1
|
Xu C, Jiang C, Li Z, Gao H, Xian J, Guo W, He D, Peng X, Zhou D, Li D. Exosome nanovesicles: biomarkers and new strategies for treatment of human diseases. MedComm (Beijing) 2024; 5:e660. [PMID: 39015555 PMCID: PMC11247338 DOI: 10.1002/mco2.660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024] Open
Abstract
Exosomes are nanoscale vesicles of cellular origin. One of the main characteristics of exosomes is their ability to carry a wide range of biomolecules from their parental cells, which are important mediators of intercellular communication and play an important role in physiological and pathological processes. Exosomes have the advantages of biocompatibility, low immunogenicity, and wide biodistribution. As researchers' understanding of exosomes has increased, various strategies have been proposed for their use in diagnosing and treating diseases. Here, we provide an overview of the biogenesis and composition of exosomes, describe the relationship between exosomes and disease progression, and focus on the use of exosomes as biomarkers for early screening, disease monitoring, and guiding therapy in refractory diseases such as tumors and neurodegenerative diseases. We also summarize the current applications of exosomes, especially engineered exosomes, for efficient drug delivery, targeted therapies, gene therapies, and immune vaccines. Finally, the current challenges and potential research directions for the clinical application of exosomes are also discussed. In conclusion, exosomes, as an emerging molecule that can be used in the diagnosis and treatment of diseases, combined with multidisciplinary innovative solutions, will play an important role in clinical applications.
Collapse
Affiliation(s)
- Chuan Xu
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Chaoyang Jiang
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Zhihui Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Hui Gao
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Jing Xian
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Wenyan Guo
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dan He
- Department of OncologyThe Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanChina
| | - Xingchen Peng
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Daijun Zhou
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dong Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| |
Collapse
|
2
|
Mosquera-Heredia MI, Vidal OM, Morales LC, Silvera-Redondo C, Barceló E, Allegri R, Arcos-Burgos M, Vélez JI, Garavito-Galofre P. Long Non-Coding RNAs and Alzheimer's Disease: Towards Personalized Diagnosis. Int J Mol Sci 2024; 25:7641. [PMID: 39062884 PMCID: PMC11277322 DOI: 10.3390/ijms25147641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder characterized by progressive cognitive decline, is the most common form of dementia. Currently, there is no single test that can diagnose AD, especially in understudied populations and developing countries. Instead, diagnosis is based on a combination of medical history, physical examination, cognitive testing, and brain imaging. Exosomes are extracellular nanovesicles, primarily composed of RNA, that participate in physiological processes related to AD pathogenesis such as cell proliferation, immune response, and neuronal and cardiovascular function. However, the identification and understanding of the potential role of long non-coding RNAs (lncRNAs) in AD diagnosis remain largely unexplored. Here, we clinically, cognitively, and genetically characterized a sample of 15 individuals diagnosed with AD (cases) and 15 controls from Barranquilla, Colombia. Advanced bioinformatics, analytics and Machine Learning (ML) techniques were used to identify lncRNAs differentially expressed between cases and controls. The expression of 28,909 lncRNAs was quantified. Of these, 18 were found to be differentially expressed and harbored in pivotal genes related to AD. Two lncRNAs, ENST00000608936 and ENST00000433747, show promise as diagnostic markers for AD, with ML models achieving > 95% sensitivity, specificity, and accuracy in both the training and testing datasets. These findings suggest that the expression profiles of lncRNAs could significantly contribute to advancing personalized AD diagnosis in this community, offering promising avenues for early detection and follow-up.
