kinase inhibitors, will be presented.
Collapse
Affiliation(s)
- Federica Galota
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (F.G.); (S.M.); (K.S.); (M.C.)
| | - Simone Marcheselli
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (F.G.); (S.M.); (K.S.); (M.C.)
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, 41125 Modena, Italy; (S.D.B.); (L.G.); (A.C.)
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, 41125 Modena, Italy; (S.D.B.); (L.G.); (A.C.)
| | - Francesca Vitetta
- Neurology Unit, Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria di Modena, 41126 Modena, Italy; (F.V.); (A.F.)
| | - Alessia Fiore
- Neurology Unit, Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria di Modena, 41126 Modena, Italy; (F.V.); (A.F.)
| | - Krzysztof Smolik
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (F.G.); (S.M.); (K.S.); (M.C.)
| | - Giulia De Napoli
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (F.G.); (S.M.); (K.S.); (M.C.)
| | - Martina Cardi
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (F.G.); (S.M.); (K.S.); (M.C.)
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, 41125 Modena, Italy; (S.D.B.); (L.G.); (A.C.)
- National Institute for Cardiovascular Research, 40126 Bologna, Italy
| | - Diana Ferraro
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (F.G.); (S.M.); (K.S.); (M.C.)
- Neurology Unit, Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria di Modena, 41126 Modena, Italy; (F.V.); (A.F.)
| |
Collapse
|
2
|
Zabalza A, Pappolla A, Comabella M, Montalban X, Malhotra S. MiRNA-based therapeutic potential in multiple sclerosis. Front Immunol 2024; 15:1441733. [PMID: 39267760 PMCID: PMC11390414 DOI: 10.3389/fimmu.2024.1441733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
This review will briefly introduce microRNAs (miRNAs) and dissect their contribution to multiple sclerosis (MS) and its clinical outcomes. For this purpose, we provide a concise overview of the present knowledge of MS pathophysiology, biomarkers and treatment options, delving into the role of selectively expressed miRNAs in clinical forms of this disease, as measured in several biofluids such as serum, plasma or cerebrospinal fluid (CSF). Additionally, up-to-date information on current strategies applied to miRNA-based therapeutics will be provided, including miRNA restoration therapy (lentivirus expressing a specific type of miRNA and miRNA mimic) and miRNA inhibition therapy such as antisense oligonucleotides, small molecules inhibitors, locked nucleic acids (LNAs), anti-miRNAs, and antagomirs. Finally, it will highlight future directions and potential limitations associated with their application in MS therapy, emphasizing the need for improved delivery methods and validation of therapeutic efficacy.
Collapse
Affiliation(s)
- Ana Zabalza
- Vall Hebron University Hospital & Research Institute (VHIR), Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Agustin Pappolla
- Vall Hebron University Hospital & Research Institute (VHIR), Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Manuel Comabella
- Vall Hebron University Hospital & Research Institute (VHIR), Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Xavier Montalban
- Vall Hebron University Hospital & Research Institute (VHIR), Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department, Universitat Autonoma de Barcelona, Barcelona, Spain
- Faculty of Medicine, University of Vic - Central University of Catalonia (UVicUCC), Vic, Spain
| | - Sunny Malhotra
- Vall Hebron University Hospital & Research Institute (VHIR), Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department, Universitat Autonoma de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Arisi I, Malimpensa L, Manzini V, Brandi R, Gosetti di Sturmeck T, D’Amelio C, Crisafulli S, Ferrazzano G, Belvisi D, Malerba F, Florio R, Pascale E, Soreq H, Salvetti M, Cattaneo A, D’Onofrio M, Conte A. Cladribine and ocrelizumab induce differential miRNA profiles in peripheral blood mononucleated cells from relapsing-remitting multiple sclerosis patients. Front Immunol 2023; 14:1234869. [PMID: 38152407 PMCID: PMC10751352 DOI: 10.3389/fimmu.2023.1234869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/06/2023] [Indexed: 12/29/2023] Open
Abstract
