1
|
Ullah S, Khan SA, Jan S, Din SU, Muhammad N, Rehman ZU, Jan A, Tariq M, Muhammad N, Ghani A, Wasif N, Khan S. Truncated Variants in FAM20A and WDR72 Genes Underlie Autosomal Recessive Amelogenesis Imperfecta in Four Pakistani Families. Biochem Genet 2025:10.1007/s10528-025-11087-2. [PMID: 40108106 DOI: 10.1007/s10528-025-11087-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Amelogenesis Imperfecta (AI) is a set of hereditary diseases affecting enamel development, leading to various types of enamel defects, potentially impacting oral health unassociated with other generalized defects. AI manifests in syndromic and non-syndromic forms and can be inherited through autosomal recessive, autosomal dominant, or X-linked inheritance patterns. Genetic studies have identified sequence variants in a number of genes (≥ 70) linked to both syndromic and non-syndromic AI, highlighting the genetic diversity underlying the condition. The current study involved clinical evaluation and exome sequencing, aimed at identifying the causative variants in four unrelated consanguineous Pakistani families presenting AI phenotypes. The exome sequencing results revealed a novel homozygous frameshift variant FAM20A: NM_017565.4, c.188dupA; p.(Asp63Glufs*17) in families A, B, and C while a nonsense homozygous variant WDR72: NM_182758.4, c.2686C > T; p. (Arg896*) in family D. The segregation of both variants was confirmed by Sanger sequencing. Bioinformatics analysis predicted the pathogenicity of these genetic variants. These alterations suggest functional consequences, potentially impairing the FAM20A and WDR72 proteins and causing dental anomalies. This investigation significantly broadens our understanding of FAM20A and WDR72's involvement in AI. Furthermore, this study highlights the genetic heterogeneity of AI (involving FAM20A and WDR72 in this study) within the Pakistani population.
Collapse
Affiliation(s)
- Sadaqat Ullah
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Khyber Pakhtunkhwa, Kohat, Pakistan
| | - Sher Alam Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Khyber Pakhtunkhwa, Kohat, Pakistan
- Department of Computer Science and Bioinformatics, Khushal Khan Khatak University, Karak, Pakistan
| | - Samin Jan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Khyber Pakhtunkhwa, Kohat, Pakistan
| | - Salah Ud Din
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Khyber Pakhtunkhwa, Kohat, Pakistan
| | - Nazif Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Khyber Pakhtunkhwa, Kohat, Pakistan
| | - Zia Ur Rehman
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Khyber Pakhtunkhwa, Kohat, Pakistan
| | - Abid Jan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Khyber Pakhtunkhwa, Kohat, Pakistan
| | - Muhammad Tariq
- Department of Medical Laboratory Technology, University College of Duba, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Noor Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Khyber Pakhtunkhwa, Kohat, Pakistan
| | - Abdul Ghani
- Department of Chemistry, Kohat University of Science & Technology (KUST), Khyber Pakhtunkhwa, Kohat, Pakistan
| | - Naveed Wasif
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081, Ulm, Germany.
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| | - Saadullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Khyber Pakhtunkhwa, Kohat, Pakistan.
| |
Collapse
|
2
|
Li P, Huang D. NSUN2-mediated RNA methylation: Molecular mechanisms and clinical relevance in cancer. Cell Signal 2024; 123:111375. [PMID: 39218271 DOI: 10.1016/j.cellsig.2024.111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Cancer remains a leading cause of morbidity and mortality worldwide, necessitating the ongoing investigation of molecular targets for improved diagnosis, prognosis, and therapy. Among these targets, RNA modifications, particularly N5-methylcytosine (m5C) in RNA, have emerged as critical regulators of gene expression and cellular functions. NOP2/Sun RNA methyltransferase family member 2 (NSUN2) is a key enzyme in m5C modification, significantly influencing various biological processes and tumorigenesis. NSUN2 methylates multiple RNA species, including transfer RNAs (tRNAs), messenger RNAs (mRNAs), and non-coding RNAs, impacting RNA stability, translation efficiency, and cellular stress responses. These modifications, in turn, affect cell proliferation, differentiation, and survival. In cancer, NSUN2 is frequently upregulated, associated with aggressive tumor phenotypes, poor prognosis, and therapy resistance. Its role in oncogenic signaling pathways further underscores its importance in cancer biology. This review offers a comprehensive overview of NSUN2's role in cancer, focusing on its involvement in RNA methylation and its implications for tumor initiation and progression. Additionally, we explore the potential of NSUN2 as a biomarker for cancer diagnosis and prognosis, and its promise as a therapeutic target.