Collapse
Affiliation(s)
- Maria I. Mosquera-Heredia
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (M.I.M.-H.); (O.M.V.); (L.C.M.); (C.S.-R.)
| | - Oscar M. Vidal
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (M.I.M.-H.); (O.M.V.); (L.C.M.); (C.S.-R.)
| | - Luis C. Morales
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (M.I.M.-H.); (O.M.V.); (L.C.M.); (C.S.-R.)
| | - Carlos Silvera-Redondo
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (M.I.M.-H.); (O.M.V.); (L.C.M.); (C.S.-R.)
| | - Ernesto Barceló
- Instituto Colombiano de Neuropedagogía, Barranquilla 080020, Colombia;
- Department of Health Sciences, Universidad de La Costa, Barranquilla 080002, Colombia
- Grupo Internacional de Investigación Neuro-Conductual (GIINCO), Universidad de La Costa, Barranquilla 080002, Colombia
| | - Ricardo Allegri
- Institute for Neurological Research FLENI, Montañeses 2325, Buenos Aires C1428AQK, Argentina;
| | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellin 050010, Colombia;
| | - Jorge I. Vélez
- Department of Industrial Engineering, Universidad del Norte, Barranquilla 081007, Colombia
| | - Pilar Garavito-Galofre
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (M.I.M.-H.); (O.M.V.); (L.C.M.); (C.S.-R.)
| |
Collapse
|
3
|
Bravo-Miana RDC, Arizaga-Echebarria JK, Otaegui D. Central nervous system-derived extracellular vesicles: the next generation of neural circulating biomarkers? Transl Neurodegener 2024; 13:32. [PMID: 38898538 PMCID: PMC11186231 DOI: 10.1186/s40035-024-00418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/29/2024] [Indexed: 06/21/2024] Open
Abstract
The central nervous system (CNS) is integrated by glial and neuronal cells, and both release extracellular vesicles (EVs) that participate in CNS homeostasis. EVs could be one of the best candidates to operate as nanosized biological platforms for analysing multidimensional bioactive cargos, which are protected during systemic circulation of EVs. Having a window into the molecular level processes that are happening in the CNS could open a new avenue in CNS research. This raises a particular point of interest: can CNS-derived EVs in blood serve as circulating biomarkers that reflect the pathological status of neurological diseases? L1 cell adhesion molecule (L1CAM) is a widely reported biomarker to identify CNS-derived EVs in peripheral blood. However, it has been demonstrated that L1CAM is also expressed outside the CNS. Given that principal data related to neurodegenerative diseases, such as multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease and Alzheimer's disease were obtained using L1CAM-positive EVs, efforts to overcome present challenges related to its specificity are required. In this sense, other surface biomarkers for CNS-derived EVs, such as glutamate aspartate transporter (GLAST) and myelin oligodendrocyte glycoprotein (MOG), among others, have started to be used. Establishing a panel of EV biomarkers to analyse CNS-derived EVs in blood could increase the specificity and sensitivity necessary for these types of studies. This review covers the main evidence related to CNS-derived EVs in cerebrospinal fluid and blood samples of patients with neurological diseases, focusing on the reported biomarkers and the technical possibilities for their isolation. EVs are emerging as a mirror of brain physiopathology, reflecting both localized and systemic changes. Therefore, when the technical hindrances for EV research and clinical applications are overcome, novel disease-specific panels of EV biomarkers would be discovered to facilitate transformation from traditional medicine to personalized medicine.
Collapse
Affiliation(s)
- Rocío Del Carmen Bravo-Miana
- Multiple Sclerosis Group, Neuroscience Area, Biodonostia Health Research Institute, San Sebastián, 20014, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, 28029, Spain.
| | - Jone Karmele Arizaga-Echebarria
- Multiple Sclerosis Group, Neuroscience Area, Biodonostia Health Research Institute, San Sebastián, 20014, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - David Otaegui
- Multiple Sclerosis Group, Neuroscience Area, Biodonostia Health Research Institute, San Sebastián, 20014, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, 28029, Spain.
