1
|
Erdik B. Driving under viral impairment: Linking acute SARS-CoV-2 infections to elevated car crash risks. PLOS GLOBAL PUBLIC HEALTH 2025; 5:e0004420. [PMID: 40198595 PMCID: PMC11978055 DOI: 10.1371/journal.pgph.0004420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/20/2025] [Indexed: 04/10/2025]
Abstract
This study explores the linkage between acute SARS-CoV-2 and car crashes across U.S. states, correlating with COVID-19 mitigation strategies, vaccination rates, and Long COVID prevalence. This investigation analyzed aggregate COVID-19 and car crash data spanning 2020-2023, with data collection occurring between March and May 2024. Analysis was done via a Poisson regression model, adjusted for population. Key variables included vaccination status, month-specific effects relating to initial pandemic shutdowns, and Long COVID rates. Results demonstrated a significant association between acute COVID-19 infections and an increase in car crashes, independent of Long COVID status to the tune of an OR of 1.25 [1.23-1.26]. This association was observed despite varying mitigation efforts and vaccination rates across states. The study found no protective effect of vaccination against car crashes, challenging prior assumptions about the benefits of vaccination. Notably, the risk associated with COVID-19 was found to be analogous to driving impairments seen with alcohol consumption at legal limits. Findings suggest significant implications for public health policies, especially in assessing the readiness of individuals recovering from COVID-19 to engage in high-risk activities such as pilots or nuclear plant employees. Further research is necessary to establish causation and explore the exact effects of COVID-19 within the CNS affecting cognition and behavior.
Collapse
Affiliation(s)
- Baran Erdik
- Department of Healthcare Administration, American Vision University, Anaheim, California, United States of America
- Hygia Health, Miami, Florida, United States of America
| |
Collapse
|
2
|
Martini AL, Carli G, Caminiti SP, Kiferle L, Leo A, Perani D, Sestini S. Persistent dysfunctions of brain metabolic connectivity in long-covid with cognitive symptoms. Eur J Nucl Med Mol Imaging 2025; 52:810-822. [PMID: 39404791 DOI: 10.1007/s00259-024-06937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/29/2024] [Indexed: 01/23/2025]
Abstract
PURPOSE Our study examines brain metabolic connectivity in SARS-CoV-2 survivors during the acute-subacute and chronic phases, aiming to elucidate the mechanisms underlying the persistence of neurological symptoms in long-COVID patients. METHODS We perfomed a cross-sectional study including 44 patients (pts) with neurological symptoms who underwent FDG-PET scans, and classified to timing infection as follows: acute (7 pts), subacute (17 pts), long-term (20 pts) phases. Interregional correlation analysis (IRCA) and ROI-based IRCA were applied on FDG-PET data to extract metabolic connectivity in resting state networks (ADMN, PDMN, EXN, ATTN, LIN, ASN) of neuro-COVID pts in acute/subacute and long-term groups compared with healthy controls (HCs). Univariate approach was used to investigate metabolic alterations from the acute to sub-acute and long-term phase. RESULTS The acute/subacute phase was characterized by hyperconnectivity in EXN and ATTN networks; the same networks showed hypoconnectivity in the chronic phase. EXN and ATTN hypoconnectivity was consistent with clinical findings in long-COVID patients, e.g. altered performances in neuropsychological tests of executive and attention domains. The ASN and LIN presented hyperconnectivity in acute/subacute phase and normalized in long-term phase. The ADMN and PDMN presented a preseverved connectivity. Univariate analysis showed hypometabolism in fronto-insular cortex in acute phase, which reduced in sub-acute phase and disappeared in long-term phase. CONCLUSION A compensatory EXN and ATTN hyperconnectivity was found in the acute/subacute phase and hypoconnectivity in long-term. Hypoconnectivity and absence of hypometabolism suggest that connectivity derangement in frontal networks could be related to protraction of neurological symptoms in long-term COVID patients.
Collapse
Affiliation(s)
- Anna Lisa Martini
- Nuclear Medicine Unit, Department of Diagnostic Imaging, N.O.P. - S. Stefano, U.S.L. Toscana Centro, Prato, Italy
| | - Giulia Carli
- Department Neurology, University Michigan, Ann Arbor, USA
| | | | - Lorenzo Kiferle
- Neurology Unit, N.O.P. - S. Stefano, U.S.L. Toscana Centro, Prato, Italy
| | - Andrea Leo
- Nuclear Medicine Unit, Department of Diagnostic Imaging, N.O.P. - S. Stefano, U.S.L. Toscana Centro, Prato, Italy
| | - Daniela Perani
- Vita-Salute San Raffaele University, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy
| | - Stelvio Sestini
- Nuclear Medicine Unit, Department of Diagnostic Imaging, N.O.P. - S. Stefano, U.S.L. Toscana Centro, Prato, Italy.
