1
|
Chen L, Meng F, Huo C, Shao G, Pan G, Zhang X, Zhang S, Li Z. Effects of tactile feedback in post-stroke hand rehabilitation on functional connectivity and cortical activation: an fNIRS study. BIOMEDICAL OPTICS EXPRESS 2025; 16:643-656. [PMID: 39958859 PMCID: PMC11828458 DOI: 10.1364/boe.541820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 02/18/2025]
Abstract
Stroke-induced hand motor impairments have a significant impact on the daily lives of patients. Motor rehabilitation with tactile feedback (TF) shows promise as an effective rehabilitation intervention; however, its neural mechanisms are still not fully understood. The main objective of this study was to examine the effect of tactile feedback on brain functional responses during a single hand movement session in post-stroke patients, using functional near-infrared spectroscopy (fNIRS). The changes in oxy- and deoxy-hemoglobin concentrations were recorded from the bilateral prefrontal, motor, and occipital areas in 13 post-stroke patients in the subacute recovery phase and 15 healthy controls during a hand-grasping task with TF and no-TF. The cortical activation responses, functional connectivity, and brain functional network properties were calculated to explore the specific cortical response in post-stroke patients and healthy controls during the two grasping tasks. The results showed that post-stroke patients exhibited increased hemodynamic responses in the motor cortex during grasping tasks with TF. However, brain activation in the prefrontal cortex, left sensorimotor cortex, and right premotor area was significantly lower in post-stroke patients compared to healthy controls (p < 0.05). Additionally, post-stroke patients exhibited poorer overall brain network function, with significant reductions in both clustering coefficient (p = 0.0016), reflecting local information transfer efficiency, and transitivity (p = 0.0053), representing global network integration. A significant positive correlation was observed between the clustering coefficient and grip strength metrics (r = 0.592, p = 0.033), as well as between transitivity and grip strength (r = 0.590, p = 0.034) in post-stroke patients, indicating that greater impairments were associated with reduced overall brain functional network transmission efficiency. These findings indicated that TF can modulate brain activity in areas associated with motor learning and sensorimotor integration, providing evidence for its potential as a valuable tool in stroke rehabilitation.
Collapse
Affiliation(s)
- Lingling Chen
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
- Intelligent Rehabilitation Device and Detection Technology Engineering Research Centre of the Ministry of Education, Tianjin, China
| | - Fanyao Meng
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Congcong Huo
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Guangjian Shao
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Guoxin Pan
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Xuemin Zhang
- Department of Intensive Rehabilitation, National Rehabilitation Hospital of National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Simin Zhang
- Department of Intensive Rehabilitation, National Rehabilitation Hospital of National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| |
Collapse
|
2
|
Shao G, Xu G, Huo C, Nie Z, Zhang Y, Yi L, Wang D, Shao Z, Weng S, Sun J, Li Z. Effect of the VR-guided grasping task on the brain functional network. BIOMEDICAL OPTICS EXPRESS 2024; 15:77-94. [PMID: 38223191 PMCID: PMC10783918 DOI: 10.1364/boe.504669] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/16/2024]
Abstract
Virtual reality (VR) technology has been demonstrated to be effective in rehabilitation training with the assistance of VR games, but its impact on brain functional networks remains unclear. In this study, we used functional near-infrared spectroscopy imaging to examine the brain hemodynamic signals from 18 healthy participants during rest and grasping tasks with and without VR game intervention. We calculated and compared the graph theory-based topological properties of the brain networks using phase locking values (PLV). The results revealed significant differences in the brain network properties when VR games were introduced compared to the resting state. Specifically, for the VR-guided grasping task, the modularity of the brain network was significantly higher than the resting state, and the average clustering coefficient of the motor cortex was significantly lower compared to that of the resting state and the simple grasping task. Correlation analyses showed that a higher clustering coefficient, local efficiency, and modularity were associated with better game performance during VR game participation. This study demonstrates that a VR game task intervention can better modulate the brain functional network compared to simple grasping movements and may be more beneficial for the recovery of grasping abilities in post-stroke patients with hand paralysis.
Collapse
Affiliation(s)
- Guangjian Shao
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Gongcheng Xu
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Congcong Huo
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Zichao Nie
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Yizheng Zhang
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Li Yi
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Dongyang Wang
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Zhiyong Shao
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Shanfan Weng
- School of Medicine, Foshan University, Foshan, China
| | - Jinyan Sun
- School of Medicine, Foshan University, Foshan, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| |
Collapse
|
3
|
Adegoke MA, Teter O, Meaney DF. Flexibility of in vitro cortical circuits influences resilience from microtrauma. Front Cell Neurosci 2022; 16:991740. [PMID: 36589287 PMCID: PMC9803265 DOI: 10.3389/fncel.2022.991740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background Small clusters comprising hundreds to thousands of neurons are an important level of brain architecture that correlates single neuronal properties to fulfill brain function, but the specific mechanisms through which this scaling occurs are not well understood. In this study, we developed an in vitro experimental platform of small neuronal circuits (islands) to probe the importance of structural properties for their development, physiology, and response to microtrauma. Methods Primary cortical neurons were plated on a substrate patterned to promote attachment in clusters of hundreds of cells (islands), transduced with GCaMP6f, allowed to mature until 10-13 days in vitro (DIV), and monitored with Ca2+ as a non-invasive proxy for electrical activity. We adjusted two structural factors-island size and cellular density-to evaluate their role in guiding spontaneous activity and network formation in neuronal islands. Results We found cellular density, but not island size, regulates of circuit activity and network function in this system. Low cellular density islands can achieve many states of activity, while high cellular density biases islands towards a limited regime characterized by low rates of activity and high synchronization, a property we summarized as "flexibility." The injury severity required for an island to lose activity in 50% of its population was significantly higher in low-density, high flexibility islands. Conclusion Together, these studies demonstrate flexible living cortical circuits are more resilient to microtrauma, providing the first evidence that initial circuit state may be a key factor to consider when evaluating the consequences of trauma to the cortex.
