1
|
Fründt O, Mainka T, Vettorazzi E, Baspinar E, Schwarz C, Südmeyer M, Gerloff C, Zangemeister WH, Poetter-Nerger M, Hidding U, Hamel W, Moll CKE, Buhmann C. Prospective controlled study on the effects of deep brain stimulation on driving in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:105. [PMID: 37394536 DOI: 10.1038/s41531-023-00545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
To explore the influence of bilateral subthalamic deep brain stimulation (STN-DBS) on car driving ability in patients with Parkinson's disease (PD), we prospectively examined two age-matched, actively driving PD patient groups: one group undergone DBS-surgery (PD-DBS, n = 23) and one group that was eligible for DBS but did not undergo surgery (PD-nDBS, n = 29). In PD-DBS patients, investigation at Baseline was done just prior and at Follow-up 6-12 month after DBS-surgery. In PD-nDBS patients, time interval between Baseline and Follow-up was aimed to be comparable. To assess the general PD driving level, driving was assessed once in 33 age-matched healthy controls at Baseline. As results, clinical and driving characteristics of PD-DBS, PD-nDBS and controls did not differ at Baseline. At Follow-up, PD-DBS patients drove unsafer than PD-nDBS patients. This effect was strongly driven by two single PD-DBS participants (9%) with poor Baseline and disastrous Follow-up driving performance. Retrospectively, we could not identify any of the assessed motor and non-motor clinical Baseline characteristics as predictive for this driving-deterioration at Follow-up. Excluding these two outliers, comparable driving performance between PD-DBS and PD-nDBS patients not only at Baseline but also at Follow-up was demonstrated. Age, disease duration and severity as well as Baseline driving insecurity were associated with poorer driving performance at Follow-up. This first prospective study on driving safety in PD after DBS surgery indicates that DBS usually does not alter driving safety but might increase the risk for driving deterioration, especially in single subjects with already unsafe driving prior to DBS surgery.
Collapse
Affiliation(s)
- Odette Fründt
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Department of Neurology, Ernst von Bergmann Clinic, 14467, Potsdam, Germany
| | - Tina Mainka
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Department of Neurology with Experimental Neurology, Charité Campus Mitte, 10117, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Eik Vettorazzi
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ela Baspinar
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Cindy Schwarz
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Martin Südmeyer
- Department of Neurology, Ernst von Bergmann Clinic, 14467, Potsdam, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Wolfgang H Zangemeister
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Monika Poetter-Nerger
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ute Hidding
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Wolfgang Hamel
- Department of Neurosurgery, University-Hospital Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christian K E Moll
- Institute of Neurophysiology and Pathophysiology, University-Hospital Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Carsten Buhmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
2
|
Combined EEG and immersive virtual reality unveil dopaminergic modulation of error monitoring in Parkinson's Disease. NPJ Parkinsons Dis 2023; 9:3. [PMID: 36639384 PMCID: PMC9839679 DOI: 10.1038/s41531-022-00441-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Detecting errors in your own and others' actions is associated with discrepancies between intended and expected outcomes. The processing of salient events is associated with dopamine release, the balance of which is altered in Parkinson's disease (PD). Errors in observed actions trigger various electrocortical indices (e.g. mid-frontal theta, error-related delta, and error positivity [oPe]). However, the impact of dopamine depletion to observed errors in the same individual remains unclear. Healthy controls (HCs) and PD patients observed ecological reach-to-grasp-a-glass actions performed by a virtual arm from a first-person perspective. PD patients were tested under their dopaminergic medication (on-condition) and after dopaminergic withdrawal (off-condition). Analyses of oPe, delta, and theta-power increases indicate that while the formers were elicited after incorrect vs. correct actions in all groups, the latter were observed in on-condition but altered in off-condition PD. Therefore, different EEG error signatures may index the activity of distinct mechanisms, and error-related theta power is selectively modulated by dopamine depletion. Our findings may facilitate discovering dopamine-related biomarkers for error-monitoring dysfunctions that may have crucial theoretical and clinical implications.
Collapse
|
3
|
Das A, Goldberg JH. Songbird subthalamic neurons project to dopaminergic midbrain and exhibit singing-related activity. J Neurophysiol 2022; 127:373-383. [PMID: 34965747 PMCID: PMC8896995 DOI: 10.1152/jn.00254.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Skill learning requires motor output to be evaluated against internal performance benchmarks. In songbirds, ventral tegmental area (VTA) dopamine neurons (DA) signal performance errors important for learning, but it remains unclear which brain regions project to VTA and how these inputs may contribute to DA error signaling. Here, we find that the songbird subthalamic nucleus (STN) projects to VTA and that STN microstimulation can excite VTA neurons. We also discover that STN receives inputs from motor cortical, auditory cortical, and ventral pallidal brain regions previously implicated in song evaluation. In the first neural recordings from songbird STN, we discover that the activity of most STN neurons is associated with body movements and not singing, but a small fraction of neurons exhibits precise song timing and performance error signals. Our results place the STN in a pathway important for song learning, but not song production, and expand the territories of songbird brain potentially associated with song learning.NEW & NOTEWORTHY Songbird subthalamic (STN) neurons exhibit singing-related signals and are interconnected with the motor cortical nucleus, auditory pallium, ventral pallidum, and ventral tegmental area, areas important for song generation and learning.
