1
|
Lin D, Ren Q, Ou Y, Li L, Peng D, Yang S. Neuroimaging studies of acupuncture for depressive disorder: a systematic review of published papers from 2014 to 2024. Front Psychiatry 2025; 16:1536660. [PMID: 40443752 PMCID: PMC12120174 DOI: 10.3389/fpsyt.2025.1536660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/14/2025] [Indexed: 06/02/2025] Open
Abstract
Background Several neuroimaging studies have confirmed that acupuncture can elicit alterations in brain networks and regions associated with depressive disorder (DD). This review provides an overview of the methodologies and results of neuroimaging investigations into the efficacy of acupuncture in treating DD, with the intention of guiding future research objectives. Methods Neuroimaging studies of acupuncture for DD being published between February 2, 2014 and February 2, 2024, were gathered from PubMed, Cochrane Library, EMBASE, Web of Science, China National Knowledge Infrastructure, Chongqing VIP Database, WanFang Database, and Chinese Biomedical Literature Database. The methodological quality of the studies was assessed utilizing the Risk of Bias 2.0 and Risk of Bias in Non-Randomized Studies of Interventions tools. Following a qualitative analysis of the studies, relevant information regarding acupuncture interventions and brain imaging data was extracted. Results A total of 26 studies met the inclusion criteria. These studies featured a combined sample size of 1138 participants. All studies employed magnetic resonance imaging. Our findings indicate that acupuncture can affect neural activity in the cingulate gyrus, precuneus, insula, prefrontal lobe, etc. The neuroimaging results of most DD patients were correlated with the Hamilton Rating Scale for Depression scores. Conclusions The results of the current study indicate that acupuncture treatment may have a regulatory effect on the abnormal functioning of neural regions and networks in individuals diagnosed with DD. These networks are predominantly localized within various brain regions, including the default mode network, limbic system, emotion regulation and cognitive network, reward network, central executive network, salience network, and sensorimotor network. It is essential to conduct additional high-quality and multimodal neuroimaging research to expand upon these findings and elucidate the mechanisms by which acupuncture impacts patients with DD. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023400557.
Collapse
Affiliation(s)
- Dezhi Lin
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Ren
- Department of Rheumatology and Immunology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yangxu Ou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Longlong Li
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dezhong Peng
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sha Yang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Jia X, Li M, Wang C, Antwi CO, Darko AP, Zhang B, Ren J. Local brain abnormalities in emotional disorders: Evidence from resting state fMRI studies. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2024; 15:e1694. [PMID: 39284783 DOI: 10.1002/wcs.1694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/28/2024] [Accepted: 08/19/2024] [Indexed: 11/05/2024]
Abstract
Emotional disorders inflict an enormous burden on society. Research on brain abnormalities implicated in emotional disorders has witnessed great progress over the past decades. Using cross-sectional and longitudinal designs, resting state functional magnetic resonance imaging (rs-fMRI) and its analytic approaches have been applied to characterize the local properties of patients with emotional disorders. Additionally, brain activity alterations of emotional disorders have shown frequency-specific. Despite the gains in understanding the roles of brain abnormalities in emotional disorders, the limitation of the small sample size needs to be highlighted. Lastly, we proposed that evidence from the positive psychology research stream presents it as a viable discipline, whose suggestions could be developed in future emotional disorders research. Such interdisciplinary research may produce novel treatments and intervention options. This article is categorized under: Psychology > Brain Function and Dysfunction.