Collapse
Affiliation(s)
- Modupe A. Adegoke
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Olivia Teter
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - David F. Meaney
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States,Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,*Correspondence: David F. Meaney,
| |
Collapse
|
4
|
Pang R, Wang D, Chen TSR, Yang A, Yi L, Chen S, Wang J, Wu K, Zhao C, Liu H, Ai Y, Yang A, Sun J. Reorganization of prefrontal network in stroke patients with dyskinesias: evidence from resting-state functional near-infrared spectroscopy. JOURNAL OF BIOPHOTONICS 2022; 15:e202200014. [PMID: 35324088 DOI: 10.1002/jbio.202200014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Stroke usually causes multiple functional disability. To develop novel rehabilitation strategies, it is quite necessary to improve the understanding of post-stroke brain plasticity. Here, we use functional near-infrared spectroscopy to investigate the prefrontal cortex (PFC) network reorganization in stroke patients with dyskinesias. The PFC hemodynamic signals in the resting state from 16 stroke patients and 10 healthy subjects are collected and analyzed with the graph theory. The PFC networks for both groups show small-world attributes. The stroke patients have larger clustering coefficient and transitivity and smaller global efficiency and small-worldness than healthy subjects. Based on the selected network features, the established support vector machine model classifies the two groups of subjects with an accuracy rate of 88.5%. Besides, the clustering coefficient and local efficiency negatively correlate with patients' motor function. This study suggests that the PFC of stroke patients with dyskinesias undergoes specific network reorganization.
Collapse
Affiliation(s)
- Richong Pang
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Dan Wang
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | | | - Anping Yang
- School of Medicine, Foshan University, Foshan, China
| | - Li Yi
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Sisi Chen
- School of Medicine, Foshan University, Foshan, China
| | - Jie Wang
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Chaochao Zhao
- School of Medicine, Foshan University, Foshan, China
| | - Hua Liu
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Yilong Ai
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, China
| | - Aoran Yang
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Jinyan Sun
- School of Medicine, Foshan University, Foshan, China
| |
Collapse
|
5
|
Luo WY, Liu H, Feng Y, Hao JX, Zhang YJ, Peng WF, Zhang PM, Ding J, Wang X. Efficacy of cathodal transcranial direct current stimulation on electroencephalographic functional networks in patients with focal epilepsy: Preliminary findings. Epilepsy Res 2021; 178:106791. [PMID: 34837824 DOI: 10.1016/j.eplepsyres.2021.106791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/13/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Neuromodulation is a promising therapeutic alternative for epilepsy. We aimed to explore the efficacy and safety of cathodal transcranial current direct stimulation (ctDCS) on electroencephalographic functional networks in focal epilepsy. METHODS A sham-controlled, double-blinded, randomized study was conducted on 25 participants with focal epilepsy who underwent a 5-day, -1.0 mA, 20 min ctDCS, which targeted at the most active interictal epileptiform discharge (IED) region. We examined the electroencephalograms (EEGs) at baseline, immediately and at 4 weeks following ctDCS. The graph theory-based brain networks were established through time-variant partial directed coherence (TVPDC), and were calculated between each pair of EEG signals. The functional networks were characterized using average clustering coefficient, characteristic path length, and small-worldness index. The seizure frequencies, IEDs, graph-theory metrics and cognitive tests were compared. RESULTS Preliminary findings indicated an IED reduction of 30.2% at the end of 5-day active ctDCS compared to baseline (p < 0.10) and a significant IED reduction of 33.4% 4 weeks later (p < 0.05). In terms of the EEG functional network, the small-worldness index significantly reduced by 3.5% (p < 0.05) and the characteristic path length increased by 1.8% (p < 0.10) at the end of the session compared to the baseline. No obvious change was found in the seizure frequency during follow-up (p > 0.05). The Mini-Mental State Examination (MMSE) showed no difference between the active and sham groups (p > 0.05). No severe adverse reactions were observed. CONCLUSIONS In focal epilepsy, the 5-day consecutive ctDCS may potentially decrease the IEDs and ameliorate the EEG functional network, proposing a novel personalized therapeutic scenario for epilepsy.
Collapse
Affiliation(s)
- Wen-Yi Luo
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Feng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia-Xin Hao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Jun Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei-Feng Peng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pu-Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Morales Chacón LM, Galan García L, Berrillo Batista S, González González J, Sánchez Coroneaux A. Functional Connectivity Derived From Electroencephalogram in Pharmacoresistant Epileptic Encephalopathy Using Cannabidiol as Adjunctive Antiepileptic Therapy. Front Behav Neurosci 2021; 15:604207. [PMID: 33708077 PMCID: PMC7940673 DOI: 10.3389/fnbeh.2021.604207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
To explore brain function using functional connectivity and network topology derived from electroencephalogram (EEG) in patients with pharmacoresistant epileptic encephalopathy with cannabidiol as adjunctive antiepileptic treatment. Sixteen epileptic patients participated in the study, six of whom had epileptic encephalopathy with a stable dose of cannabidiol Epidiolex (CBD) as adjunctive therapy. Functional connectivity derived from EEG was analyzed based on the synchronization likelihood (SL). The analysis also included reconstructing graph-theoretic measures from the synchronization matrix. Comparison of functional connectivity data between each pathological group with the control group was carried out using a nonparametric permutation test applied to SL values between pairs of electrodes for each frequency band. To compare the association patterns between graph-theoretical properties of each pathological group with the control group, Z Crawford was calculated as a measure of distance. There were differences between pairs of electrodes in all frequency bands evaluated in encephalopathy epileptic patients with CBD adjunctive therapy compared with the control (p < 0.05, permutation test). In the epileptic encephalopathy group without CBD therapy, the SL values were higher than in the control group for the beta, theta, and delta EEG frequency bands, and lower for the alpha frequency band. Interestingly, patients who had CBD as adjunctive therapy demonstrated greater synchronization for all frequency bands, showing less spatial distribution for alpha frequency compared with the control. When comparing both epileptic groups, those patients who had adjunctive CBD treatment also showed increased synchronization for all frequency bands. In epileptic encephalopathy with adjunctive CBD therapy, the pattern of differences for graph-theoretical measures according to Z Crawford indicated less segregation and greater integration suggesting a trend towards the random organization of the network principally for alpha and beta EEG bands. This exploratory study revealed a tendency to an overconnectivity with a random network topology mainly for fast EEG bands in epileptic encephalopathy patients using CBD adjunctive therapy. It can therefore be assumed that the CBD treatment could be related to inhibition of the transition of the interictal to ictal state and/or to the improvement of EEG organization and brain function.