Background and objectives Multiple sclerosis (MS) is a chronic, progressive neurological disease characterized by early-stage neuroinflammation, neurodegeneration, and demyelination that involves a spectrum of heterogeneous clinical manifestations in terms of disease course and response to therapy. Even though several disease-modifying therapies (DMTs) are available to prevent MS-related brain damage-acting on the peripheral immune system with an indirect effect on MS lesions-individualizing therapy according to disease characteristics and prognostic factors is still an unmet need. Given that deregulated miRNAs have been proposed as diagnostic tools in neurodegenerative/neuroinflammatory diseases such as MS, we aimed to explore miRNA profiles as potential classifiers of the relapsing-remitting MS (RRMS) patients' prospects to gain a more effective DMT choice and achieve a preferential drug response. Methods A total of 25 adult patients with RRMS were enrolled in a cohort study, according to the latest McDonald criteria before (pre-cladribine, pre-CLA; pre-ocrelizumab, pre-OCRE, time T0) and after high-efficacy DMTs, time T1, 6 months post-CLA (n = 10, 7 F and 3 M, age 39.0 ± 7.5) or post-OCRE (n = 15, 10 F and 5 M, age 40.5 ± 10.4) treatment. A total of 15 age- and sex-matched healthy control subjects (9 F and 6 M, age 36.3 ± 3.0) were also selected. By using Agilent microarrays, we analyzed miRNA profiles from peripheral blood mononuclear cells (PBMC). miRNA-target networks were obtained by miRTargetLink, and Pearson's correlation served to estimate the association between miRNAs and outcome clinical features. Results First, the miRNA profiles of pre-CLA or pre-OCRE RRMS patients compared to healthy controls identified modulated miRNA patterns (40 and seven miRNAs, respectively). A direct comparison of the two pre-treatment groups at T0 and T1 revealed more pro-inflammatory patterns in the pre-CLA miRNA profiles. Moreover, both DMTs emerged as being capable of reverting some dysregulated miRNAs toward a protective phenotype. Both drug-dependent miRNA profiles and specific miRNAs, such as miR-199a-3p, miR-29b-3p, and miR-151a-3p, emerged as potentially involved in these drug-induced mechanisms. This enabled the selection of miRNAs correlated to clinical features and the related miRNA-mRNA network. Discussion These data support the hypothesis of specific deregulated miRNAs as putative biomarkers in RRMS patients' stratification and DMT drug response.
Collapse
Affiliation(s)
- Ivan Arisi
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, Rome, Italy
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Leonardo Malimpensa
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Valeria Manzini
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, Rome, Italy
| | - Rossella Brandi
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, Rome, Italy
| | | | - Chiara D’Amelio
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, Rome, Italy
| | - Sebastiano Crisafulli
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gina Ferrazzano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Daniele Belvisi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Francesca Malerba
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, Rome, Italy
| | - Rita Florio
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, Rome, Italy
| | - Esterina Pascale
- Department of Medical-Surgical Sciences and of Biotechnologies, “Sapienza” University of Rome, Rome, Italy
| | - Hermona Soreq
- The Edmond and Lily Safra Center of Brain Science and The Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marco Salvetti
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Antonino Cattaneo
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, Rome, Italy
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Mara D’Onofrio
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, Rome, Italy
| | - Antonella Conte
