1
|
Lavalle S, Caranti A, Iannella G, Pace A, Lentini M, Maniaci A, Campisi R, Via LL, Giannitto C, Masiello E, Vicini C, Messineo D. The Impact of Diagnostic Imaging on Obstructive Sleep Apnea: Feedback from a Narrative Review. Diagnostics (Basel) 2025; 15:238. [PMID: 39941168 PMCID: PMC11816599 DOI: 10.3390/diagnostics15030238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 02/16/2025] Open
Abstract
Obstructive Sleep Apnea is a prevalent sleep disorder characterized by repeated episodes of partial or complete upper airway obstruction during sleep, leading to disrupted sleep and associated comorbidities. Effective, traditional diagnostic methods, such as polysomnography, have limitations in providing comprehensive anatomical detail. Recent advancements in imaging technology have the potential to revolutionize the diagnosis and management of OSA, offering detailed insights into airway anatomy, function, and dynamics. This paper explores the latest innovations in imaging modalities, including high-resolution magnetic resonance imaging, functional MRI, three-dimensional airway reconstructions, and the integration of artificial intelligence algorithms for enhanced image analysis. We discuss the potential of these technologies to improve the precision of OSA diagnosis, tailor treatment strategies, and predict treatment outcomes. Moreover, we examine the challenges of implementing these advanced imaging techniques in clinical practice, such as cost, accessibility, and the need for validation in diverse patient populations. We also consider the ethical implications of widespread imaging, particularly regarding data security and patient privacy. The future of OSA management is poised for transformation as these imaging technologies promise to provide a more nuanced understanding of the disorder and facilitate personalized treatment approaches. This paper calls for continued research and collaboration across disciplines to ensure these innovations lead to improved patient care and outcomes in the field of sleep medicine.
Collapse
Affiliation(s)
- Salvatore Lavalle
- Department of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy; (S.L.); (M.L.)
| | - Alberto Caranti
- Department of Otorhinolaryngology and Audiology, University of Study of Ferrara, 44121 Ferrara, Italy; (A.C.); (R.C.); (C.V.)
| | - Giannicola Iannella
- Otorhinolaryngology Department, Sapienza University of Rome, 00042 Rome, Italy; (G.I.); (A.P.)
| | - Annalisa Pace
- Otorhinolaryngology Department, Sapienza University of Rome, 00042 Rome, Italy; (G.I.); (A.P.)
| | - Mario Lentini
- Department of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy; (S.L.); (M.L.)
- Surgical Department, Maggiore Hospital, ASP 7, 97100 Ragusa, Italy
| | - Antonino Maniaci
- Department of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy; (S.L.); (M.L.)
- Surgical Department, Maggiore Hospital, ASP 7, 97100 Ragusa, Italy
| | - Ruggero Campisi
- Department of Otorhinolaryngology and Audiology, University of Study of Ferrara, 44121 Ferrara, Italy; (A.C.); (R.C.); (C.V.)
| | - Luigi La Via
- Department of Anesthesiology and Intensive Care, Policlinico San Marco, 95123 Catania, Italy;
| | - Caterina Giannitto
- Department of Diagnostic Radiology, IRCCS Humanitas Research Hospital, 20019 Milan, Italy;
| | - Edoardo Masiello
- Department of Radiology, IRCCS San Raffaele Scientific Institute, 20019 Milan, Italy;
| | - Claudio Vicini
- Department of Otorhinolaryngology and Audiology, University of Study of Ferrara, 44121 Ferrara, Italy; (A.C.); (R.C.); (C.V.)