Collapse
Affiliation(s)
- Lilia Maria Morales Chacón
- Department of Clinical Neurophysiology/Video EEG Unit, International Center for Neurological Restoration, Havana, Cuba
| | | | - Sheyla Berrillo Batista
- Department of Clinical Neurophysiology/Video EEG Unit, International Center for Neurological Restoration, Havana, Cuba
| | - Judith González González
- Department of Clinical Neurophysiology/Video EEG Unit, International Center for Neurological Restoration, Havana, Cuba
| | - Abel Sánchez Coroneaux
- Department of Clinical Neurophysiology/Video EEG Unit, International Center for Neurological Restoration, Havana, Cuba
| |
Collapse
|
7
|
Wang J, Chen Y, Liang H, Niedermayer G, Chen H, Li Y, Wu M, Wang Y, Zhang Y. The Role of Disturbed Small-World Networks in Patients with White Matter Lesions and Cognitive Impairment Revealed by Resting State Function Magnetic Resonance Images (rs-fMRI). Med Sci Monit 2019; 25:341-356. [PMID: 30634184 PMCID: PMC6338249 DOI: 10.12659/msm.913396] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Leukoaraiosis is characterized by white matter lesions (WMLs) on magnetic resonance imaging (MRI) and is associated with cognitive impairment. The small-world network is viewed as the optimal brain network with maximal efficiency in information processing. Patients with cognitive impairment are thought to have disrupted small-world networks. In this study, we compared the small-world network attributes between controls (study participants without memory complaints) and patients with WMLs with cognitive impairment. Material/Methods All study participants were prescreened using MRI and neuropsychological tests. Patients with WMLs were further divided into 2 groups according to the result of Montreal Cognitive Assessment (MoCA), i.e., WMLs with non-dementia vascular cognitive impairment (WMLs-VCIND) and WMLs with vascular dementia (WMLs-VaD). Resting-state functional MRI data were collected and applied with graph theoretical analysis to compare small-world properties between the 3 groups. Results We found that the overall functional connectivity strength was lowest in the WMLs-VaD patients but highest in the normal control study participants. Patients in both the WMLs-VCIND and the WMLs-VaD groups had decreased small-world properties compared with the group of normal control study participants. Moreover, the small-world properties significantly correlated with MoCA scores. Conclusions These findings suggest potential constructive reorganization of brain networks secondary to WMLs, and provides novel insights into the role of small-world properties in cognitive dysfunction in WMLs.
Collapse
Affiliation(s)
- Jinfang Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases; Center of Stroke, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China (mainland).,Department of Neurology, General Hospital of The Yang Tze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei, China (mainland)
| | - Yu Chen
- School of Psychology, Brain and Mind Centre, University of Sydney; Australian Research Council Centre of Excellence in Cognition and Its Disorders, Sydney, NSW, Australia
| | - Huazheng Liang
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Garry Niedermayer
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Hongyan Chen
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (mainland)
| | - Yuexiu Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases; Center of Stroke, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China (mainland)
| | - Meiru Wu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases; Center of Stroke, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China (mainland)
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases; Center of Stroke, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China (mainland)
| | - Yumei Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases; Center of Stroke, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China (mainland)
| |
Collapse
|
8
|
Detection of atypical network development patterns in children with autism spectrum disorder using magnetoencephalography. PLoS One 2017; 12:e0184422. [PMID: 28886147 PMCID: PMC5590936 DOI: 10.1371/journal.pone.0184422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 08/23/2017] [Indexed: 11/19/2022] Open
Abstract
Autism spectrum disorder (ASD) is a developmental disorder that involves developmental delays. It has been hypothesized that aberrant neural connectivity in ASD may cause atypical brain network development. Brain graphs not only describe the differences in brain networks between clinical and control groups, but also provide information about network development within each group. In the present study, graph indices of brain networks were estimated in children with ASD and in typically developing (TD) children using magnetoencephalography performed while the children viewed a cartoon video. We examined brain graphs from a developmental point of view, and compared the networks between children with ASD and TD children. Network development patterns (NDPs) were assessed by examining the association between the graph indices and the raw scores on the achievement scale or the age of the children. The ASD and TD groups exhibited different NDPs at both network and nodal levels. In the left frontal areas, the nodal degree and efficiency of the ASD group were negatively correlated with the achievement scores. Reduced network connections were observed in the temporal and posterior areas of TD children. These results suggested that the atypical network developmental trajectory in children with ASD is associated with the development score rather than age.
Collapse
|
9
|
Li YH, Ye XL, Liu QQ, Mao JW, Liang PJ, Xu JW, Zhang PM. Localization of epileptogenic zone based on graph analysis of stereo-EEG. Epilepsy Res 2016; 128:149-157. [DOI: 10.1016/j.eplepsyres.2016.10.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 10/10/2016] [Accepted: 10/25/2016] [Indexed: 11/27/2022]
|
10
|
Intracarotid Etomidate Decreases the Interhemispheric Synchronization in Electroencephalogram (EEG) During the Wada Test. J Neurosurg Anesthesiol 2016; 28:341-6. [DOI: 10.1097/ana.0000000000000241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Bharath RD, Chaitanya G, Panda R, Raghavendra K, Sinha S, Sahoo A, Gohel S, Biswal BB, Satishchandra P. Reduced small world brain connectivity in probands with a family history of epilepsy. Eur J Neurol 2016; 23:1729-1737. [PMID: 27564534 DOI: 10.1111/ene.13104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 06/10/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE The role of inheritance in ascertaining susceptibility to epilepsy is well established, although the pathogenetic mechanisms are still not very clear. Interviewing for a positive family history is a popular epidemiological tool in the understanding of this susceptibility. Our aim was to visualize and localize network abnormalities that could be associated with a positive family history in a group of patients with hot water epilepsy (HWE) using resting-state functional magnetic resonance imaging (rsfMRI). METHODS Graph theory analysis of rsfMRI (clustering coefficient γ; path length λ; small worldness σ) in probands with a positive family history of epilepsy (FHE+, 25) were compared with probands without FHE (FHE-, 33). Whether a closer biological relationship was associated with a higher likelihood of network abnormalities was also ascertained. RESULTS A positive family history of epilepsy had decreased γ, increased λ and decreased σ in bilateral temporofrontal regions compared to FHE- (false discovery rate corrected P ≤ 0.0062). These changes were more pronounced in probands having first degree relatives and siblings with epilepsy. Probands with multiple types of epilepsy in the family showed decreased σ in comparison to only HWE in the family. CONCLUSION Graph theory analysis of the rsfMRI can be used to understand the neurobiology of diseases like genetic susceptibility in HWE. Reduced small worldness, proportional to the degree of relationship, is consistent with the current understanding that disease severity is higher in closer biological relations.