Collapse
Affiliation(s)
- Anindita Das
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | - Jesse H. Goldberg
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| |
Collapse
|
4
|
Parkinson's disease: Alterations of motor plasticity and motor learning. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:135-151. [PMID: 35034730 DOI: 10.1016/b978-0-12-819410-2.00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This chapter reviews the alterations in motor learning and motor cortical plasticity in Parkinson's disease (PD), the most common movement disorder. Impairments in motor learning, which is a hallmark of basal ganglia disorders, influence the performance of motor learning-related behavioral tasks and have clinical implications for the management of disturbance in gait and posture, and for rehabilitative management of PD. Although plasticity is classically induced and assessed in sliced preparation in animal models, in this review we have concentrated on the results from non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS), transcranial alternating current stimulation (tACS) and transcranial direct current stimulation (tDCS) in patients with PD, in addition to a few animal electrophysiologic studies. The chapter summarizes the results from different cortical and subcortical plasticity investigations. Plasticity induction protocols reveal deficient plasticity in PD and these plasticity measures are modulated by medications and deep brain stimulation. There is considerable variability in these measures that are related to inter-individual variations, different disease characteristics and methodological considerations. Nevertheless, these pathophysiologic studies expand our knowledge of cortical excitability, plasticity and the effects of different treatments in PD. These tools of modulating plasticity and motor learning improve our understanding of PD pathophysiology and help to develop new treatments for this disabling condition.
Collapse
|
5
|
Sigirli D, Ozdemir ST, Erer S, Sahin I, Ercan I, Ozpar R, Orun MO, Hakyemez B. Statistical shape analysis of putamen in early-onset Parkinson's disease. Clin Neurol Neurosurg 2021; 209:106936. [PMID: 34530266 DOI: 10.1016/j.clineuro.2021.106936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To investigate the shape differences in the putamen of early-onset Parkinson's patients compared with healthy controls and to assess and to assess sub-regional brain abnormalities. METHODS This study was conducted using the 3-T MRI scans of 23 early-onset Parkinson's patients and age and gender matched control subjects. Landmark coordinate data obtained and Procrustes analysis was used to compare mean shapes. The relationships between the centroid sizes of the left and right putamen, and the durations of disease examined using growth curve models. RESULTS While there was a significant difference between the right putamen shape of control and patient groups, there was not found a significant difference in terms of left putamen. Sub-regional analyses showed that for the right putamen, the most prominent deformations were localized in the middle-posterior putamen and minimal deformations were seen in the anterior putamen. CONCLUSION Although they were not as pronounced as those in the right putamen, the deformations in the left putamen mimic the deformations in the right putamen which are found mainly in the middle-posterior putamen and at a lesser extend in the anterior putamen.
Collapse
Affiliation(s)
- Deniz Sigirli
- Department of Biostatistics, Faculty of Medicine, Bursa Uludag University, Gorukle Campus, 16059 Bursa, Turkey.
| | - Senem Turan Ozdemir
- Department of Anatomy, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.
| | - Sevda Erer
- Department of Neurology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.
| | - Ibrahim Sahin
- Department of Biostatistics, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey.
| | - Ilker Ercan
- Department of Biostatistics, Faculty of Medicine, Bursa Uludag University, Gorukle Campus, 16059 Bursa, Turkey.
| | - Rifat Ozpar
- Department of Radiology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.
| | - Muhammet Okay Orun
- Department of Neurology, Van Training and Research Hospital, Van, Turkey.
| | - Bahattin Hakyemez
- Department of Radiology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.