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Mancuso R, Citterio LA, Agostini S, Marventano I, La Rosa F, Re F, Seneci P, Saresella M, Clerici M. Glibenclamide-Loaded Nanoparticles Reduce NLRP3 Inflammasome Activation and Modulate miR-223-3p/miR-7-1-5p Expression in THP-1 Cells. Pharmaceuticals (Basel) 2023; 16:1590. [PMID: 38004455 PMCID: PMC10675475 DOI: 10.3390/ph16111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The anti-hyperglycemic drug glibenclamide (Glb) might represent an interesting therapeutic option in human neurodegenerative diseases because of its anti-inflammatory activity and its ability to downregulate activation of the NLRP3 inflammasome. Bi-functionalized liposomes that can cross the blood-brain barrier (BBB) may be used to release Glb into the central nervous system (CNS), overcoming its poor solubility and bioavailability. Here, we analyzed in vitro the effect of Glb-loaded nanovectors (GNVs) and Glb itself on NLRP3 inflammasome activation using a lipopolysaccharide- and nigericine-activated THP-1 cell model. Apoptosis-associated speck-like protein containing a CARD (ASC) aggregation and NLRP3-related cytokine (IL-1β, caspase 1, and IL-18) production and gene expression, as well as the concentration of miR-223-3p and miR-7-1-5p, known to modulate the NLRP3 inflammasome, were evaluated in all conditions. Results showed that both GNVs and Glb reduced significantly ASC-speck oligomerization, transcription and translation of NLRP3, as well as the secretion of caspase 1 and IL-1β (p < 0.05 for all). Unexpectedly, GNVs/Glb significantly suppressed miR-223-3p and upregulated miR-7-1-5p expression (p < 0.01). These preliminary results thus suggest that GNVs, similarly to Glb, are able to dampen NLRP3 inflammasome activation, inflammatory cytokine release, and modulate miR-223-3p/miR-7-1-5p. Although the mechanisms underlying the complex relation among these elements remain to be further investigated, these results can open new roads to the use of GNVs as a novel strategy to reduce inflammasome activation in disease and rehabilitation.
Collapse
Affiliation(s)
- Roberta Mancuso
- IRCCS Fondazione Don Gnocchi—ONLUS, 20148 Milan, Italy; (R.M.); (L.A.C.); (I.M.); (F.L.R.); (M.S.); (M.C.)
| | - Lorenzo Agostino Citterio
- IRCCS Fondazione Don Gnocchi—ONLUS, 20148 Milan, Italy; (R.M.); (L.A.C.); (I.M.); (F.L.R.); (M.S.); (M.C.)
| | - Simone Agostini
- IRCCS Fondazione Don Gnocchi—ONLUS, 20148 Milan, Italy; (R.M.); (L.A.C.); (I.M.); (F.L.R.); (M.S.); (M.C.)
| | - Ivana Marventano
- IRCCS Fondazione Don Gnocchi—ONLUS, 20148 Milan, Italy; (R.M.); (L.A.C.); (I.M.); (F.L.R.); (M.S.); (M.C.)
| | - Francesca La Rosa
- IRCCS Fondazione Don Gnocchi—ONLUS, 20148 Milan, Italy; (R.M.); (L.A.C.); (I.M.); (F.L.R.); (M.S.); (M.C.)
| | - Francesca Re
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Milan, Italy;
| | | | - Marina Saresella
- IRCCS Fondazione Don Gnocchi—ONLUS, 20148 Milan, Italy; (R.M.); (L.A.C.); (I.M.); (F.L.R.); (M.S.); (M.C.)
| | - Mario Clerici
- IRCCS Fondazione Don Gnocchi—ONLUS, 20148 Milan, Italy; (R.M.); (L.A.C.); (I.M.); (F.L.R.); (M.S.); (M.C.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| |
Collapse
|
5
|
Casanova I, Domínguez-Mozo MI, De Torres L, Aladro-Benito Y, García-Martínez Á, Gómez P, Abellán S, De Antonio E, Álvarez-Lafuente R. MicroRNAs Associated with Disability Progression and Clinical Activity in Multiple Sclerosis Patients Treated with Glatiramer Acetate. Biomedicines 2023; 11:2760. [PMID: 37893133 PMCID: PMC10604830 DOI: 10.3390/biomedicines11102760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
MicroRNAs (miRNAs) are promising biomarkers in multiple sclerosis (MS). This study aims to investigate the association between a preselected list of miRNAs in serum with therapeutic response to Glatiramer Acetate (GA) and with the clinical evolution of a cohort of relapsing-remitting MS (RRMS) patients. We conducted a longitudinal study for 5 years, with cut-off points at 2 and 5 years, including 26 RRMS patients treated with GA for at least 6 months. A total of 6 miRNAs from a previous study (miR-9.5p, miR-126.3p, mir-138.5p, miR-146a.5p, miR-200c.3p, and miR-223.3p) were selected for this analysis. Clinical relapse, MRI activity, confirmed disability progression (CDP), alone or in combination (No Evidence of Disease Activity-3) (NEDA-3), and Expanded Disability Status Scale (EDSS), were studied. After multivariate regression analysis, miR-9.5p was associated with EDSS progression at 2 years (β = 0.23; 95% CI: 0.04-0.46; p = 0.047). Besides this, mean miR-138.5p values were lower in those patients with NEDA-3 at 2 years (p = 0.033), and miR-146a.5p and miR-126.3p were higher in patients with CDP progression at 2 years (p = 0.044 and p = 0.05 respectively. These results reinforce the use of microRNAs as potential biomarkers in multiple sclerosis. We will need more studies to corroborate these data and to better understand the role of microRNAs in the pathophysiology of this disease.