Collapse
Affiliation(s)
- R D Bharath
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - G Chaitanya
- Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - R Panda
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - K Raghavendra
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - S Sinha
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - A Sahoo
- Department of Biomedical Engineering, New Jersey Institute of Technology (NJIT), Newark, NJ, USA
| | - S Gohel
- Department of Biomedical Engineering, New Jersey Institute of Technology (NJIT), Newark, NJ, USA
| | - B B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology (NJIT), Newark, NJ, USA
| | - P Satishchandra
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
12
|
Rapp PE, Keyser DO, Albano A, Hernandez R, Gibson DB, Zambon RA, Hairston WD, Hughes JD, Krystal A, Nichols AS. Traumatic brain injury detection using electrophysiological methods. Front Hum Neurosci 2015; 9:11. [PMID: 25698950 PMCID: PMC4316720 DOI: 10.3389/fnhum.2015.00011] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/07/2015] [Indexed: 11/20/2022] Open
Abstract
Measuring neuronal activity with electrophysiological methods may be useful in detecting neurological dysfunctions, such as mild traumatic brain injury (mTBI). This approach may be particularly valuable for rapid detection in at-risk populations including military service members and athletes. Electrophysiological methods, such as quantitative electroencephalography (qEEG) and recording event-related potentials (ERPs) may be promising; however, the field is nascent and significant controversy exists on the efficacy and accuracy of the approaches as diagnostic tools. For example, the specific measures derived from an electroencephalogram (EEG) that are most suitable as markers of dysfunction have not been clearly established. A study was conducted to summarize and evaluate the statistical rigor of evidence on the overall utility of qEEG as an mTBI detection tool. The analysis evaluated qEEG measures/parameters that may be most suitable as fieldable diagnostic tools, identified other types of EEG measures and analysis methods of promise, recommended specific measures and analysis methods for further development as mTBI detection tools, identified research gaps in the field, and recommended future research and development thrust areas. The qEEG study group formed the following conclusions: (1) Individual qEEG measures provide limited diagnostic utility for mTBI. However, many measures can be important features of qEEG discriminant functions, which do show significant promise as mTBI detection tools. (2) ERPs offer utility in mTBI detection. In fact, evidence indicates that ERPs can identify abnormalities in cases where EEGs alone are non-disclosing. (3) The standard mathematical procedures used in the characterization of mTBI EEGs should be expanded to incorporate newer methods of analysis including non-linear dynamical analysis, complexity measures, analysis of causal interactions, graph theory, and information dynamics. (4) Reports of high specificity in qEEG evaluations of TBI must be interpreted with care. High specificities have been reported in carefully constructed clinical studies in which healthy controls were compared against a carefully selected TBI population. The published literature indicates, however, that similar abnormalities in qEEG measures are observed in other neuropsychiatric disorders. While it may be possible to distinguish a clinical patient from a healthy control participant with this technology, these measures are unlikely to discriminate between, for example, major depressive disorder, bipolar disorder, or TBI. The specificities observed in these clinical studies may well be lost in real world clinical practice. (5) The absence of specificity does not preclude clinical utility. The possibility of use as a longitudinal measure of treatment response remains. However, efficacy as a longitudinal clinical measure does require acceptable test-retest reliability. To date, very few test-retest reliability studies have been published with qEEG data obtained from TBI patients or from healthy controls. This is a particular concern because high variability is a known characteristic of the injured central nervous system.
Collapse
Affiliation(s)
- Paul E. Rapp
- Uniformed Services University of the Health Sciences School of Medicine, Bethesda, MD, USA
| | - David O. Keyser
- Uniformed Services University of the Health Sciences School of Medicine, Bethesda, MD, USA
| | | | - Rene Hernandez
- US Navy Bureau of Medicine and Surgery, Frederick, MD, USA
| | | | | | - W. David Hairston
- U. S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, USA
| | | | | | | |
Collapse
|
13
|
Haneef Z, Chiang S. Clinical correlates of graph theory findings in temporal lobe epilepsy. Seizure 2014; 23:809-18. [PMID: 25127370 DOI: 10.1016/j.seizure.2014.07.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 06/03/2014] [Accepted: 07/14/2014] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Temporal lobe epilepsy (TLE) is considered a brain network disorder, additionally representing the most common form of pharmaco-resistant epilepsy in adults. There is increasing evidence that seizures in TLE arise from abnormal epileptogenic networks, which extend beyond the clinico-radiologically determined epileptogenic zone and may contribute to the failure rate of 30-50% following epilepsy surgery. Graph theory allows for a network-based representation of TLE brain networks using several neuroimaging and electrophysiologic modalities, and has potential to provide clinicians with clinically useful biomarkers for diagnostic and prognostic purposes. METHODS We performed a review of the current state of graph theory findings in TLE as they pertain to localization of the epileptogenic zone, prediction of pre- and post-surgical seizure frequency and cognitive performance, and monitoring cognitive decline in TLE. RESULTS Although different neuroimaging and electrophysiologic modalities have yielded occasionally conflicting results, several potential biomarkers have been characterized for identifying the epileptogenic zone, pre-/post-surgical seizure prediction, and assessing cognitive performance. For localization, graph theory measures of centrality have shown the most potential, including betweenness centrality, outdegree, and graph index complexity, whereas for prediction of seizure frequency, measures of synchronizability have shown the most potential. The utility of clustering coefficient and characteristic path length for assessing cognitive performance in TLE is also discussed. CONCLUSIONS Future studies integrating data from multiple modalities and testing predictive models are needed to clarify findings and develop graph theory for its clinical utility.