| |
Collapse
|
6
|
Alexander R, Aragón OR, Bookwala J, Cherbuin N, Gatt JM, Kahrilas IJ, Kästner N, Lawrence A, Lowe L, Morrison RG, Mueller SC, Nusslock R, Papadelis C, Polnaszek KL, Helene Richter S, Silton RL, Styliadis C. The neuroscience of positive emotions and affect: Implications for cultivating happiness and wellbeing. Neurosci Biobehav Rev 2021; 121:220-249. [PMID: 33307046 DOI: 10.1016/j.neubiorev.2020.12.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 11/10/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023]
Abstract
This review paper provides an integrative account regarding neurophysiological correlates of positive emotions and affect that cumulatively contribute to the scaffolding for happiness and wellbeing in humans and other animals. This paper reviews the associations among neurotransmitters, hormones, brain networks, and cognitive functions in the context of positive emotions and affect. Consideration of lifespan developmental perspectives are incorporated, and we also examine the impact of healthy social relationships and environmental contexts on the modulation of positive emotions and affect. The neurophysiological processes that implement positive emotions are dynamic and modifiable, and meditative practices as well as flow states that change patterns of brain function and ultimately support wellbeing are also discussed. This review is part of "The Human Affectome Project" (http://neuroqualia.org/background.php), and in order to advance a primary aim of the Human Affectome Project, we also reviewed relevant linguistic dimensions and terminology that characterizes positive emotions and wellbeing. These linguistic dimensions are discussed within the context of the neuroscience literature with the overarching goal of generating novel recommendations for advancing neuroscience research on positive emotions and wellbeing.
Collapse
Affiliation(s)
- Rebecca Alexander
- Neuroscience Research Australia, Randwick, Sydney, NSW, 2031, Australia; Australian National University, Canberra, ACT, 2601, Australia
| | - Oriana R Aragón
- Yale University, 2 Hillhouse Ave, New Haven, CT, 06520, USA; Clemson University, 252 Sirrine Hall, Clemson, SC, 29634, USA
| | - Jamila Bookwala
- Department of Psychology and Program in Aging Studies, Lafayette College, 730 High Road, Easton, PA, USA
| | - Nicolas Cherbuin
- Centre for Research on Ageing, Health, and Wellbeing, Australian National University, Canberra, ACT, 2601, Australia
| | - Justine M Gatt
- Neuroscience Research Australia, Randwick, Sydney, NSW, 2031, Australia; School of Psychology, University of New South Wales, Randwick, Sydney, NSW, 2031, Australia
| | - Ian J Kahrilas
- Department of Psychology, Loyola University Chicago, 1032 W. Sheridan Road, Chicago, IL, 60660, USA
| | - Niklas Kästner
- Department of Behavioural Biology, University of Münster, Badestraße 13, 48149, Münster, Germany
| | - Alistair Lawrence
- Scotland's Rural College, King's Buildings, Edinburgh, EH9 3JG, United Kingdom; The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, United Kingdom
| | - Leroy Lowe
- Neuroqualia (NGO), Truro, NS, B2N 1X5, Canada
| | - Robert G Morrison
- Department of Psychology, Loyola University Chicago, 1032 W. Sheridan Road, Chicago, IL, 60660, USA
| | - Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium; Department of Personality, Psychological Assessment and Treatment, University of Deusto, Bilbao, Spain
| | - Robin Nusslock
- Department of Psychology and Institute for Policy Research, Northwestern University, 2029 Sheridan Road, Evanston, IL, 60208, USA
| | - Christos Papadelis
- Jane and John Justin Neurosciences Center, Cook Children's Health Care System, 1500 Cooper St, Fort Worth, TX, 76104, USA; Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kelly L Polnaszek
- Department of Psychology, Loyola University Chicago, 1032 W. Sheridan Road, Chicago, IL, 60660, USA
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Badestraße 13, 48149, Münster, Germany
| | - Rebecca L Silton
- Department of Psychology, Loyola University Chicago, 1032 W. Sheridan Road, Chicago, IL, 60660, USA; Institute for Innovations in Developmental Sciences, Northwestern University, 633 N. Saint Clair, Chicago, IL, 60611, USA.
| | - Charis Styliadis
- Neuroscience of Cognition and Affection group, Lab of Medical Physics, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
7
|
Drummond NM, Chen R. Deep brain stimulation and recordings: Insights into the contributions of subthalamic nucleus in cognition. Neuroimage 2020; 222:117300. [PMID: 32828919 DOI: 10.1016/j.neuroimage.2020.117300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/28/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Recent progress in targeted interrogation of basal ganglia structures and networks with deep brain stimulation in humans has provided insights into the complex functions the subthalamic nucleus (STN). Beyond the traditional role of the STN in modulating motor function, recognition of its role in cognition was initially fueled by side effects seen with STN DBS and later revealed with behavioral and electrophysiological studies. Anatomical, clinical, and electrophysiological data converge on the view that the STN is a pivotal node linking cognitive and motor processes. The goal of this review is to synthesize the literature to date that used DBS to examine the contributions of the STN to motor and non-motor cognitive functions and control. Multiple modalities of research have provided us with an enhanced understanding of the STN and reveal that it is critically involved in motor and non-motor inhibition, decision-making, motivation and emotion. Understanding the role of the STN in cognition can enhance the therapeutic efficacy and selectivity not only for existing applications of DBS, but also in the development of therapeutic strategies to stimulate aberrant circuits to treat non-motor symptoms of Parkinson's disease and other disorders.