Collapse
Affiliation(s)
- Penghui Li
- Department of gastrointestinal surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan, China.
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
3
|
Yang Q, Zhang Q, Qin Z, Yi S, Luo J. A novel variant in NSUN2 causes intellectual disability in a Chinese family. BMC Med Genomics 2024; 17:95. [PMID: 38643142 PMCID: PMC11032587 DOI: 10.1186/s12920-024-01883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/17/2024] [Indexed: 04/22/2024] Open
Abstract
NSUN2-intellectual disability syndrome, also known as intellectual disability type 5 (MRT5), is an autosomal recessive disorder that is characterized by intellectual disability (ID), postnatal growth retardation, dysmorphic facies, microcephaly, short stature, developmental delay, language impairment and other congenital abnormalities. The disease is caused by mutations in the NSUN2 gene, which encodes a tRNA cytosine methyltransferase that has an important role in spindle assembly during mitosis and chromosome segregation. In this study, we recruited a family that had two individuals with ID. Whole exome sequencing was performed to identify a homozygous frameshift variant (c.1171_1175delACCAT(p.Thr391fs*18*)) in NSUN2 (NM_017755.5) in the proband. The varint was confirmed as segregating in his affected brother and his parents by Sanger sequencing. The individuals that we described showed a similar dysmorphology profile to that associated with MRT5. To analyze the correlations between genotypes of NSUN2 and phenotypes of individuals with ID, we examined 17 variants and the associated phenotypes from 32 ID individuals in current and previous studies. We concluded that mutations in NSUN2 cause a wide range of phenotypic defects. Although some clinical manifestations were highly variable, the core phenotypes associated with NSUN2 mutations were dysmorphic facies, microcephaly, short stature, ID, growth restriction, language impairment, hypotonia and delayed puberty. Our study expands the genetic spectrum of NSUN2 mutations and helps to further define the genotype-phenotype correlations in MRT5.
Collapse
Affiliation(s)
- Qi Yang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59, Xiangzhu Road, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiang Zhang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59, Xiangzhu Road, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zailong Qin
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59, Xiangzhu Road, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shang Yi
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59, Xiangzhu Road, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingsi Luo
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59, Xiangzhu Road, Nanning, China.
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
| |
Collapse
|
4
|
Hussain SI, Muhammad N, Khan N, Khan M, Fardous F, Tahir R, Yasin M, Khan SA, Saleha S, Muhammad N, Wasif N, Khan S. Molecular insight into CREBBP and TANGO2 variants causing intellectual disability. J Gene Med 2024; 26:e3591. [PMID: 37721116 DOI: 10.1002/jgm.3591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Intellectual disability (ID) can be associated with different syndromes such as Rubinstein-Taybi syndrome (RSTS) and can also be related to conditions such as metabolic encephalomyopathic crises, recurrent,with rhabdomyolysis, cardiac arrhythmias and neurodegeneration. Rare congenital RSTS1 (OMIM 180849) is characterized by mental and growth retardation, significant and duplicated distal phalanges of thumbs and halluces, facial dysmorphisms, and an elevated risk of malignancies. Microdeletions and point mutations in the CREB-binding protein (CREBBP) gene, located at 16p13.3, have been reported to cause RSTS. By contrast, TANGO2-related metabolic encephalopathy and arrhythmia (TRMEA) is a rare metabolic condition that causes repeated metabolic crises, hypoglycemia, lactic acidosis, rhabdomyolysis, arrhythmias and encephalopathy with cognitive decline. Clinicians need more clinical and genetic evidence to detect and comprehend the phenotypic spectrum of this disorder. METHODS Exome sequencing was used to identify the disease-causing variants in two affected families A and B from District Kohat and District Karak, Khyber Pakhtunkhwa. Affected individuals from both families presented symptoms of ID, developmental delay and behavioral abnormalities. The validation