Collapse
Affiliation(s)
- Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA; Neurology Care Line, VA Medical Center, Houston, TX, USA.
| | - Sharon Chiang
- Department of Statistics, Rice University, Houston, TX, USA
| |
Collapse
|
14
|
Huang Q, Zhang R, Hu X, Ding S, Qian J, Lei T, Cao X, Tao L, Qian Z, Liu H. Disturbed small-world networks and neurocognitive function in frontal lobe low-grade glioma patients. PLoS One 2014; 9:e94095. [PMID: 24714669 PMCID: PMC3979755 DOI: 10.1371/journal.pone.0094095] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/13/2014] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Brain tumor patients often associated with losses of the small-world configuration and neurocognitive functions before operations. However, few studies were performed on the impairments of frontal lobe low-grade gliomas (LGG) after tumor resection using small-world network features. METHODOLOGY/PRINCIPAL FINDINGS To detect differences in the whole brain topology among LGG patients before and after operation, a combined study of neurocognitive assessment and graph theoretical network analysis of fMRI data was performed. We collected resting-state fMRI data of 12 carefully selected frontal lobe LGG patients before and after operation. We calculated the topological properties of brain functional networks in the 12 LGG, and compared with 12 healthy controls (HCs). We also applied Montreal Cognitive Assessment (MoCA) in a subset of patients (n = 12, including before and after operation groups) and HCs (n = 12). The resulting functional connectivity matrices were constructed for all 12 patients, and binary network analysis was performed. In the range of 0.05 ≤ Kcos t ≤ 0.35, the functional networks in preoperative LGG and postoperative one both fitted the definition of small-worldness. We proposed Knet = 0.20 as small-world network interval, and the results showed that the topological properties were found to be disrupted in the two LGG groups, meanwhile the global efficiency increased and the local efficiency decreased. Lnet in the two LGG groups both were longer than HCs. Cnet in the LGG groups were smaller than HCs. Compared with the Hcs, MoCA in the two LGG groups were lower than HCs with significant difference, and the disturbed networks in the LGG were negatively related to worse MoCA scores. CONCLUSIONS Disturbed small-worldness preperty in the two LGG groups was found and widely spread in the strength and spatial organization of brain networks, and the alterated small-world network may be responsible for cognitive dysfunction in frontal lobe LGG patients.
Collapse
Affiliation(s)
- Qingling Huang
- Department of Radiology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Rui Zhang
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xinhua Hu
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Shangwen Ding
- Department of Biomedical Engineering,Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jingguang Qian
- Department of Scientific Research, Nanjing Sport Institute, Nanjing, China
| | - Ting Lei
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xuan Cao
- Department of Statistic, University of Florida, Gainesville, Florida, United States of America
| | - Ling Tao
- Department of Biomedical Engineering,Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zhiyu Qian
- Department of Biomedical Engineering,Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Hongyi Liu
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Otte WM, van der Marel K, Braun KP, Dijkhuizen RM. Effects of transient unilateral functional brain disruption on global neural network status in rats: a methods paper. Front Syst Neurosci 2014; 8:40. [PMID: 24711789 PMCID: PMC3968768 DOI: 10.3389/fnsys.2014.00040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 03/06/2014] [Indexed: 01/22/2023] Open
Abstract
Permanent focal brain damage can have critical effects on the function of nearby as well as remote brain regions. However, the effects of transient disturbances on global brain function are largely unknown. Our goal was to develop an experimental in vivo model to map the impact of transient functional brain impairment on large-scale neural networks in the absence of structural damage. We describe a new rat model of transient functional hemispheric disruption using unilateral focal anesthesia by intracarotid pentobarbital injection. The brain's functional status was assessed with resting-state fMRI (rs-fMRI) and electroencephalography (EEG). We performed network analysis to identify and quantify highly connected network hubs, i.e., "rich-club organization," in pre- and postbarbital functional networks. Perfusion MRI data demonstrated that the catheterized carotid artery predominantly supplied the ipsilateral hemisphere, allowing for selective hemispheric brain silencing. The prebarbital baseline network displayed strong functional connectivity (FC) within and between hemispheres. Following pentobarbital injection, the disrupted hemisphere revealed increased intrahemispheric FC with concomitant decrease of interhemispheric connectivity. The bilateral functional network was characterized by a strong positive rich-club effect, which was not affected by ipsilateral disruption. Nevertheless, the rich-club value was significantly decreased in the ipsilateral hemisphere and to a lesser extent contralaterally. Loss of interhemispheric EEG synchronization supported the rs-fMRI findings. Our data support the concept that densely connected rich-club regions play a central role in global brain communication, and show that network hub configurations can be significantly affected by focal temporary functional hemispheric disruption without structural neuronal damage. Further studies with this rat model will provide essential additional insights into network reorganization patterns in response to transient functional brain disruption.
Collapse
Affiliation(s)
- Willem M. Otte
- Biomedical MR Imaging and Spectroscopy Group, Image Sciences Institute, University Medical Center UtrechtUtrecht, Netherlands
- Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, Netherlands
| | - Kajo van der Marel
- Biomedical MR Imaging and Spectroscopy Group, Image Sciences Institute, University Medical Center UtrechtUtrecht, Netherlands
| | - Kees P. Braun
- Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, Netherlands
| | - Rick M. Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Image Sciences Institute, University Medical Center UtrechtUtrecht, Netherlands
- Molecular Imaging Program at Stanford, Stanford UniversityStanford, CA, USA
| |
Collapse
|
16
|
Gong XW, Li JB, Lu QC, Liang PJ, Zhang PM. Effective connectivity of hippocampal neural network and its alteration in Mg2+-free epilepsy model. PLoS One 2014; 9:e92961. [PMID: 24658094 PMCID: PMC3962477 DOI: 10.1371/journal.pone.0092961] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/27/2014] [Indexed: 11/18/2022] Open
Abstract
Understanding the connectivity of the brain neural network and its evolution in epileptiform discharges is meaningful in the epilepsy researches and treatments. In the present study, epileptiform discharges were induced in rat hippocampal slices perfused with Mg2+-free artificial cerebrospinal fluid. The effective connectivity of the hippocampal neural network was studied by comparing the normal and epileptiform discharges recorded by a microelectrode array. The neural network connectivity was constructed by using partial directed coherence and analyzed by graph theory. The transition of the hippocampal network topology from control to epileptiform discharges was demonstrated. Firstly, differences existed in both the averaged in- and out-degree between nodes in the pyramidal cell layer and the granule cell layer, which indicated an information flow from the pyramidal cell layer to the granule cell layer during epileptiform discharges, whereas no consistent information flow was observed in control. Secondly, the neural network showed different small-worldness in the early, middle and late stages of the epileptiform discharges, whereas the control network did not show the small-world property. Thirdly, the network connectivity began to change earlier than the appearance of epileptiform discharges and lasted several seconds after the epileptiform discharges disappeared. These results revealed the important network bases underlying the transition from normal to epileptiform discharges in hippocampal slices. Additionally, this work indicated that the network analysis might provide a useful tool to evaluate the neural network and help to improve the prediction of seizures.