Collapse
Affiliation(s)
- Neil M Drummond
- Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada.
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
8
|
Barboza E Barbosa EN, Fichman HC. How is cognition in subthalamic nucleus deep brain stimulation Parkinson's disease patients? Dement Neuropsychol 2019; 13:367-377. [PMID: 31844489 PMCID: PMC6907696 DOI: 10.1590/1980-57642018dn13-040002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/25/2019] [Indexed: 11/22/2022] Open
Abstract
The impairments in cognitive functions such as memory, executive function, visuospatial skills and language in Parkinson's disease (PD) are drawing increasing attention in the current literature. Studies dedicated to investigating the relationship between subthalamic nucleus deep brain stimulation (STN-DBS) and cognitive functioning are contradictory. This systematic review aims to analyze the impact on the cognitive functioning of patients with PD and STN-DBS. Articles published in the 2007-2017 period were retrieved from the Medline/Pubmed databases using PRISMA criteria. The analysis of 27 articles revealed many conflicting results, precluding a consensus on a cognitive functioning standard and hampering the establishment of a neuropsychological profile for PD patients who underwent STN-DBS surgery. Further studies investigating this relationship are needed.
Collapse
|
9
|
Barbosa ENBE, Charchat-Fichman H. Systematic review of neuropsychological instruments used in subthalamic nucleus deep brain stimulation in Parkinson´s disease patients. Dement Neuropsychol 2019; 13:162-171. [PMID: 31285790 PMCID: PMC6601304 DOI: 10.1590/1980-57642018dn13-020004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/06/2019] [Indexed: 12/28/2022] Open
Abstract
In addition to drug treatment, surgical intervention represents an alternative to PD patients with motor deficits. The most common intervention is subthalamic nucleus deep brain stimulation (STN-DBS). It is extremely important to perform a neuropsychological assessment in patients with STN-DBS, not only to identify losses related to the disease, but also to compare influence on cognition both pre and postoperatively. OBJECTIVE the objective of this systematic review was to investigate the instruments frequently used in studies related to STN-DBS in PD patients. METHODS articles were retrieved from Medline/Pubmed databases published in the 2007-2017 period using PRISMA criteria. RESULTS after analyzing 27 articles, the absence of a specific evaluation protocol for PD with STN-DBS was evident. CONCLUSION non-motor symptoms are not given due importance in neuropsychological assessments. It is crucial to acknowledge that these symptoms have a major impact on the quality of life of patients. Greater engagement in assessing these aspects is required, in order to bridge the gaps in research.
Collapse
|
10
|
Tekriwal A, Felsen G, Thompson JA. Modular auditory decision-making behavioral task designed for intraoperative use in humans. J Neurosci Methods 2018; 304:162-167. [PMID: 29746889 DOI: 10.1016/j.jneumeth.2018.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/04/2018] [Accepted: 05/05/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Neurosurgical interventions that require active patient feedback, such as deep brain stimulation surgery, create an opportunity to conduct cognitive or behavioral experiments during the acquisition of invasive neurophysiology. Optimal design and implementation of intraoperative behavioral experiments require consideration of stimulus presentation, time and surgical constraints. We describe the use of a modular, inexpensive system that implements a decision-making paradigm, designed to overcome challenges associated with the operative environment. NEW METHOD We have created an auditory, two-alternative forced choice (2AFC) task for intraoperative use. Behavioral responses were acquired using an Arduino based single-hand held joystick controller equipped with a 3-axis accelerometer, and two button presses, capable of sampling at 2 kHz. We include designs for all task relevant code, 3D printed components, and Arduino pin-out diagram. RESULTS We demonstrate feasibility both in and out of the operating room with behavioral results represented by three healthy control subjects and two Parkinson's disease subjects undergoing deep brain stimulator implantation. Psychometric assessment of performance indicated that the subjects could detect, interpret and respond accurately to the task stimuli using the joystick controller. We also demonstrate, using intraoperative neurophysiology recorded during the task, that the behavioral system described here allows us to examine neural correlates of human behavior. COMPARISON WITH EXISTING METHODS For low cost and minimal effort, any clinical neural recording system can be adapted for intraoperative behavioral testing with our experimental setup. CONCLUSION Our system will enable clinicians and basic scientists to conduct intraoperative awake and behaving electrophysiologic studies in humans.