Collapse
Affiliation(s)
- Ignacio Casanova
- Department of Neurology, Torrejon University Hospital, 28850 Madrid, Spain; (I.C.); (L.D.T.); (P.G.); (S.A.)
- School of Medicine, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - María I. Domínguez-Mozo
- Research Group in Environmental Factors of Neurodegenerative Diseases, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (Á.G.-M.); (R.Á.-L.)
| | - Laura De Torres
- Department of Neurology, Torrejon University Hospital, 28850 Madrid, Spain; (I.C.); (L.D.T.); (P.G.); (S.A.)
| | | | - Ángel García-Martínez
- Research Group in Environmental Factors of Neurodegenerative Diseases, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (Á.G.-M.); (R.Á.-L.)
| | - Patricia Gómez
- Department of Neurology, Torrejon University Hospital, 28850 Madrid, Spain; (I.C.); (L.D.T.); (P.G.); (S.A.)
- School of Medicine, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Sara Abellán
- Department of Neurology, Torrejon University Hospital, 28850 Madrid, Spain; (I.C.); (L.D.T.); (P.G.); (S.A.)
| | - Esther De Antonio
- Department of Radiology, Torrejon University Hospital, 28850 Madrid, Spain;
| | - Roberto Álvarez-Lafuente
- Research Group in Environmental Factors of Neurodegenerative Diseases, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (Á.G.-M.); (R.Á.-L.)
| |
Collapse
|
6
|
Auer M, Bauer A, Oftring A, Rudzki D, Hegen H, Bsteh G, Di Pauli F, Berek K, Zinganell A, Berger T, Reindl M, Deisenhammer F. Soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1) and Natalizumab Serum Concentration as Potential Biomarkers for Pharmacodynamics and Treatment Response of Patients with Multiple Sclerosis Receiving Natalizumab. CNS Drugs 2022; 36:1121-1131. [PMID: 36173556 DOI: 10.1007/s40263-022-00953-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Natalizumab (NTZ) is an established treatment for highly active, relapsing-remitting multiple sclerosis. In the context of rare progressive multifocal leukoencephalopathy and extended interval dosing as a treatment option, biomarkers for treatment monitoring are required. Natalizumab serum concentration (NTZ SC) and soluble vascular cell adhesion molecule 1 (sVCAM-1) concentration were shown to change on treatment with NTZ. We aimed to investigate whether NTZ SC and sVCAM-1 could be suitable pharmacodynamic markers and whether they could predict disease activity on NTZ, improving the concept of personalized multiple sclerosis treatment. METHODS In a retrospective study at the Medical University of Innsbruck, Austria, we identified patients treated with NTZ and chose samples longitudinally collected during routine follow-ups for the measurement of NTZ SC and sVCAM-1 by an enzyme-linked immunosorbent assay. We correlated these with clinical and demographic variables and clinical outcomes. Furthermore, we analyzed the stability of NTZ SC and sVCAM-1 during treatment. RESULTS One hundred and thirty-seven patients were included. We found a strong negative correlation between NTZ SC and sVCAM-1. Both showed significant associations with body mass index, infusion interval, sample age, and anti-drug-antibodies. Natalizumab serum concentration was reduced in extended interval dosing, but not sVCAM-1. Only sVCAM-1 showed a weak association with relapses during treatment, while there was no association with disease progression. Both NTZ SC and sVCAM-1 showed a wide inter-individual distribution while levels in single patients were stable on treatment. CONCLUSIONS Soluble vascular cell adhesion molecule 1 is a suitable pharmacodynamic marker during treatment with NTZ, which is significantly reduced already after the first dose, remains stable in individual patients even on extended interval dosing, and strongly correlates with NTZ SC. Because of the high inter-individual range, absolute levels of sVCAM-1 and NTZ SC are difficult to introduce as treatment monitoring biomarkers in order to predict disease activity in single patients.