| | - Daniela Messineo
- Department of Radiological Sciences, Oncology and Anatomo-Pathological Science, “Sapienza” University of Rome, 00184 Rome, Italy;
| |
Collapse
|
2
|
Long T, Shu Y, Liu X, Huang L, Zeng L, Li L, Zhan J, Li H, Peng D. Abnormal temporal variability of thalamo-cortical circuit in patients with moderate-to-severe obstructive sleep apnea. J Sleep Res 2024; 33:e14159. [PMID: 38318885 DOI: 10.1111/jsr.14159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
This study investigated the abnormal dynamic functional connectivity (dFC) variability of the thalamo-cortical circuit in patients with obstructive sleep apnea (OSA) and explored the relationship between these changes and the clinical characteristics of patients with OSA. A total of 91 newly diagnosed patients with moderate-to-severe OSA and 84 education-matched healthy controls (HCs) were included. All participants underwent neuropsychological testing and a functional magnetic resonance imaging scan. We explored the thalamo-cortical dFC changes by dividing the thalamus into 16 subregions and combining them using a sliding-window approach. Correlation analysis assessed the relationship between dFC variability and clinical features, and the support vector machine method was used for classification. The OSA group exhibited increased dFC variability between the thalamic subregions and extensive cortical areas, compared with the HCs group. Decreased dFC variability was observed in some frontal-occipital-temporal cortical regions. These dFC changes positively correlated with daytime sleepiness, disease severity, and cognitive scores. Altered dFC variability contributed to the discrimination between patients with OSA and HCs, with a classification accuracy of 77.8%. Our findings show thalamo-cortical overactivation and disconnection in patients with OSA, disrupting information flow within the brain networks. These results enhance understanding of the temporal variability of thalamo-cortical circuits in patients with OSA.
Collapse
Affiliation(s)
- Ting Long
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yongqiang Shu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiang Liu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ling Huang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Li Zeng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lifeng Li
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jie Zhan
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Haijun Li
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- PET Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Dechang Peng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- PET Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
3
|
Liu X, Wei Z, Ting L, Liu X, Shu Y, Ling H, Li L, Liu Y, Xia G, Peng D, Li H. Microstructural Changes in the Cerebral White Matter After 12 Months of CPAP Treatment for Moderate to Severe Obstructive Sleep Apnoea: A TBSS Study. Nat Sci Sleep 2024; 16:531-542. [PMID: 38827391 PMCID: PMC11141711 DOI: 10.2147/nss.s460919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/14/2024] [Indexed: 06/04/2024] Open
Abstract
INTRODUCTION Continuous positive airway pressure (CPAP) therapy improves clinical symptoms in patients with obstructive sleep apnea (OSA); however, the mechanism of this clinical improvement and how it may be associated with the restoration of white matter (WM) structures in the brain is unclear. Therefore, this study investigated the relationship between the structural recovery of brain WM and improvements in cognitive function and emotion after long-term (12 months) CPAP treatment in patients with OSA. METHODS We collected data from 17 patients with OSA before and 12 months after CPAP treatment, including sleep monitoring, clinical assessment, and diffusion tensor imaging (DTI) magnetic resonance imaging. RESULTS We observed a partial reversible recovery of brain WM (mean and radial diffusion coefficients) after treatment. This recovery involved the commissural fibers (cingulum, body of corpus callosum), projection fibers (retrolenticular part of the internal capsule, posterior thalamic radiation, posterior limb of the internal capsule, superior corona radiata, posterior corona radiata), association fibers (external capsule, superior longitudinal fasciculus, inferior longitudinal fasciculus), and other regions. In addition, the improvements in WM fibers in one part of the brain significantly were correlated with the Hamilton Anxiety Scale and Hamilton Depression Scale scores. DISCUSSION Our results suggest that reversible recovery of reduced brain WM integrity due to OSA may require longer CPAP treatment. Moreover, changes in the integrity of the commissural fibers were associated with emotion regulation. These restored WM areas may explain the cognitive and mood improvements observed after OSA treatment.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, People’s Republic of China
| | - Zhipeng Wei
- Department of Radiology, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, People’s Republic of China
| | - Long Ting
- Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, People’s Republic of China
| | - Xuming Liu
- Department of Radiology, Wenzhou People’s Hospital, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Yongqiang Shu
- Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, People’s Republic of China
| | - Huang Ling
- Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, People’s Republic of China
| | - Lifeng Li
- Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, People’s Republic of China
| | - Yumeng Liu
- Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, People’s Republic of China
| | - Guojin Xia
- Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, People’s Republic of China
| | - Dechang Peng
- Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, People’s Republic of China
| | - Haijun Li
- Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, People’s Republic of China
| |
Collapse
|
4
|
Hashim Z, Gupta M, Neyaz Z, Srivastava S, Mani V, Nath A, Khan AR. Biophysical modeling and diffusion kurtosis imaging reveal microstructural alterations in normal-appearing white-matter regions of the brain in obstructive sleep apnea. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 5:zpae031. [PMID: 38903701 PMCID: PMC11187986 DOI: 10.1093/sleepadvances/zpae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/17/2024] [Indexed: 06/22/2024]
Abstract
Study Objectives Studies have indicated that sleep abnormalities are a strong risk factor for developing cognitive impairment, cardiomyopathies, and neurodegenerative disorders. However, neuroimaging modalities are unable to show any consistent markers in obstructive sleep apnea (OSA) patients. We hypothesized that, compared with those of the control cohort, advanced diffusion MRI metrics could show subtle microstructural alterations in the brains of patients with OSA. Methods Sixteen newly diagnosed patients with moderate to severe OSA and 15 healthy volunteers of the same age and sex were considered healthy controls. Multishell diffusion MRI data of the brain, along with anatomical data (T1 and T2 images), were obtained on a 3T MRI system (Siemens, Germany) after a polysomnography (PSG) test for sleep abnormalities and a behavioral test battery to evaluate cognitive and executive brain functions. Diffusion MRI data were used to compute diffusion tensor imaging and diffusion kurtosis imaging (DKI) parameters along with white-matter tract integrity (WMTI) metrics for only parallel white-matter fibers. Results OSA was diagnosed when the patient's apnea-hypopnea index was ≥ 15. No significant changes in cognitive or executive functions were observed in the OSA cohort. DKI parameters can show significant microstructural alterations in the white-matter region, while the WMTI metric, the axonal-water-fraction (fp), reveals a significant decrease in OSA patients concerning the control cohort. Conclusions Advanced diffusion MRI-based microstructural alterations in the white-matter region of the brain suggest that white-matter tracts are more sensitive to OSA-induced intermittent hypoxia.
Collapse
Affiliation(s)
- Zia Hashim
- Department of Pulmonary Medicine, SGPGIMS, Lucknow, India
| | - Mansi Gupta
- Department of Pulmonary Medicine, SGPGIMS, Lucknow, India
| | - Zafar Neyaz
- Department of Radio-diagnosis, SGPGIMS, Lucknow, India
| | | | - Vinita Mani
- Department of Neurology, SGPGIMS, Lucknow, India
| | - Alok Nath
- Department of Pulmonary Medicine, SGPGIMS, Lucknow, India
| | - Ahmad Raza Khan
- Department of Advanced Spectroscopy and Imaging, CBMR, SGPGIMS Campus, Lucknow, India
| |
Collapse
|
5
|
Huang L, Li H, Shu Y, Li K, Xie W, Zeng Y, Long T, Zeng L, Liu X, Peng D. Changes in Functional Connectivity of Hippocampal Subregions in Patients with Obstructive Sleep Apnea after Six Months of Continuous Positive Airway Pressure Treatment. Brain Sci 2023; 13:brainsci13050838. [PMID: 37239310 DOI: 10.3390/brainsci13050838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Previous studies have shown that the structural and functional impairments of hippocampal subregions in patients with obstructive sleep apnea (OSA) are related to cognitive impairment. Continuous positive airway pressure (CPAP) treatment can improve the clinical symptoms of OSA. Therefore, this study aimed to investigate functional connectivity (FC) changes in hippocampal subregions of patients with OSA after six months of CPAP treatment (post-CPAP) and its relationship with neurocognitive function. We collected and analyzed baseline (pre-CPAP) and post-CPAP data from 20 patients with OSA, including sleep monitoring, clinical evaluation, and resting-state functional magnetic resonance imaging. The results showed that compared with pre-CPAP OSA patients, the FC between the right anterior hippocampal gyrus and multiple brain regions, and between the left anterior hippocampal gyrus and posterior central gyrus were reduced in post-CPAP OSA patients. By contrast, the FC between the left middle hippocampus and the left precentral gyrus was increased. The changes in FC in these brain regions were closely related to cognitive dysfunction. Therefore, our findings suggest that CPAP treatment can effectively change the FC patterns of hippocampal subregions in patients with OSA, facilitating a better understanding of the neural mechanisms of cognitive function improvement, and emphasizing the importance of early diagnosis and timely treatment of OSA.