| |
Collapse
|
4
|
Lan Z, Tang X, Lu M, Hu Z, Tang Z. The role of short-chain fatty acids in central nervous system diseases: A bibliometric and visualized analysis with future directions. Heliyon 2024; 10:e26377. [PMID: 38434086 PMCID: PMC10906301 DOI: 10.1016/j.heliyon.2024.e26377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Background Short-chain fatty acids (SCFAs) are thought to play a key role in the microbe-gut-brain axis and involve in the pathogenesis of a variety of neurological diseases. This study aimed to identify research hotspots and evolution trends in SCFAs in central nervous diseases (CNS) and examine current research trends. Methods The bibliometric analysis was performed using CiteSpace, and the results were visualized via network maps. Results From 2002 to 2022, 480 publications in the database met the criteria. On the country level, China produced the highest number of publications, while the United States had the highest centrality. On the institutional level, University College Cork contributed to the most publications, and John F. Cryan from this university was the key researcher with considerable academic influence. The article, the role of short-chain fatty acids in microbiota-gut-brain, written by Boushra Dalile et al., in 2019 was the most cited article. Furthermore, the journal Nutrients had the maximum number of publications, while Plos One was the most cited journal. "Gut microbiome", "SCFAs", and "central nervous system" were the three most frequent keywords. Among them, SCFAs had the highest centrality. "Animal model" was the keyword with the highest burst strength, with the latest burst keywords being "social behavior", "pathogenesis", and "insulin sensitive". In addition, the research topics on SCFAs in CNS diseases from 2002 to 2022 mainly focused on following aspects: SCFAs plays a key role in microbe-gut-brain crosstalk; The classification and definition of SCFAs in the field of CNS; Several CNS diseases that are closely related to SCFAs research; Mechanism and translational studies of SCFAs in the CNS diseases. And the hotspots over the past 5 years have gradually increased the attention to the therapeutic potential of SCFAs in the CNS diseases. Conclusion The research of SCFAs in CNS diseases is attracting growing attention. However, there is a lack of cooperation between countries and institutions, and additional measures are required to promote cooperation. The current evidence for an association between SCFAs and CNS diseases is preliminary and more work is needed to pinpoint the precise mechanism. Moreover, large-scale clinical trials are needed in the future to define the therapeutic potential of SCFAs in CNS diseases.
Collapse
Affiliation(s)
- Ziwei Lan
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ming Lu
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital, Hunan Normal University, Changsha, 410003, Hunan, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zhenchu Tang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
5
|
Yuan J, Feng T, Guo Y, Luo K, Wu Q, Yu S, Zhou H. Global scientific trends update on macrophage polarization in rheumatoid arthritis: A bibliometric and visualized analysis from 2000 to 2022. Heliyon 2023; 9:e19761. [PMID: 37809950 PMCID: PMC10559075 DOI: 10.1016/j.heliyon.2023.e19761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
The goal of this work was to use bibliometric analysis to help guide future research on macrophage polarization in RA. We looked for studies on macrophage polarization in RA published between January 1, 2000, and December 31, 2022, in the WoSCC database. Research trends and hotspots were shown and assessed using VOSviewer and CiteSpace. A total of 181 articles were gathered. Belgium was among the early adopters of the field. Chinese institutes have produced the most research. Researchers such as Angel Luis Corb, Amaya Puig-Kröger, and Lizbeth Estrada-Capetillo have made major contributions to the field. Frontiers in Immunology has published the most study findings. According to VOSviewer, the most investigated immune cells, biomarkers, and signaling pathways in the previous three years have been "T cells", "gm-csf", and "nf-κb" in that order. We discovered that the most often used terms in the previous three years were "pathway", "oxidative stress", "extracellular capsule" and "nlrp3 inflammasome" using Citespace. We emphasize these concepts in our findings, presenting the exact mechanisms of pathophysiology related to macrophage polarization in RA, as well as current breakthroughs in therapy strategies.