Collapse
Affiliation(s)
- Xin-Wei Gong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Bo Li
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qin-Chi Lu
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Pei-Ji Liang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Pu-Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- * E-mail:
| |
Collapse
|
17
|
van Klink NEC, Van't Klooster MA, Zelmann R, Leijten FSS, Ferrier CH, Braun KPJ, van Rijen PC, van Putten MJAM, Huiskamp GJM, Zijlmans M. High frequency oscillations in intra-operative electrocorticography before and after epilepsy surgery. Clin Neurophysiol 2014; 125:2212-2219. [PMID: 24704141 DOI: 10.1016/j.clinph.2014.03.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/25/2014] [Accepted: 03/01/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Removal of brain tissue showing high frequency oscillations (HFOs; ripples: 80-250Hz and fast ripples: 250-500Hz) in preresection electrocorticography (preECoG) in epilepsy patients seems a predictor of good surgical outcome. We analyzed occurrence and localization of HFOs in intra-operative preECoG and postresection electrocorticography (postECoG). METHODS HFOs were automatically detected in one-minute epochs of intra-operative ECoG sampled at 2048Hz of fourteen patients. Ripple, fast ripple, spike, ripples on a spike (RoS) and not on a spike (RnoS) rates were analyzed in pre- and postECoG for resected and nonresected electrodes. RESULTS Ripple, spike and fast ripple rates decreased after resection. RnoS decreased less than RoS (74% vs. 83%; p=0.01). Most fast ripples in preECoG were located in resected tissue. PostECoG fast ripples occurred in one patient with poor outcome. Patients with good outcome had relatively high postECoG RnoS rates, specifically in the sensorimotor cortex. CONCLUSIONS Our observations show that fast ripples in intra-operative ECoG, compared to ripples, may be a better biomarker for epileptogenicity. Further studies have to determine the relation between resection of epileptogenic tissue and physiological ripples generated by the sensorimotor cortex. SIGNIFICANCE Fast ripples in intra-operative ECoG can help identify the epileptogenic zone, while ripples might also be physiological.
Collapse
Affiliation(s)
- N E C van Klink
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, The Netherlands; MIRA, Institute for Technical Medicine, University of Twente, The Netherlands.
| | - M A Van't Klooster
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, The Netherlands
| | - R Zelmann
- Montreal Neurological Institute, McGill University, Canada
| | - F S S Leijten
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, The Netherlands
| | - C H Ferrier
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, The Netherlands
| | - K P J Braun
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, The Netherlands
| | - P C van Rijen
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, The Netherlands
| | - M J A M van Putten
- MIRA, Institute for Technical Medicine, University of Twente, The Netherlands
| | - G J M Huiskamp
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, The Netherlands
| | - M Zijlmans
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, The Netherlands; Epilepsy Institutes in the Netherlands, SEIN, Heemstede, The Netherlands
| |
Collapse
|
18
|
Duan F, Watanabe K, Yoshimura Y, Kikuchi M, Minabe Y, Aihara K. Relationship between brain network pattern and cognitive performance of children revealed by MEG signals during free viewing of video. Brain Cogn 2014; 86:10-6. [PMID: 24525012 DOI: 10.1016/j.bandc.2014.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/15/2014] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
Application of graph theory to analysis of functional networks in the brain is an important research trend. Extensive research on the resting state has shown a "small-world" organization of the brain network as a whole. However, the small-worldness of children's brain networks in a working state has not yet been well characterized. In this paper, we used a custom-made, child-sized magnetoencephalography (MEG) device to collect data from children while they were watching cartoon videos. Network structures were analyzed and compared with scores on the Kaufman Assessment Battery for Children (K-ABC). The results of network analysis showed that (1) the small-world scalar showed a negative correlation with the simultaneous processing raw score, a measure of visual processing (Gv) ability, and (2) the children with higher simultaneous processing raw scores possessed network structures that can be more efficient for local information processing than children with lower scores. These results were compatible with previous studies on the adult working state. Additional results obtained from further analysis of the frontal and occipital lobes indicated that high cognitive performance could represent better local efficiency in task-related sub-networks. Under free viewing of cartoon videos, brain networks were no longer confined to their strongest small-world states; connections became clustered in local areas such as the frontal and occipital lobes, which might be a more useful configuration for handling visual processing tasks.
Collapse
Affiliation(s)
- Fang Duan
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo 153-8904, Japan.
| | - Katsumi Watanabe
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Yoshio Minabe
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Kazuyuki Aihara
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo 153-8904, Japan; Institute of Industrial Science, The University of Tokyo, Tokyo 153-8904, Japan
| |
Collapse
|
19
|
Functional brain network analysis using minimum spanning trees in Multiple Sclerosis: an MEG source-space study. Neuroimage 2013; 88:308-18. [PMID: 24161625 DOI: 10.1016/j.neuroimage.2013.10.022] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/09/2013] [Accepted: 10/12/2013] [Indexed: 01/08/2023] Open
Abstract
Cognitive dysfunction in Multiple Sclerosis (MS) is closely related to altered functional brain network topology. Conventional network analyses to compare groups are hampered by differences in network size, density and suffer from normalization problems. We therefore computed the Minimum Spanning Tree (MST), a sub-graph of the original network, to counter these problems. We hypothesize that functional network changes analysed with MSTs are important for understanding cognitive changes in MS and that changes in MST topology also represent changes in the critical backbone of the original brain networks. Here, resting-state magnetoencephalography (MEG) recordings from 21 early MS patients and 17 age-, gender-, and education-matched controls were projected onto atlas-based regions-of-interest (ROIs) using beamforming. The phase lag index was applied to compute functional connectivity between regions, from which a graph and subsequently the MST was constructed. Results showed lower global integration in the alpha2 (10-13Hz) and beta (13-30Hz) bands in MS patients, whereas higher global integration was found in the theta band. Changes were most pronounced in the alpha2 band where a loss of hierarchical structure was observed, which was associated with poorer cognitive performance. Finally, the MST in MS patients as well as in healthy controls may represent the critical backbone of the original network. Together, these findings indicate that MST network analyses are able to detect network changes in MS patients, which may correspond to changes in the core of functional brain networks. Moreover, these changes, such as a loss of hierarchical structure, are related to cognitive performance in MS.