Collapse
Affiliation(s)
- Anand Tekriwal
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA; Medical Scientist Training Program, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Gidon Felsen
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA; Medical Scientist Training Program, USA
| | - John A Thompson
- Medical Scientist Training Program, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
11
|
Leimbach F, Georgiev D, Litvak V, Antoniades C, Limousin P, Jahanshahi M, Bogacz R. Deep Brain Stimulation of the Subthalamic Nucleus Does Not Affect the Decrease of Decision Threshold during the Choice Process When There Is No Conflict, Time Pressure, or Reward. J Cogn Neurosci 2018; 30:876-884. [PMID: 29488846 PMCID: PMC6037388 DOI: 10.1162/jocn_a_01252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
During a decision process, the evidence supporting alternative options is integrated over time, and the choice is made when the accumulated evidence for one of the options reaches a decision threshold. Humans and animals have an ability to control the decision threshold, that is, the amount of evidence that needs to be gathered to commit to a choice, and it has been proposed that the subthalamic nucleus (STN) is important for this control. Recent behavioral and neurophysiological data suggest that, in some circumstances, the decision threshold decreases with time during choice trials, allowing overcoming of indecision during difficult choices. Here we asked whether this within-trial decrease of the decision threshold is mediated by the STN and if it is affected by disrupting information processing in the STN through deep brain stimulation (DBS). We assessed 13 patients with Parkinson disease receiving bilateral STN DBS six or more months after the surgery, 11 age-matched controls, and 12 young healthy controls. All participants completed a series of decision trials, in which the evidence was presented in discrete time points, which allowed more direct estimation of the decision threshold. The participants differed widely in the slope of their decision threshold, ranging from constant threshold within a trial to steeply decreasing. However, the slope of the decision threshold did not depend on whether STN DBS was switched on or off and did not differ between the patients and controls. Furthermore, there was no difference in accuracy and RT between the patients in the on and off stimulation conditions and healthy controls. Previous studies that have reported modulation of the decision threshold by STN DBS or unilateral subthalamotomy in Parkinson disease have involved either fast decision-making under conflict or time pressure or in anticipation of high reward. Our findings suggest that, in the absence of reward, decision conflict, or time pressure for decision-making, the STN does not play a critical role in modulating the within-trial decrease of decision thresholds during the choice process.
Collapse
Affiliation(s)
| | | | | | | | | | - Marjan Jahanshahi
- University College London Institute of Neurology.,University of Electronic Science and Technology of China
| | | |
Collapse
|
12
|
Kojovic M, Higgins A, Jahanshahi M. In Parkinson’s disease STN stimulation enhances responsiveness of movement initiation speed to high reward value. Neuropsychologia 2016; 89:273-280. [DOI: 10.1016/j.neuropsychologia.2016.06.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/15/2016] [Accepted: 06/27/2016] [Indexed: 12/16/2022]
|
13
|
Meissner SN, Südmeyer M, Keitel A, Pollok B, Bellebaum C. Facilitating effects of deep brain stimulation on feedback learning in Parkinson's disease. Behav Brain Res 2016; 313:88-96. [PMID: 27374161 DOI: 10.1016/j.bbr.2016.06.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/24/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) provides an effective treatment for Parkinson's disease (PD) motor symptoms. However, findings of effects on cognitive function such as feedback learning remain controversial and rare. The aim of the present study was to gain a better understanding of cognitive alterations associated with STN-DBS. Therefore, we investigated effects of STN-DBS on active and observational feedback learning in PD. 18 PD patients with STN-DBS and 18 matched healthy controls completed active and observational feedback learning tasks. Patients were investigated ON and OFF STN-DBS. Tasks consisted of learning (with feedback) and test phases (without feedback). STN-DBS improved active learning during feedback trials and PD patients ON (but not OFF) STN-DBS showed comparable performance patterns as healthy controls. No STN-DBS effect was found when assessing performance during active test trials without feedback. In this case, however, STN-DBS effects were found to depend on symptom severity. While more impaired patients benefited from STN-DBS, stimulation had no facilitating effect on patients with less severe symptoms. Along similar lines, the severity of motor symptoms tended to be significantly correlated with differences in active test performance due to STN-DBS. For observational feedback learning, there was a tendency for a positive STN-DBS effect with patients reaching the performance level of healthy controls only ON STN-DBS. The present data suggest that STN-DBS facilitates active feedback learning in PD patients. Furthermore, they provide first evidence that STN-DBS might not only affect learning from own but also from observed actions and outcomes.