Collapse
Affiliation(s)
- Jun Yuan
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Tong Feng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yanding Guo
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Kun Luo
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Qiaofeng Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shuguang Yu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Haiyan Zhou
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
6
|
Si Q, Wu L, Pang D, Jiang P. Exosomes in brain diseases: Pathogenesis and therapeutic targets. MedComm (Beijing) 2023; 4:e287. [PMID: 37313330 PMCID: PMC10258444 DOI: 10.1002/mco2.287] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 06/15/2023] Open
Abstract
Exosomes are extracellular vesicles with diameters of about 100 nm that are naturally secreted by cells into body fluids. They are derived from endosomes and are wrapped in lipid membranes. Exosomes are involved in intracellular metabolism and intercellular communication. They contain nucleic acids, proteins, lipids, and metabolites from the cell microenvironment and cytoplasm. The contents of exosomes can reflect their cells' origin and allow the observation of tissue changes and cell states under disease conditions. Naturally derived exosomes have specific biomolecules that act as the "fingerprint" of the parent cells, and the contents changed under pathological conditions can be used as biomarkers for disease diagnosis. Exosomes have low immunogenicity, are small in size, and can cross the blood-brain barrier. These characteristics make exosomes unique as engineering carriers. They can incorporate therapeutic drugs and achieve targeted drug delivery. Exosomes as carriers for targeted disease therapy are still in their infancy, but exosome engineering provides a new perspective for cell-free disease therapy. This review discussed exosomes and their relationship with the occurrence and treatment of some neuropsychiatric diseases. In addition, future applications of exosomes in the diagnosis and treatment of neuropsychiatric disorders were evaluated in this review.
Collapse
Affiliation(s)
- Qingying Si
- Department of EndocrinologyTengzhou Central People's HospitalTengzhouChina
| | - Linlin Wu
- Department of OncologyTengzhou Central People's HospitalTengzhouChina
| | - Deshui Pang
- Department of EndocrinologyTengzhou Central People's HospitalTengzhouChina
| | - Pei Jiang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningChina
- Institute of Translational PharmacyJining Medical Research AcademyJiningChina
| |
Collapse
|
7
|
Qiu M, Wei W, Zhang J, Wang H, Bai Y, Guo DA. A Scientometric Study to a Critical Review on Promising Anticancer and Neuroprotective Compounds: Citrus Flavonoids. Antioxidants (Basel) 2023; 12:antiox12030669. [PMID: 36978916 PMCID: PMC10045114 DOI: 10.3390/antiox12030669] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Flavonoids derived from citrus plants are favored by phytomedicinal researchers due to their wide range of biological activities, and relevant studies have been sustained for 67 years (since the first paper published in 1955). In terms of a scientometric and critical review, the scientometrics of related papers, chemical structures, and pharmacological action of citrus flavonoids were comprehensively summarized. The modern pharmacological effects of citrus flavonoids are primarily focused on their anticancer activities (such as breast cancer, gastric cancer, lung cancer, and liver cancer), neuroprotective effects (such as anti-Alzheimer’s disease, Parkinson’s disease), and metabolic diseases. Furthermore, the therapeutic mechanism of cancers (including inducing apoptosis, inhibiting cell proliferation, and inhibiting cancer metastasis), neuroprotective effects (including antioxidant and anti-inflammatory), and metabolic diseases (such as non-alcoholic fatty liver disease, type 2 diabetes mellitus) were summarized and discussed. We anticipate that this review could provide an essential reference for anti-cancer and neuroprotective research of citrus flavonoids and provide researchers with a comprehensive understanding of citrus flavonoids.