Collapse
|
20
|
Tewarie P, Schoonheim MM, Stam CJ, van der Meer ML, van Dijk BW, Barkhof F, Polman CH, Hillebrand A. Cognitive and clinical dysfunction, altered MEG resting-state networks and thalamic atrophy in multiple sclerosis. PLoS One 2013; 8:e69318. [PMID: 23935983 PMCID: PMC3729968 DOI: 10.1371/journal.pone.0069318] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/10/2013] [Indexed: 11/19/2022] Open
Abstract
The relation between pathological findings and clinical and cognitive decline in Multiple Sclerosis remains unclear. Here, we tested the hypothesis that altered functional connectivity could provide a missing link between structural findings, such as thalamic atrophy and white matter lesion load, and clinical and cognitive dysfunction. Resting-state magnetoencephalography recordings from 21 MS patients and 17 gender- and age matched controls were projected onto atlas-based regions-of-interest using beamforming. Average functional connectivity was computed for each ROI and literature-based resting-state networks using the phase-lag index. Structural measures of whole brain and thalamic atrophy and lesion load were estimated from MRI scans. Global analyses showed lower functional connectivity in the alpha2 band and higher functional connectivity in the beta band in patients with Multiple Sclerosis. Additionally, alpha2 band functional connectivity was lower for the patients in two resting-state networks, namely the default mode network and the visual network. Higher beta band functional connectivity was found in the default mode network and in the temporo-parietal network. Lower alpha2 band functional connectivity in the visual network was related to lower thalamic volumes. Beta band functional connectivity correlated positively with disability scores, most prominently in the default mode network, and correlated negatively with cognitive performance in this network. These findings illustrate the relationship between thalamic atrophy, altered functional connectivity and clinical and cognitive dysfunction in MS, which could serve as a bridge to understand how neurodegeneration is associated with altered functional connectivity and subsequently clinical and cognitive decline.
Collapse
Affiliation(s)
- Prejaas Tewarie
- Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Altered resting state brain dynamics in temporal lobe epilepsy can be observed in spectral power, functional connectivity and graph theory metrics. PLoS One 2013; 8:e68609. [PMID: 23922658 PMCID: PMC3724835 DOI: 10.1371/journal.pone.0068609] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 05/30/2013] [Indexed: 02/04/2023] Open
Abstract
Despite a wealth of EEG epilepsy data that accumulated for over half a century, our ability to understand brain dynamics associated with epilepsy remains limited. Using EEG data from 15 controls and 9 left temporal lobe epilepsy (LTLE) patients, in this study we characterize how the dynamics of the healthy brain differ from the "dynamically balanced" state of the brain of epilepsy patients treated with anti-epileptic drugs in the context of resting state. We show that such differences can be observed in band power, synchronization and network measures, as well as deviations from the small world network (SWN) architecture of the healthy brain. The θ (4-7 Hz) and high α (10-13 Hz) bands showed the biggest deviations from healthy controls across various measures. In particular, patients demonstrated significantly higher power and synchronization than controls in the θ band, but lower synchronization and power in the high α band. Furthermore, differences between controls and patients in graph theory metrics revealed deviations from a SWN architecture. In the θ band epilepsy patients showed deviations toward an orderly network, while in the high α band they deviated toward a random network. These findings show that, despite the focal nature of LTLE, the epileptic brain differs in its global network characteristics from the healthy brain. To our knowledge, this is the only study to encompass power, connectivity and graph theory metrics to investigate the reorganization of resting state functional networks in LTLE patients.
Collapse
|
22
|
van Dellen E, Hillebrand A, Douw L, Heimans JJ, Reijneveld JC, Stam CJ. Local polymorphic delta activity in cortical lesions causes global decreases in functional connectivity. Neuroimage 2013; 83:524-32. [PMID: 23769919 DOI: 10.1016/j.neuroimage.2013.06.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/30/2013] [Accepted: 06/05/2013] [Indexed: 10/26/2022] Open
Abstract
Increasing evidence from neuroimaging and modeling studies suggests that local lesions can give rise to global network changes in the human brain. These changes are often attributed to the disconnection of the lesioned areas. However, damaged brain areas may still be active, although the activity is altered. Here, we hypothesize that empirically observed global decreases in functional connectivity in patients with brain lesions can be explained by specific alterations of local neural activity that are the result of damaged tissue. We simulated local polymorphic delta activity (PDA), which typically characterizes EEG/MEG recordings of patients with cerebral lesions, in a realistic model of human brain activity. 78 neural masses were coupled according to the human structural brain network. Lesions were created by altering the parameters of individual neural masses in order to create PDA (i.e. simulating acute focal brain damage); combining this PDA with weakening of structural connections (i.e. simulating brain tumors), and fully deleting structural connections (i.e. simulating a full resection). Not only structural disconnection but also PDA in itself caused a global decrease in functional connectivity, similar to the observed alterations in MEG recordings of patients with PDA due to brain lesions. Interestingly, connectivity between regions that were not lesioned directly also changed. The impact of PDA depended on the network characteristics of the lesioned region in the structural connectome. This study shows for the first time that locally disturbed neural activity, i.e. PDA, may explain altered functional connectivity between remote areas, even when structural connections are unaffected. We suggest that focal brain lesions and the corresponding altered neural activity should be considered in the framework of the full functionally interacting brain network, implying that the impact of lesions reaches far beyond focal damage.
