Liu S, Chen F, Yin J, Wang G, Yang L. Comparative efficacy of robotic exoskeleton and conventional gait training in patients with spinal cord injury: a meta-analysis of randomized controlled trials.
J Neuroeng Rehabil 2025;
22:121. [PMID:
40442684 PMCID:
PMC12121209 DOI:
10.1186/s12984-025-01649-1]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 05/13/2025] [Indexed: 06/02/2025] Open
Abstract
OBJECTIVE
The purpose of this meta-analysis was to investigate the effects of Robotic exoskeleton gait training (REGT) on lower limb mobility, walking balance, functional scores and respiratory function in patients with spinal cord injury (SCI).
DATA SOURCES
The PubMed, Embase, Cochrane Library databases were systematically searched from inception until December 24, 2024.
STUDY SELECTION
Eligible randomized controlled trials contained information on the population (SCI), intervention (REGT), and outcomes (walking speed and distance, walking balance, functional scores for SCI rehabilitation, respiratory function). Participants in the REGT intervention group were compared with those in conventional physical gait training (CPT) groups. Two independent researchers conducted the research,screened the articles, and assessed their eligibility.
DATA EXTRACTION
Two independent researchers extracted key information from each eligible study. The authors' names, year of publication, setting, total sample size, REGT, CPT training schedule, baseline/mean difference (MD), and 95% confidence interval (CI) were extracted using a standardized form, and the methodological quality was assessed using the GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) system.
DATA SYNTHESIS
Of 595 studies identified, 15 randomized controlled trials (n = 579) were included for meta-analysis. Compared with conventional physical gait training (CPT), REGT showed no significant efficacy in walking speed (10-Meter Walk Test, WMD (95%CI) = - 0.03 (- 0.06, 0.00) m/s, P = 0.08) and walking distance, (6-Minute Walk Test, WMD (95% CI) = -1.83 (- 14.48, 10.83) meters, P = 0.78). REGT showed statistically significant efficacy in walking stability (Timed Up and Go, WMD (95%CI) = 6.62 (0.35, 12.88) s, P = 0.04) and functional scores such as Walking Index for Spinal Cord Injury Version II (WMD (95%CI) = 2.17 (1.05, 3.29), P = 0.0001) and Lower Extremity Motor Score (WMD (95%CI) = 1.33 (0.58, 2.07), P = 0.0005). Additional Significant efficacy was also found in terms of respiratory function (forced expiratory volume in one second, WMD (95%CI) = 0.60 (0.05, 1.16) L, P = 0.03).
CONCLUSIONS
This meta-analysis discovered the evidence that robotic exoskeleton gait training can improve the walking balance, strength of lower limbs, functional scores and respiratory function in the patients with spinal cord injury (SCI) compared to conventional gait training (CPT). No obvious evidence showed that REGT has more advantages than CPT in improving walking speed and distance. REGT combined with CPT are more recommended in the discovery of walking speed and distance of patients above 6 months after SCI.
Collapse