Collapse
Affiliation(s)
- Xize Jia
- Department of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Mengting Li
- Department of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Chunjie Wang
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | | | | | - Baojing Zhang
- Department of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jun Ren
- Department of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
3
|
Zhang H, Shan AD, Wan CH, Cao XY, Yuan YS, Ye SY, Gao MX, Gao LZ, Tong Q, Gan CT, Sun HM, Zhang KZ. Transcutaneous auricular vagus nerve stimulation improves anxiety symptoms and cortical activity during verbal fluency task in Parkinson's disease with anxiety. J Affect Disord 2024; 361:556-563. [PMID: 38925314 DOI: 10.1016/j.jad.2024.06.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE To investigate the effect of 20/4Hz transcutaneous auricular vagus nerve stimulation (taVNS) on anxiety symptoms in Parkinson's disease (PD) and the potential neural mechanism. METHODS In the current randomized, double-blind, sham-controlled trial, 30 PD patients with anxiety (PD-A), 30 PD patients without anxiety (PD-nA), and 30 healthy controls (HCs) were enrolled. PD-A patients were randomly (1:1) allotted to real taVNS stimulation group (RS) or sham stimulation group (SS) to explore the efficacy of a two-week treatment of taVNS to promote anxiety recovery. Simultaneously, all participants were measured activation in the bilateral prefrontal cortex during verbal fluency task (VFT) using functional near-infrared spectroscopy. RESULTS PD-A patients showed significantly decreased oxyhemoglobin in the left triangle part of the inferior frontal gyrus (IFG) during VFT, which was negatively related to the severity of anxiety symptoms. After two-week treatment of taVNS, the interaction of group and time had significant effect on HAMA scores (F = 18.476, p < 0.001, η2 = 0.398). In RS group, compared with baseline, HAMA scores decreased significantly in the post-treatment and follow-up condition (both p < 0.001). Meanwhile, in RS group, HAMA scores were lower than those in SS group in the post-treatment and follow-up condition (p = 0.006, <0.001, respectively). Furthermore, the 20/4Hz taVNS remarkably ameliorated anxiety symptoms in PD patients, directly correlated with the increased activation of the left triangle part of the IFG during VFT in RS group. CONCLUSION Our results depicted that taVNS could ameliorate the anxiety symptoms of PD-A patients and regulated the function of the left triangle part of the IFG.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China
| | - Ai-di Shan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China
| | - Chen-Hui Wan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China
| | - Xing-Yue Cao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China
| | - Yong-Sheng Yuan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China
| | - Shi-Yi Ye
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China
| | - Meng-Xi Gao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China
| | - Li-Zhi Gao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China
| | - Qing Tong
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China
| | - Cai-Ting Gan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China
| | - Hui-Min Sun
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China
| | - Ke-Zhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Molefi E, McLoughlin I, Palaniappan R. Transcutaneous Auricular Vagus Nerve Stimulation towards Visually Induced Motion Sickness Reduction: A Pilot Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083234 DOI: 10.1109/embc40787.2023.10340374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) is a novel neuromodulation application for vagal afferent stimulation. Owing to its non-invasive nature, taVNS is a potent therapeutic tool for a diverse array of diseases and disorders that ail us. Herein, we investigated taVNS-induced effects on neural activity of participants during visually induced motion sickness. 64-channel electroencephalography (EEG) recordings were obtained from 15 healthy participants in a randomized, within-subjects, cross-over design during sham and taVNS conditions. To assess motion sickness severity, we used the motion sickness assessment questionnaire (MSAQ). We observed that taVNS attenuated theta (4-8 Hz) brain activity in the right frontal, right parietal and occipital cortices when compared to sham condition. The total MSAQ scores, and central, peripheral and sopite MSAQ categorical scores were significantly lower after taVNS compared to sham. These findings reveal for the first time the potential therapeutic role of taVNS toward counter-motion sickness, and suggest that taVNS may be reliable in alleviating symptoms of motion sickness in real-time, non-pharmacologically.Clinical relevance- This suggests taVNS potential to offset motion sickness-induced nausea; which may be of translational value to counter e.g., chemotherapy-induced nausea.
Collapse
|
5
|
Rao Y, Liu W, Zhu Y, Lin Q, Kuang C, Huang H, Jiao B, Ma L, Lin J. Altered functional brain network patterns in patients with migraine without aura after transcutaneous auricular vagus nerve stimulation. Sci Rep 2023; 13:9604. [PMID: 37311825 DOI: 10.1038/s41598-023-36437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/03/2023] [Indexed: 06/15/2023] Open
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) shows excellent effects on relieving clinical symptoms in migraine patients. Nevertheless, the neurological mechanisms of taVNS for migraineurs remain unclear. In recent years, voxel-wise degree centrality (DC) and functional connectivity (FC) methods were extensively utilized for exploring alterations in patterns of FC in the resting-state brain. In the present study, thirty-five migraine patients without aura and thirty-eight healthy controls (HCs) were recruited for magnetic resonance imaging scans. Firstly, this study used voxel-wise DC analysis to explore brain regions where abnormalities were present in migraine patients. Secondly, for elucidating neurological mechanisms underlying taVNS in migraine, seed-based resting-state functional connectivity analysis was employed to the taVNS treatment group. Finally, correlation analysis was performed to explore the relationship between alterations in neurological mechanisms and clinical symptoms. Our findings indicated that migraineurs have lower DC values in the inferior temporal gyrus (ITG) and paracentral lobule than in healthy controls (HCs). In addition, migraineurs have higher DC values in the cerebellar lobule VIII and the fusiform gyrus than HCs. Moreover, after taVNS treatment (post-taVNS), patients displayed increased FC between the ITG with the inferior parietal lobule (IPL), orbitofrontal gyrus, angular gyrus, and posterior cingulate gyrus than before taVNS treatment (pre-taVNS). Besides, the post-taVNS patients showed decreased FC between the cerebellar lobule VIII with the supplementary motor area and postcentral gyrus compared with the pre-taVNS patients. The changed FC of ITG-IPL was significantly related to changes in headache intensity. Our study suggested that migraine patients without aura have altered brain connectivity patterns in several hub regions involving multisensory integration, pain perception, and cognitive function. More importantly, taVNS modulated the default mode network and the vestibular cortical network related to the dysfunctions in migraineurs. This paper provides a new perspective on the potential neurological mechanisms and therapeutic targets of taVNS for treating migraine.