and co-segregation analysis of the filtered variant was carried out using Sanger sequencing. RESULTS In the present study, two families (A and B) exhibiting various forms of IDs were enrolled. In Family A, exome sequencing revealed a novel missense variant (NM 004380.3: c.4571A>G; NP_004371.2: p.Lys1524Arg) in the CREBBP gene, whereas, in Family B, a splice site variant (NM 152906.7: c.605 + 1G>A) in the TANGO2 gene was identified. Sanger sequencing of both variants confirmed their segregation with ID in both families. The in silico tools verified the aberrant changes in the CREBBP protein structure. Wild-type and mutant CREBBP protein structures were superimposed and conformational changes were observed likely altering the protein function. CONCLUSIONS RSTS and TRMEA are exceedingly rare disorders for which specific clinical characteristics have been clearly established, but more investigations are underway and required. Multicenter studies are needed to increase our understanding of the clinical phenotypes, mainly showing the genotype-phenotype associations.
Collapse
Affiliation(s)
- Syeda Iqra Hussain
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Nazif Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Niamatullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Mobeen Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Fardous Fardous
- Department of Medical Lab Technology, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Raheel Tahir
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Yasin
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Sher Alam Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Noor Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Naveed Wasif
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Saadullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
5
|
Chaudhri EN, Abbott JM, Islam NN, Weber CA, Coban MA, Bilgili A, Squire JD, Mantia S, Wierenga KJ, Caulfield TR. Statistical Mechanics Metrics in Pairing and Parsing In Silico and Phenotypic Data of a Novel Genetic NFκB1 (c.T638A) Variant. Genes (Basel) 2023; 14:1855. [PMID: 37895204 PMCID: PMC10606260 DOI: 10.3390/genes14101855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Mutations in NFκB1, a transcriptional regulator of immunomodulating proteins, are a known cause of inborn errors of immunity. Our proband is a 22-year-old male with a diagnosis of common variable immunodeficiency (CVID), cytopenias with massive splenomegaly, and nodular regenerative hyperplasia of the liver. Genetic studies identified a novel, single-point mutation variant in NFκB1, c. T638A p. V213E. (2) Methods: Next-generation panel sequencing of the patient uncovered a novel single-point mutation in the NFκB1 gene that was modeled using the I-TASSER homology-modeling software, and molecular dynamics were assessed using the YASARA2 software (version 20.14.24). (3) Results: This variant replaces valine with glutamic acid at position 213 in the NFκB1 sequence. Molecular modeling and molecular dynamic studies showed altered dynamics in and around the rel homology domain, ankyrin regions, and death domain of the protein. We postulate that these changes alter overall protein function. (4) Conclusions: This case suggests the pathogenicity of a novel variant using protein-modeling techniques and molecular dynamic simulations.
Collapse
Affiliation(s)
- Eman N. Chaudhri
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; (E.N.C.); (J.M.A.); (N.N.I.); (C.A.W.); (A.B.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Jessica M. Abbott
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; (E.N.C.); (J.M.A.); (N.N.I.); (C.A.W.); (A.B.)
| | - Naeyma N. Islam
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; (E.N.C.); (J.M.A.); (N.N.I.); (C.A.W.); (A.B.)
| | - Caleb A. Weber
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; (E.N.C.); (J.M.A.); (N.N.I.); (C.A.W.); (A.B.)
| | - Mathew A. Coban
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Ahmet Bilgili
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; (E.N.C.); (J.M.A.); (N.N.I.); (C.A.W.); (A.B.)
| | | | - Sarah Mantia
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL 32224, USA (K.J.W.)
| | - Klaas J. Wierenga
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL 32224, USA (K.J.W.)
| | - Thomas R. Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; (E.N.C.); (J.M.A.); (N.N.I.); (C.A.W.); (A.B.)
| |
Collapse
|