Collapse
Affiliation(s)
- E van Dellen
- Department of Neurology, Cancer Center Amsterdam, VU University Medical Center, De Boelaan 1117, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
23
|
Van der Meer ML, Tewarie P, Schoonheim MM, Douw L, Barkhof F, Polman CH, Stam CJ, Hillebrand A. Cognition in MS correlates with resting-state oscillatory brain activity: An explorative MEG source-space study. NEUROIMAGE-CLINICAL 2013; 2:727-34. [PMID: 24179824 PMCID: PMC3777767 DOI: 10.1016/j.nicl.2013.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 04/23/2013] [Accepted: 05/02/2013] [Indexed: 12/27/2022]
Abstract
Clinical and cognitive dysfunction in Multiple Sclerosis (MS) is insufficiently explained by structural damage as identified by traditional magnetic resonance imaging (MRI) of the brain, indicating the need for reliable functional measures in MS. We investigated whether altered resting-state oscillatory power could be related to clinical and cognitive dysfunction in MS. MEG recordings were acquired using a 151-channel whole-head MEG system from 21 relapsing remitting MS patients and 17 healthy age-, gender-, and education-matched controls, using an eyes-closed no-task condition. Relative spectral power was estimated for 78 regions of interest, using an atlas-based beamforming approach, for classical frequency bands; delta, theta, alpha1, alpha2, beta and gamma. These cortical power estimates were compared between groups by means of permutation analysis and correlated with clinical disability (Expanded Disability Status Scale: EDSS), cognitive performance and MRI measures of atrophy and lesion load. Patients showed increased power in the alpha1 band and decreased power in the alpha2 band, compared to controls, mainly in occipital, parietal and temporal areas, confirmed by a lower alpha peak-frequency. Increased power in the alpha1 band was associated with worse overall cognition and especially with information processing speed. Our quantitative relative power analysis of MEG recordings showed abnormalities in oscillatory brain dynamics in MS patients in the alpha band. By applying source-space analyses, this study provides a detailed topographical view of abnormal brain activity in MS patients, especially localized to occipital areas. Interestingly, poor cognitive performance was related to high resting-state alpha1 power indicating that changes in oscillatory activity might be of value as an objective measure of disease burden in MS patients. MEG was recorded in relapsing remitting MS patients and healthy controls. Atlas-based MEG beamformer was used for anatomical mapping of neuronal activity. Increased power in alpha1 band in patients, associated with cognitive dysfunction. Decreased power in alpha2 band in patients, confirmed by lower alpha peak-frequency.
Collapse
Affiliation(s)
- M L Van der Meer
- Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
24
|
van Dellen E, de Witt Hamer PC, Douw L, Klein M, Heimans JJ, Stam CJ, Reijneveld JC, Hillebrand A. Connectivity in MEG resting-state networks increases after resective surgery for low-grade glioma and correlates with improved cognitive performance. NEUROIMAGE-CLINICAL 2012; 2:1-7. [PMID: 24179752 PMCID: PMC3777771 DOI: 10.1016/j.nicl.2012.10.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/19/2012] [Accepted: 10/25/2012] [Indexed: 11/23/2022]
Abstract
Purpose Low-grade glioma (LGG) patients often have cognitive deficits. Several disease- and treatment related factors affect cognitive processing. Cognitive outcome of resective surgery is unpredictable, both for improvement and deterioration, especially for complex domains such as attention and executive functioning. MEG analysis of resting-state networks (RSNs) is a good candidate for presurgical prediction of cognitive outcome. In this study, we explore the relation between alterations in connectivity of RSNs and changes in cognitive processing after resective surgery, as a stepping stone to ultimately predict postsurgical cognitive outcome. Methods Ten patients with LGG were included, who had no adjuvant therapy. MEG recording and neuropsychological assessment were obtained before and after resective surgery. MEG data were recorded during a no-task eyes-closed condition, and projected to the anatomical space of the AAL atlas. Alterations in functional connectivity, as characterized by the phase lag index (PLI), within the default mode network (DMN), executive control network (ECN), and left- and right-sided frontoparietal networks (FPN) were compared to cognitive changes. Results Lower alpha band DMN connectivity was increased after surgery, and this increase was related to improved verbal memory functioning. Similarly, right FPN connectivity was increased after resection in the upper alpha band, which correlated with improved attention, working memory and executive functioning. Discussion Increased alpha band RSN functional connectivity in MEG recordings correlates with improved cognitive outcome after resective surgery. The mechanisms resulting in functional connectivity alterations after resection remain to be elucidated. Importantly, our findings indicate that connectivity of MEG RSNs may be used for presurgical prediction of cognitive outcome in future studies.
Collapse
Affiliation(s)
- E van Dellen
- Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Downes JH, Hammond MW, Xydas D, Spencer MC, Becerra VM, Warwick K, Whalley BJ, Nasuto SJ. Emergence of a small-world functional network in cultured neurons. PLoS Comput Biol 2012; 8:e1002522. [PMID: 22615555 PMCID: PMC3355061 DOI: 10.1371/journal.pcbi.1002522] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 04/01/2012] [Indexed: 11/19/2022] Open
Abstract
The functional networks of cultured neurons exhibit complex network properties similar to those found in vivo. Starting from random seeding, cultures undergo significant reorganization during the initial period in vitro, yet despite providing an ideal platform for observing developmental changes in neuronal connectivity, little is known about how a complex functional network evolves from isolated neurons. In the present study, evolution of functional connectivity was estimated from correlations of spontaneous activity. Network properties were quantified using complex measures from graph theory and used to compare cultures at different stages of development during the first 5 weeks in vitro. Networks obtained from young cultures (14 days in vitro) exhibited a random topology, which evolved to a small-world topology during maturation. The topology change was accompanied by an increased presence of highly connected areas (hubs) and network efficiency increased with age. The small-world topology balances integration of network areas with segregation of specialized processing units. The emergence of such network structure in cultured neurons, despite a lack of external input, points to complex intrinsic biological mechanisms. Moreover, the functional network of cultures at mature ages is efficient and highly suited to complex processing tasks.
Collapse
Affiliation(s)
- Julia H Downes
- School of Systems Engineering, University of Reading, Whiteknights, Reading, Berkshire, UK.
| | | | | | | | | | | | | | | |
Collapse
|