Collapse
Affiliation(s)
- Sarah Nadine Meissner
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University, Medical Faculty, Universitaetsstraße 1, 40225 Duesseldorf, Germany.
| | - Martin Südmeyer
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University, Medical Faculty, Universitaetsstraße 1, 40225 Duesseldorf, Germany; Department of Neurology, Heinrich-Heine-University, Medical Faculty, Moorenstraße 5, 40225 Duesseldorf, Germany
| | - Ariane Keitel
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University, Medical Faculty, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| | - Bettina Pollok
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University, Medical Faculty, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| | - Christian Bellebaum
- Institute for Experimental Psychology, Heinrich-Heine-University, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| |
Collapse
|
14
|
Zénon A, Duclos Y, Carron R, Witjas T, Baunez C, Régis J, Azulay JP, Brown P, Eusebio A. The human subthalamic nucleus encodes the subjective value of reward and the cost of effort during decision-making. Brain 2016; 139:1830-43. [PMID: 27190012 DOI: 10.1093/brain/aww075] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 02/24/2016] [Indexed: 01/18/2023] Open
Abstract
Adaptive behaviour entails the capacity to select actions as a function of their energy cost and expected value and the disruption of this faculty is now viewed as a possible cause of the symptoms of Parkinson's disease. Indirect evidence points to the involvement of the subthalamic nucleus-the most common target for deep brain stimulation in Parkinson's disease-in cost-benefit computation. However, this putative function appears at odds with the current view that the subthalamic nucleus is important for adjusting behaviour to conflict. Here we tested these contrasting hypotheses by recording the neuronal activity of the subthalamic nucleus of patients with Parkinson's disease during an effort-based decision task. Local field potentials were recorded from the subthalamic nucleus of 12 patients with advanced Parkinson's disease (mean age 63.8 years ± 6.8; mean disease duration 9.4 years ± 2.5) both OFF and ON levodopa while they had to decide whether to engage in an effort task based on the level of effort required and the value of the reward promised in return. The data were analysed using generalized linear mixed models and cluster-based permutation methods. Behaviourally, the probability of trial acceptance increased with the reward value and decreased with the required effort level. Dopamine replacement therapy increased the rate of acceptance for efforts associated with low rewards. When recording the subthalamic nucleus activity, we found a clear neural response to both reward and effort cues in the 1-10 Hz range. In addition these responses were informative of the subjective value of reward and level of effort rather than their actual quantities, such that they were predictive of the participant's decisions. OFF levodopa, this link with acceptance was weakened. Finally, we found that these responses did not index conflict, as they did not vary as a function of the distance from indifference in the acceptance decision. These findings show that low-frequency neuronal activity in the subthalamic nucleus may encode the information required to make cost-benefit comparisons, rather than signal conflict. The link between these neural responses and behaviour was stronger under dopamine replacement therapy. Our findings are consistent with the view that Parkinson's disease symptoms may be caused by a disruption of the processes involved in balancing the value of actions with their associated effort cost.
Collapse
Affiliation(s)
- Alexandre Zénon
- 1 Institute of Neurosciences, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Yann Duclos
- 2 Institut de Neurosciences de La Timone UMR 7289, Aix Marseille Université, CNRS, 13385, Marseille, France
| | - Romain Carron
- 3 APHM, CHU Timone, Department of Functional and Stereotactic Neurosurgery, 13385, Marseille, France
| | - Tatiana Witjas
- 2 Institut de Neurosciences de La Timone UMR 7289, Aix Marseille Université, CNRS, 13385, Marseille, France 4 APHM, CHU Timone, Department of Neurology and Movement Disorders, 13385, Marseille, France
| | - Christelle Baunez
- 2 Institut de Neurosciences de La Timone UMR 7289, Aix Marseille Université, CNRS, 13385, Marseille, France
| | - Jean Régis
- 3 APHM, CHU Timone, Department of Functional and Stereotactic Neurosurgery, 13385, Marseille, France
| | - Jean-Philippe Azulay
- 2 Institut de Neurosciences de La Timone UMR 7289, Aix Marseille Université, CNRS, 13385, Marseille, France 4 APHM, CHU Timone, Department of Neurology and Movement Disorders, 13385, Marseille, France
| | - Peter Brown
- 5 Medical Research Council Brain Network Dynamics Unit and Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Alexandre Eusebio
- 2 Institut de Neurosciences de La Timone UMR 7289, Aix Marseille Université, CNRS, 13385, Marseille, France 4 APHM, CHU Timone, Department of Neurology and Movement Disorders, 13385, Marseille, France
| |
Collapse
|
15
|
Wichmann T, DeLong MR. Deep Brain Stimulation for Movement Disorders of Basal Ganglia Origin: Restoring Function or Functionality? Neurotherapeutics 2016; 13:264-83. [PMID: 26956115 PMCID: PMC4824026 DOI: 10.1007/s13311-016-0426-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Deep brain stimulation (DBS) is highly effective for both hypo- and hyperkinetic movement disorders of basal ganglia origin. The clinical use of DBS is, in part, empiric, based on the experience with prior surgical ablative therapies for these disorders, and, in part, driven by scientific discoveries made decades ago. In this review, we consider anatomical and functional concepts of the basal ganglia relevant to our understanding of DBS mechanisms, as well as our current understanding of the pathophysiology of two of the most commonly DBS-treated conditions, Parkinson's disease and dystonia. Finally, we discuss the proposed mechanism(s) of action of DBS in restoring function in patients with movement disorders. The signs and symptoms of the various disorders appear to result from signature disordered activity in the basal ganglia output, which disrupts the activity in thalamocortical and brainstem networks. The available evidence suggests that the effects of DBS are strongly dependent on targeting sensorimotor portions of specific nodes of the basal ganglia-thalamocortical motor circuit, that is, the subthalamic nucleus and the internal segment of the globus pallidus. There is little evidence to suggest that DBS in patients with movement disorders restores normal basal ganglia functions (e.g., their role in movement or reinforcement learning). Instead, it appears that high-frequency DBS replaces the abnormal basal ganglia output with a more tolerable pattern, which helps to restore the functionality of downstream networks.