Collapse
Affiliation(s)
- Yuyang Rao
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China
| | - Wenting Liu
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China
| | - Yunpeng Zhu
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China
| | - Qiwen Lin
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China
| | - Changyi Kuang
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China
| | - Huiyuan Huang
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China
| | - Bingqing Jiao
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China
| | - Lijun Ma
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China.
| | - Jiabao Lin
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China.
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
6
|
Gurtubay IG, Perez-Rodriguez DR, Fernandez E, Librero-Lopez J, Calvo D, Bermejo P, Pinin-Osorio C, Lopez M. Immediate effects and duration of a short and single application of transcutaneous auricular vagus nerve stimulation on P300 event related potential. Front Neurosci 2023; 17:1096865. [PMID: 37051148 PMCID: PMC10083261 DOI: 10.3389/fnins.2023.1096865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/10/2023] [Indexed: 03/28/2023] Open
Abstract
IntroductionTranscutaneous auricular vagus nerve stimulation (taVNS) is a neuromodulatory technique that stimulates the auricular branch of the vagus nerve. The modulation of the locus coeruleus-norepinephrine (LC-NE) network is one of the potential working mechanisms of this method. Our aims were 1-to investigate if short and single applications of taVNS can modulate the P300 cognitive event-related potential (ERP) as an indirect marker that reflects NE brain activation under control of the LC, and 2-to evaluate the duration of these changes.Methods20 healthy volunteers executed an auditory oddball paradigm to obtain P300 and reaction time (RT) values. Then a 7 min active or sham taVNS period was initiated and simultaneously a new P300 paradigm was performed. We successively repeated the paradigm on 4 occasions with different time intervals up to 56 min after the stimulation onset.ResultsDuring active taVNS an immediate and significant effect of increasing the amplitude and reducing the latency of P300, as well as a shortening in the RT was observed. This effect was prolonged in time up to 28 min. The values then returned to pre-stimulation levels. Sham stimulation did not generate changes.DiscussionOur results, demonstrate differential facilitating effects in a concrete time window after taVNS. Literature about the modulatory effect of taVNS over P300 ERP shows a wide spread of results. There is not a standardized system for taVNS and currently the great heterogeneity of stimulation approaches concerning targets and parameters, make it difficult to obtain conclusions about this relationship. Our study was designed optimizing several stimulation settings, such as a customized earbud stimulator, enlarged stimulating surface, simultaneous stimulation over the cymba and cavum conchae, a Delayed Biphasic Pulse Burst and current controlled stimulation that adjusted the output voltage and guaranteed the administration of a preset electrical dose. Under our stimulation conditions, targeting vagal nerve fibers via taVNS modulates the P300 in healthy participants. The optimal settings of modulatory function of taVNS on P300, and their interdependency is insufficiently studied in the literature, but our data provides several easily optimizable parameters, that will produce more robust results in future.
Collapse
Affiliation(s)
- Iñaki G. Gurtubay
- Department of Neurophysiology, University Hospital of Navarre, Pamplona, Spain
- Navarrabiomed Biomedical Research Centre, Pamplona, Spain
- *Correspondence: Iñaki G. Gurtubay,
| | | | | | | | - David Calvo
- Arrhythmia Unit, Cardiovascular Institute, Hospital Clínico San Carlos, Madrid, Asturias, Spain
| | - Pedro Bermejo
- Neurologist, Translational Medicine UCB Pharma, Brussels, Belgium
| | | | - Miguel Lopez
- Xana Smart Neurostimulation, Epalinges, Switzerland
| |
Collapse
|