| |
Collapse
|
3
|
Berliand AN, Anufriev PL, Kanibolotskiy AA. [Diffuse changes in the brain in the acute phase of COVID-19 and after infection]. Arkh Patol 2025; 87:5-15. [PMID: 39943723 DOI: 10.17116/patol2025870115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
There is no consolidated opinion on the pathogenesis of neurological manifestations of COVID-19, especially after infection. A significant contribution to understanding the mechanisms of neuropathology in COVID-19 can be made by detailed morphologic studies of the brain with assessment of changes in different brain regions during different periods of the infection process. OBJECTIVE Clarification of the nature of brain morphologic changes and intracerebral virus invasion in COVID-19 and postinfection. MATERIAL AND METHODS The study included 15 patients who died during the acute phase of COVID-19 (11 people) or after an infection (4 people) without a history of acute focal changes in the brain or neurological diseases. In each case, 9 brain areas were assessed, including the cortex, hippocampus, brainstem (pons and medulla oblongata), cerebellum, basal ganglia, and central parts of the olfactory system. In addition to the histological study, an immunohistochemical study was performed using antibodies against CD8, Iba1, as well as SARS-CoV-2 proteins (S1 and N) and a semi-quantitative assessment of circulatory disorders, microglial reaction and expression of the SARS-CoV-2 S1 protein in the brain. RESULTS The neuropathological picture was similar in the acute and post-infectious phases of COVID-19: microcirculatory disorders, diffuse cerebral edema, ischemic-hypoxic neuronal changes, accumulations of corpora amylacea, gliosis, small mainly perivascular lymphocytic infiltrates with a predominance of CD8+ T cells, moderate microglial reaction, accumulation of SARS-CoV-2 S1 protein in the brain. The N protein of the virus was not detected in the brain. The most pronounced changes were observed in the brainstem, especially in the medulla oblongata, and the cerebellum. The severity of structural changes did not correlate with disease duration. S1 protein expression in the brain did not correlate with the severity of the microglial response or disease duration. CONCLUSION The identified neuropathological changes in COVID-19 in the acute and post-infectious phases are nonspecific with a predominance of vascular disorders and microglial reaction and are most pronounced in the brain stem and cerebellum. The SARS-CoV-2 S1 protein can accumulate in neurons and be detected in the brain a year or more after infection.
Collapse
Affiliation(s)
| | | | - A A Kanibolotskiy
- Sklifosovsky Research Institute For Emergency Medicine, Moscow, Russia
| |
Collapse
|
4
|
Nath A, Kolson DL. Reemerging Infectious Diseases and Neuroimmunologic Complications. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200356. [PMID: 39693583 PMCID: PMC11658811 DOI: 10.1212/nxi.0000000000200356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/07/2024] [Indexed: 12/20/2024]
Abstract
During the past decade (and beyond), neurologists have become aware of the emergence, persistence, and consequences of some familiar and new infections affecting the nervous system. Even among the familiar CNS infections, such as herpes virus, polyoma virus/JC, influenza, arbovirus, and hepatitis, challenges remain in developing effective antiviral treatments and treatments of postinfection sequelae. With the changing environment and increased global travel, arthropod vectors that mediate zoonotic disease transmission have spread unfamiliar viruses such as West Nile virus, dengue, chikungunya, equine encephalitis, and Zika, among others. Although the global health impact of these diseases has not risen to that of COVID-19 and HIV, it is likely to dramatically increase with continued spread of transmission vectors and the emergence of new zoonotic animal-to-human diseases mediated by those transmission vectors. Furthermore, specific virus-targeting treatments or effective vaccines for arboviral infections are not yet available, and this represents a major challenge in limiting the morbidity of these infections. By contrast, HIV-1, a disease that originated by direct transmission from nonhuman primates to humans (as early as the 1930s), after many years of intense study, is now targeted by highly specific and effective antiviral drugs that can limit the spread of infection and extend human life and health in all populations. Even with these dramatic therapeutic effects of suppressing HIV replication, neurologic dysfunction (primarily cognitive impairment) affects significant numbers of persons living with HIV. This emphasizes not only the importance of treating the underlying infection but also developing treatments for legacy effects of the initial infection even after antiviral therapy. Notably, the rapid emergence of SARS-CoV-2 infection was met with rapid implementation of highly effective and specific antiviral therapies. This resulted in early and dramatic lowering of the morbidity and mortality of SARS-CoV-2 infection. Nonetheless, the postinfectious complications of SARS-CoV-2 infection (long COVID) are now among the more costly consequences of emerging zoonotic infections worldwide. Developing new antiviral therapies that can penetrate the CNS, vaccines, and therapies that target host immune responses and metabolic dysfunction will be necessary for management of infectious and postinfectious complications of established and emerging infections.