Collapse
Affiliation(s)
- Thomas Wichmann
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
| | - Mahlon R DeLong
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
16
|
Seinstra M, Wojtecki L, Storzer L, Schnitzler A, Kalenscher T. No Effect of Subthalamic Deep Brain Stimulation on Intertemporal Decision-Making in Parkinson Patients. eNeuro 2016; 3:ENEURO.0019-16.2016. [PMID: 27257622 PMCID: PMC4876489 DOI: 10.1523/eneuro.0019-16.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/04/2016] [Accepted: 04/07/2016] [Indexed: 01/20/2023] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a widely used treatment for the motor symptoms of Parkinson's disease (PD). DBS or pharmacological treatment is believed to modulate the tendency to, or reverse, impulse control disorders. Several brain areas involved in impulsivity and reward valuation, such as the prefrontal cortex and striatum, are linked to the STN, and activity in these areas might be affected by STN-DBS. To investigate the effect of STN-DBS on one type of impulsive decision-making--delay discounting (i.e., the devaluation of reward with increasing delay until its receipt)--we tested 40 human PD patients receiving STN-DBS treatment and medication for at least 3 months. Patients were pseudo-randomly assigned to one of four groups to test the effects of DBS on/off states as well as medication on/off states on delay discounting. The delay-discounting task consisted of a series of choices among a smaller. sooner or a larger, later monetary reward. Despite considerable effects of DBS on motor performance, patients receiving STN-DBS did not choose more or less impulsively compared with those in the off-DBS group, as well as when controlling for risk attitude. Although null results have to be interpreted with caution, our findings are of significance to other researchers studying the effects of PD treatment on impulsive decision-making, and they are of clinical relevance for determining the therapeutic benefits of using STN-DBS.
Collapse
Affiliation(s)
- Maayke Seinstra
- Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Lars Wojtecki
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Lena Storzer
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Tobias Kalenscher
- Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
17
|
Buhmann C, Gerloff C. Could deep brain stimulation help with driving for patients with Parkinson's? Expert Rev Med Devices 2014; 11:427-9. [PMID: 24930934 DOI: 10.1586/17434440.2014.929495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
For mobility impaired people with Parkinson's disease (PD), driving a car is important to maintain independency. But driving ability is getting worse with disease progression. Meanwhile surgical treatment with deep brain stimulation (DBS) of the subthalamic nucleus is done routinely in advanced PD, but it is unknown how DBS might affect driving. In a driving simulator setting, we found PD patients undergone DBS surgery to drive safer than even less clinically affected PD patients treated with medication alone. Furthermore, patients with DBS surgery drove better under stimulation than under medication. In conclusion, DBS of the subthalamic nucleus appears to be beneficial for driving in PD patients, potentially due to non-motor effects on controlling the vehicle in the simulator setting. Nevertheless, results of this first pilot study on driving in PD patients with DBS should not encourage patients or physicians to consider DBS only to improve or regain driving competence.
Collapse
Affiliation(s)
- Carsten Buhmann
- Department of Neurology, University Medical Center, Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | | |
Collapse
|
18
|
Jahanshahi M. Effects of deep brain stimulation of the subthalamic nucleus on inhibitory and executive control over prepotent responses in Parkinson's disease. Front Syst Neurosci 2013; 7:118. [PMID: 24399941 PMCID: PMC3872293 DOI: 10.3389/fnsys.2013.00118] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/06/2013] [Indexed: 12/19/2022] Open
Abstract
Inhibition of inappropriate, habitual or prepotent responses is an essential component of executive control and a cornerstone of self-control. Via the hyperdirect pathway, the subthalamic nucleus (STN) receives inputs from frontal areas involved in inhibition and executive control. Evidence is reviewed from our own work and the literature suggesting that in Parkinson's disease (PD), deep brain stimulation (DBS) of the STN has an impact on executive control during attention-demanding tasks or in situations of conflict when habitual or prepotent responses have to be inhibited. These results support a role for the STN in an inter-related set of processes: switching from automatic to controlled processing, inhibitory and executive control, adjusting response thresholds and influencing speed-accuracy trade-offs. Such STN DBS-induced deficits in inhibitory and executive control may contribute to some of the psychiatric problems experienced by a proportion of operated cases after STN DBS surgery in PD. However, as no direct evidence for such a link is currently available, there is a need to provide direct evidence for such a link between STN DBS-induced deficits in inhibitory and executive control and post-surgical psychiatric complications experienced by operated patients.