Collapse
Affiliation(s)
- Ling Huang
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Haijun Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
- PET Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Yongqiang Shu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Kunyao Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Wei Xie
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Yaping Zeng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Ting Long
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Li Zeng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Xiang Liu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Dechang Peng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
- PET Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| |
Collapse
|
6
|
Schneider G. Obstructive Sleep Apnea - Influence on the Cardiovascular System and Cognition. Laryngorhinootologie 2023; 102:S101-S114. [PMID: 37130534 PMCID: PMC10184569 DOI: 10.1055/a-1963-9957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Kardiovaskuläre und kognitive Erkrankungen sind ebenso wie die obstruktive Schlafapnoe sehr häufige Krankheiten mit einer erheblichen Beeinträchtigung der Lebensqualität und einer deutlichen sozioökonomischen Bedeutung. Die Auswirkungen einer unbehandelten obstruktiven Schlafapnoe (OSA) auf das kardiovaskuläre und kognitive Erkrankungsrisiko und die Therapieeffekte einer OSA sind für die meisten kardiovaskulären und kognitiven Folgeerkrankungen wissenschaftlich nachgewiesen. Für die klinische Praxis besteht ein deutlicher Bedarf nach mehr Interdisziplinarität. Aus schlafmedizinischer Sicht müssen bei der Therapieindikation das individuelle kardiovaskuläre und kognitive Risiko berücksichtigt und kognitive Erkrankungen bei der Beurteilung der Therapieintoleranz und residuellen Symptomatik beachtet werden. Aus internistischer Sicht sollte bei Patienten mit schlecht einstellbarem Hypertonus, Vorhofflimmern, koronarer Herzkrankheit und Schlaganfall die Abklärung einer OSA in die Diagnostik integriert werden. Bei Patienten mit milder kognitiver Beeinträchtigung, Alzheimer-Krankheit und Depression können sich die typischen Symptome wie Fatigue, Tagesmüdigkeit und Reduktion der kognitiven Leistungen mit OSA-Symptomen überschneiden. Die Diagnostik einer OSA sollte in die Abklärung dieser Krankheitsbilder integriert werden, da eine Therapie der OSA die kognitiven Beeinträchtigungen reduzieren und die Lebensqualität verbessern kann.
Collapse
|
7
|
Long T, Li H, Shu Y, Li K, Xie W, Zeng Y, Huang L, Zeng L, Liu X, Peng D. Functional Connectivity Changes in the Insular Subregions of Patients with Obstructive Sleep Apnea after 6 Months of Continuous Positive Airway Pressure Treatment. Neural Plast 2023; 2023:5598047. [PMID: 36865671 PMCID: PMC9974286 DOI: 10.1155/2023/5598047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
This study was aimed at investigating the functional connectivity (FC) changes between the insular subregions and whole brain in patients with obstructive sleep apnea (OSA) after 6 months of continuous positive airway pressure (CPAP) treatment and at exploring the relationship between resting-state FC changes and cognitive impairment in OSA patients. Data from 15 patients with OSA before and after 6 months of CPAP treatment were included in this study. The FC between the insular subregions and whole brain was compared between baseline and after 6 months of CPAP treatment in OSA. After 6 months of treatment, OSA patients had increased FC from the right ventral anterior insula to the bilateral superior frontal gyrus and bilateral middle frontal gyrus and increased FC from the left posterior insula to the left middle temporal gyrus and left inferior temporal gyrus. Hyperconnectivity was found from the right posterior insula to the right middle temporal gyrus, bilateral precuneus, and bilateral posterior cingulate cortex, which mainly involved the default mode network. There are changes in functional connectivity patterns between the insular subregions and whole brain in OSA patients after 6 months of CPAP treatment. These changes provide a better understanding of the neuroimaging mechanisms underlying the improvement in cognitive function and emotional impairment in OSA patients and can be used as potential biomarkers for clinical CPAP treatment.
Collapse
Affiliation(s)
- Ting Long
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Haijun Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
- PET Center, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Yongqiang Shu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Kunyao Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Wei Xie
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Yaping Zeng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Ling Huang
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Li Zeng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Xiang Liu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Dechang Peng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
- PET Center, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| |
Collapse
|