Collapse
Affiliation(s)
- Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; and
| | - Dennis L Kolson
- Department of Neurology, University of Pennsylvania, Philadelphia
| |
Collapse
|
5
|
Hsu JC, Saenkham-Huntsinger P, Huang P, Octaviani CP, Drelich AK, Peng BH, Tseng CTK. Characterizing neuroinvasion and neuropathology of SARS-CoV-2 by using AC70 human ACE2 transgenic mice. Front Microbiol 2024; 15:1455462. [PMID: 39380676 PMCID: PMC11458418 DOI: 10.3389/fmicb.2024.1455462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
COVID-19 presents with a plethora of neurological signs and symptoms despite being characterized as a respiratory disease, including seizures, anxiety, depression, amnesia, attention deficits, and alterations in consciousness. The olfactory nerve is widely accepted as the neuroinvasive route by which the etiological agent SARS-CoV-2 enters the brain, but the trigeminal nerve is an often-overlooked additional route. Based on this consensus, we initially conducted a pilot experiment investigating the olfactory nerve route of SARS-CoV-2 neuroinvasion via intranasal inoculation in AC70 human ACE2 transgenic mice. Notably, we found that the trigeminal ganglion is an early and highly efficient site of viral replication, which then rapidly spread widely throughout the brain where neurons were primarily targeted. Despite the extensive viral infection across the brain, obvious evidence of tissue pathology including inflammatory infiltration, glial activation, and apoptotic cell deaths were not consistently observed, albeit inflammatory cytokines were significantly induced. However, the expression levels of different genes related to neuronal function, including the neurotransmitter dopamine pathway as well as synaptic function, and markers of neuronal damage were altered as compared to mock-infected mice. Our findings suggest that the trigeminal nerve may serve as a neuroinvasive route complementary to the olfactory nerve and that the ensuing neuroinvasion presented a unique neuropathological profile. This study provides insights into potential neuropathogenic mechanisms utilized by coronaviruses.
Collapse
Affiliation(s)
- Jason C. Hsu
- Department of Biochemistry, Cell & Molecular Biology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Panatda Saenkham-Huntsinger
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Pinghan Huang
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Cassio Pontes Octaviani
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Aleksandra K. Drelich
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Bi-Hung Peng
- Department of Neuroscience, Cell Biology, & Anatomy, The University of Texas Medical Branch, Galveston, TX, United States
| | - Chien-Te K. Tseng
- Department of Biochemistry, Cell & Molecular Biology, The University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, United States
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
6
|
Azargoonjahromi A. Role of the SARS-CoV-2 Virus in Brain Cells. Viral Immunol 2024; 37:61-78. [PMID: 38315740 DOI: 10.1089/vim.2023.0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
COVID-19, caused by the SARS-CoV-2 virus, can have neurological effects, including cognitive symptoms like brain fog and memory problems. Research on the neurological effects of COVID-19 is ongoing, and factors such as inflammation, disrupted blood flow, and damage to blood vessels may contribute to cognitive symptoms. Notably, some authors and existing evidence suggest that the SARS-CoV-2 virus can enter the central nervous system through different routes, including the olfactory nerve and the bloodstream. COVID-19 infection has been associated with neurological symptoms such as altered consciousness, headaches, dizziness, and mental disorders. The exact mechanisms and impact on memory formation and brain shrinkage are still being studied. This review will focus on pathways such as the olfactory nerve and blood-brain barrier disruption, and it will then highlight the interactions of the virus with different cell types in the brain, namely neurons, astrocytes, oligodendrocytes, and microglia.
Collapse
Affiliation(s)
- Ali Azargoonjahromi
- Researcher in Neuroscience, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Magaki S, Zhang T, Han K, Hilda M, Yong WH, Achim C, Fishbein G, Fishbein MC, Garner O, Salamon N, Williams CK, Valdes-Sueiras MA, Hsu JJ, Kelesidis T, Mathisen GE, Lavretsky H, Singer EJ, Vinters HV. HIV and COVID-19: two pandemics with significant (but different) central nervous system complications. FREE NEUROPATHOLOGY 2024; 5:5. [PMID: 38469363 PMCID: PMC10925920 DOI: 10.17879/freeneuropathology-2024-5343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/02/2024] [Indexed: 03/13/2024]
Abstract
Human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause significant neurologic disease. Central nervous system (CNS) involvement of HIV has been extensively studied, with well-documented invasion of HIV into the brain in the initial stage of infection, while the acute effects of SARS-CoV-2 in the brain are unclear. Neuropathologic features of active HIV infection in the brain are well characterized whereas neuropathologic findings in acute COVID-19 are largely non-specific. On the other hand, neuropathologic substrates of chronic dysfunction in both infections, as HIV-associated neurocognitive disorders (HAND) and post-COVID conditions (PCC)/long COVID are unknown. Thus far, neuropathologic studies on patients with HAND in the era of combined antiretroviral therapy have been inconclusive, and autopsy studies on patients diagnosed with PCC have yet to be published. Further longitudinal, multidisciplinary studies on patients with HAND and PCC and neuropathologic studies in comparison to controls are warranted to help elucidate the mechanisms of CNS dysfunction in both conditions.
