Wang Y, Zhang Z, Zhang Z, Chen X, Liu J, Liu M. Traditional and machine learning models for predicting haemorrhagic transformation in ischaemic stroke: a systematic review and meta-analysis.
Syst Rev 2025;
14:46. [PMID:
39987097 PMCID:
PMC11846323 DOI:
10.1186/s13643-025-02771-w]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/16/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND
Haemorrhagic transformation (HT) is a severe complication after ischaemic stroke, but identifying patients at high risks remains challenging. Although numerous prediction models have been developed for HT following thrombolysis, thrombectomy, or spontaneous occurrence, a comprehensive summary is lacking. This study aimed to review and compare traditional and machine learning-based HT prediction models, focusing on their development, validation, and diagnostic accuracy.
METHODS
PubMed and Ovid-Embase were searched for observational studies or randomised controlled trials related to traditional or machine learning-based models. Data were extracted according to Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies (CHARMS) checklist and risk of bias was assessed using the Prediction model Risk Of Bias ASsessment Tool (PROBAST). Performance data for prediction models that were externally validated at least twice and showed low risk of bias were meta-analysed.
RESULTS
A total of 100 studies were included, with 67 focusing on model development and 33 on model validation. Among 67 model development studies, 44 were traditional model studies involving 47 prediction models (with National Institutes of Health Stroke Scale score being the most frequently used predictor in 35 models), and 23 studies focused on machine learning prediction models (with support vector machines being the most common algorithm, used in 10 models). The 33 validation studies externally validated 34 traditional prediction models. Regarding study quality, 26 studies were assessed as having a low risk of bias, 11 as unclear, and 63 as high risk of bias. Meta-analysis of 15 studies validating eight models showed a pooled area under the receiver operating characteristic curve of approximately 0.70 for predicting HT.
CONCLUSION
While significant progress has been made in developing HT prediction models, both traditional and machine learning-based models still have limitations in methodological rigour, predictive accuracy, and clinical applicability. Future models should undergo more rigorous validation, adhere to standardised reporting frameworks, and prioritise predictors that are both statistically significant and clinically meaningful. Collaborative efforts across research groups are essential for validating these models in diverse populations and improving their broader applicability in clinical practice.
SYSTEMATIC REVIEW REGISTRATION
International Prospective Register of Systematic Reviews (CRD42022332816).
Collapse