Collapse
Affiliation(s)
- Mingyang Qiu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenlong Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianqing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hanze Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuxin Bai
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - De-an Guo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Correspondence:
| |
Collapse
|
8
|
Hun M, Wen H, Han P, Vun T, Zhao M, He Q. Bibliometric analysis of scientific papers on extracellular vesicles in kidney disease published between 1999 and 2022. Front Cell Dev Biol 2023; 10:1070516. [PMID: 36684427 PMCID: PMC9849820 DOI: 10.3389/fcell.2022.1070516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/09/2022] [Indexed: 01/07/2023] Open
Abstract
Background: In recent years, there has been an increasing interest in using extracellular vesicles (EVs) as potential therapeutic agents or natural drug delivery systems in kidney-related diseases. However, a detailed and targeted report on the current condition of extracellular vesicle research in kidney-related diseases is lacking. Therefore, this prospective study was designed to investigate the use of bibliometric analysis to comprehensively overview the current state of research and frontier trends on extracellular vesicle research in kidney-related diseases using visualization tools. Methods: The Web of Science Core Collection (WoSCC) database was searched to identify publications related to extracellular vesicle research in kidney-related diseases since 1999. Citespace, Microsoft Excel 2019, VOSviewer software, the R Bibliometrix Package, and an online platform were used to analyze related research trends to stratify the publication data and collaborations. Results: From 1 January 1999 to 26 June 2022, a total of 1,122 EV-related articles and reviews were published, and 6,486 authors from 1,432 institutions in 63 countries or regions investigated the role of extracellular vesicles in kidney-related diseases. We found that the number of articles on extracellular vesicles in kidney-related diseases increased every year. Dozens of publications were from China and the United States. China had the most number of related publications, in which the Southeast University (China) was the most active institution in all EV-related fields. Liu Bi-cheng published the most papers on extracellular vesicles, while Clotilde Théry had the most number of co-citations. Most papers were published by The International Journal of Molecular Sciences, while Kidney International was the most co-cited journal for extracellular vesicles. We found that exosome-related keywords included exosome, exosm, expression, extracellular vesicle, microRNA, microvesicle, and liquid biopsy, while disease- and pathological-related keywords included biomarker, microRNA, apoptosis, mechanism, systemic lupus erythematosus, EGFR, acute kidney injury, and chronic kidney disease. Acute kidney disease (AKI), CKD, SLE, exosome, liquid biopsy, and extracellular vesicle were the hotspot in extracellular vesicle and kidney-related diseases research. Conclusion: The field of extracellular vesicles in kidney-related disease research is rapidly growing, and its domain is likely to expand in the next decade. The findings from this comprehensive analysis of extracellular vesicles in kidney-related disease research could help investigators to set new diagnostic, therapeutic, and prognostic ideas or methods in kidney-related diseases.
Collapse
Affiliation(s)
- Marady Hun
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Huai Wen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Phanna Han
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tharith Vun
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Mingyi Zhao, ; Qingnan He,
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Mingyi Zhao, ; Qingnan He,
| |
Collapse
|
9
|
Jiang R, Cao M, Mei S, Guo S, Zhang W, Ji N, Zhao Z. Trends in metabolic signaling pathways of tumor drug resistance: A scientometric analysis. Front Oncol 2022; 12:981406. [DOI: 10.3389/fonc.2022.981406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/12/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundCancer chemotherapy resistance is one of the most critical obstacles in cancer therapy. Since Warburg O first observed alterations in cancer metabolism in the 1950s, people gradually found tumor metabolism pathways play a fundamental role in regulating the response to chemotherapeutic drugs, and the attempts of targeting tumor energetics have shown promising preclinical outcomes in recent years. This study aimed to summarize the knowledge structure and identify emerging trends and potential hotspots in metabolic signaling pathways of tumor drug resistance research.MethodsPublications related to metabolic signaling pathways of tumor drug resistance published from 1992 to 2022 were retrieved from the Web of Science Core Collection database. The document type was set to articles or reviews with language restriction to English. Two different scientometric software including Citespace and VOS viewer were used to conduct this scientometric analysis.ResultsA total of 2,537 publications including 1,704 articles and 833 reviews were retrieved in the final analysis. The USA made the most contributions to this field. The leading institution was the University of Texas MD Anderson Cancer Center. Avan A was the most productive author, and Hanahan D was the key researcher with the most co-citations, but there is no leader in this field yet. Cancers was the most influential academic journal, and Oncology was the most popular research field. Based on keywords occurrence analysis, these selected keywords could be roughly divided into five main topics: cluster 1 (study of cancer cell apoptosis pathway); cluster 2 (study of resistance mechanisms of different cancer types); cluster 3 (study of cancer stem cells); cluster 4 (study of tumor oxidative stress and inflammation signaling pathways); and cluster 5 (study of autophagy). The keywords burst detection identified several keywords as new research hotspots, including “tumor microenvironment,” “invasion,” and “target”.ConclusionTumor metabolic reprogramming of drug resistance research is advancing rapidly. This study serves as a starting point, providing a thorough overview, the development landscape, and future opportunities in this field.
Collapse
|