Collapse
Affiliation(s)
- Michael Auer
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.
| | - Angelika Bauer
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Antonia Oftring
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Dagmar Rudzki
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Wien, Austria
| | - Franziska Di Pauli
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Anne Zinganell
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Wien, Austria
| | - Markus Reindl
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Florian Deisenhammer
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| |
Collapse
|
7
|
Han J, Feng GH, Liu HW, Yi JP, Wu JB, Yao XX. Classifying mild cognitive impairment and Alzheimer's disease by constructing a 14-gene diagnostic model. Am J Transl Res 2022; 14:4477-4492. [PMID: 35958496 PMCID: PMC9360837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) and mild cognitive impairment (MCI) are two neurodegenerative diseases. Most patients with MCI will develop AD. Early detection of AD and MCI is a crucial issue in terms of secondary prevention. Therefore, more diagnostic models need to be developed to distinguish AD patients from MCI patients. METHODS In our research, the expression matrix and were screened from Gene Expression Omnibus (GEO) databases. A 14-gene diagnostic model was constructed with lasso logistic analysis. The efficiency and accuracy of diagnostic model have also been validated. In order to clarify the expression differences of 14 genes in health donor, AD and MCI, the blood samples of patients and healthy individuals were collected. The mRNA expression of the 14 genes in blood sample were detected. The SH-SY5Y cell injury model was constructed and biological function of POU2AF1 and ANKRD22 in SH-SY5Y have been proved. RESULTS We obtained 16 genes which have an area under curve (AUC) ≥0.6. After that, a diagnostic model based on 14 genes was constructed. Validation in independent cohort showed that the diagnostic model has a good diagnostic efficiency. The expressions of 6 genes in AD patients were significantly lower than those in healthy individuals and MCI patients, while the expressions of 8 genes in AD patients were significantly higher than those in healthy individuals and MCI patients. In in vitro experiments, we found that two key genes POU2AF1 and ANKRD22 could regulate neuronal development by regulating cell viability and IL-6 expression. CONCLUSION The diagnostic model established in this study has a good diagnose efficiency. Most of these genes in diagnostic model also showed diagnostic value in AD patients. This research also can help doctors make better diagnosis for the treatment and prevention of AD.
Collapse
Affiliation(s)
- Jing Han
- School of Basic Medical Sciences, Xiangnan UniversityChenzhou 423000, Hunan, China
| | - Gang-Hua Feng
- Department of Neurology, Chenzhou First People’s HospitalChenzhou 423000, Hunan, China
| | - Hua-Wu Liu
- School of Basic Medical Sciences, Xiangnan UniversityChenzhou 423000, Hunan, China
| | - Ji-Ping Yi
- Department of Neurology, Chenzhou First People’s HospitalChenzhou 423000, Hunan, China
| | - Ji-Bao Wu
- Department of Neurology, Chenzhou First People’s HospitalChenzhou 423000, Hunan, China
| | - Xiao-Xi Yao
- Department of Neurology, Chenzhou First People’s HospitalChenzhou 423000, Hunan, China
| |
Collapse
|