Collapse
Affiliation(s)
- Shino Magaki
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Ting Zhang
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Karam Han
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Mirbaha Hilda
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - William H. Yong
- Department of Pathology and Laboratory Medicine, University of California-Irvine School of Medicine, Irvine, CA, USA
| | - Cristian Achim
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Gregory Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael C. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Omai Garner
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher K. Williams
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Miguel A. Valdes-Sueiras
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeffrey J. Hsu
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Glenn E. Mathisen
- Department of Infectious Diseases, Olive View-University of California Los Angeles Medical Center, Sylmar, CA, USA
| | - Helen Lavretsky
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Elyse J. Singer
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Harry V. Vinters
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
8
|
Humayun M, Zhang L, Zaikos TD, Kannapadi N, Suarez JI, Hager DN, Troncoso JC, Cho SM. Neuropathological findings in COVID-19 vs. non-COVID-19 acute respiratory distress syndrome-A case-control study. Front Neurol 2023; 14:1283698. [PMID: 38187146 PMCID: PMC10771840 DOI: 10.3389/fneur.2023.1283698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Acute brain injury (ABI) and neuroinflammation is reported in COVID-19 and acute respiratory distress syndrome (ARDS). It remains unclear if COVID-19 plays an independent role in development of ABI compared to those with non-COVID-19 ARDS. We aimed to evaluate if COVID-19 ARDS is associated with higher risk and specific patterns of ABI compared to non-COVID-19 ARDS. We conducted an age and sex matched case-control autopsy study at a tertiary academic center. Ten patients with COVID-19 ARDS were matched to 20 non-COVID-19 ARDS patients. Baseline demographics were comparable between the two groups including severity of ARDS (p = 0.3). The frequency of overall ABI (70 vs. 60%), infratentorial ABI (40 vs. 25%), ischemic infarct (40 vs. 25%), intracranial hemorrhage (30 vs. 35%), and hypoxic-ischemic brain injury (30 vs. 35%) was similar between COVID-19 and non-COVID-19 ARDS patients, respectively (p > 0.05). Intracapillary megakaryocytes were exclusively seen in 30% of COVID-19 patients. Overall, frequency and pattern of ABI in COVID-19 ARDS was comparable to non-COVID-19.
Collapse
Affiliation(s)
- Mariyam Humayun
- Division of Neuroscience Critical Care, Departments of Neurology, Neurosurgery, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lucy Zhang
- Inova Health System, Falls Church, VA, United States
| | - Thomas D. Zaikos
- Neuropathology Division, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nivedha Kannapadi
- Division of Neuroscience Critical Care, Departments of Neurology, Neurosurgery, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jose I. Suarez
- Division of Neuroscience Critical Care, Departments of Neurology, Neurosurgery, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David N. Hager
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Juan C. Troncoso
- Neuropathology Division, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sung-Min Cho
- Division of Neuroscience Critical Care, Departments of Neurology, Neurosurgery, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Syage A, Pachow C, Cheng Y, Mangale V, Green KN, Lane TE. Microglia influence immune responses and restrict neurologic disease in response to central nervous system infection by a neurotropic murine coronavirus. Front Cell Neurosci 2023; 17:1291255. [PMID: 38099152 PMCID: PMC10719854 DOI: 10.3389/fncel.2023.1291255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Intracranial (i.c.) inoculation of susceptible mice with a glial-tropic strain of mouse hepatitis virus (JHMV), a murine coronavirus, results in an acute encephalomyelitis followed by viral persistence in white matter tracts accompanied by chronic neuroinflammation and demyelination. Microglia serve numerous functions including maintenance of the healthy central nervous system (CNS) and are among the first responders to injury or infection. More recently, studies have demonstrated that microglia aid in tailoring innate and adaptive immune responses following infection by neurotropic viruses including flaviviruses, herpesviruses, and picornaviruses. These findings have emphasized an important role for microglia in host defense against these viral pathogens. In addition, microglia are also critical in optimizing immune-mediated control of JHMV replication within the CNS while restricting the severity of demyelination and enhancing remyelination. This review will highlight our current understanding of the molecular and cellular mechanisms by which microglia aid in host defense, limit neurologic disease, and promote repair following CNS infection by a neurotropic murine coronavirus.
Collapse
Affiliation(s)
- Amber Syage
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Collin Pachow
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Yuting Cheng
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Vrushali Mangale
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Kim N. Green
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Thomas E. Lane
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for Virus Research, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|