Collapse
Affiliation(s)
- Marjan Jahanshahi
- Cognitive Motor Neuroscience Group and Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, The National Hospital for Neurology and Neurosurgery London, UK
| |
Collapse
|
19
|
Mulder MJ, Boekel W, Ratcliff R, Forstmann BU. Cortico-subthalamic connection predicts individual differences in value-driven choice bias. Brain Struct Funct 2013; 219:1239-49. [PMID: 23625153 PMCID: PMC4072059 DOI: 10.1007/s00429-013-0561-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/19/2013] [Indexed: 11/25/2022]
Abstract
It has been suggested that a connection between the STN and value-sensitive areas of the prefrontal cortex might mediate value-based actions in perceptual decision making. In this study, we first seek to quantify a structural connection between the STN and a cortical region that was associated with mechanisms underlying bias in choice behavior (vmPFC). Next, we tested whether individual differences in the probabilistic tract-strength of this connection were predictive for individual differences in the magnitude of bias in a perceptual decision-making task. Probabilistic tractography was used to measure the tract-strength between the STN and the vmPFC. Bias was quantified using an accumulation-to-bound model where a shift in the starting point of the accumulation of sensory evidence causes faster and more choices for an alternative that is more likely or more valuable. Results show that vmPFC is structurally connected with the STN and that the strength of this connection is predictive for choice bias towards an alternative that is more valuable, but not for choice bias towards an alternative that is more likely. These findings confirm the involvement of the cortico-subthalamic circuit in mechanisms underlying value-based actions in perceptual decision making.
Collapse
Affiliation(s)
- Martijn J Mulder
- Cognitive Science Center Amsterdam, University of Amsterdam, Nieuwe Achtergracht 129, 1018, TV, Amsterdam, The Netherlands,
| | | | | | | |
Collapse
|
20
|
Palminteri S, Serra G, Buot A, Schmidt L, Welter ML, Pessiglione M. Hemispheric dissociation of reward processing in humans: insights from deep brain stimulation. Cortex 2013; 49:2834-44. [PMID: 23643244 DOI: 10.1016/j.cortex.2013.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 01/10/2013] [Accepted: 02/05/2013] [Indexed: 11/28/2022]
Abstract
Rewards have various effects on human behavior and multiple representations in the human brain. Behaviorally, rewards notably enhance response vigor in incentive motivation paradigms and bias subsequent choices in instrumental learning paradigms. Neurally, rewards affect activity in different fronto-striatal regions attached to different motor effectors, for instance in left and right hemispheres for the two hands. Here we address the question of whether manipulating reward-related brain activity has local or general effects, with respect to behavioral paradigms and motor effectors. Neuronal activity was manipulated in a single hemisphere using unilateral deep brain stimulation (DBS) in patients with Parkinson's disease. Results suggest that DBS amplifies the representation of reward magnitude within the targeted hemisphere, so as to affect the behavior of the contralateral hand specifically. These unilateral DBS effects on behavior include both boosting incentive motivation and biasing instrumental choices. Furthermore, using computational modeling we show that DBS effects on incentive motivation can predict DBS effects on instrumental learning (or vice versa). Thus, we demonstrate the feasibility of causally manipulating reward-related neuronal activity in humans, in a manner that is specific to a class of motor effectors but that generalizes to different computational processes. As these findings proved independent from therapeutic effects on parkinsonian motor symptoms, they might provide insight into DBS impact on non-motor disorders, such as apathy or hypomania.
Collapse
Affiliation(s)
- Stefano Palminteri
- Motivation, Brain and Behavior (MBB) Team, Institut du Cerveau et de la Moelle Epinière (ICM), Hôpital de la Pitié-Salpêtrière, Paris, France; Inserm UMR 975, CNRS UMR 7225, Université Pierre et Marie Curie (UPMC - Paris 6), Hôpital de la Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | |
Collapse
|
21
|
Volkow ND, Wang GJ, Tomasi D, Baler RD. Unbalanced neuronal circuits in addiction. Curr Opin Neurobiol 2013; 23:639-48. [PMID: 23434063 DOI: 10.1016/j.conb.2013.01.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/21/2012] [Accepted: 01/06/2013] [Indexed: 01/29/2023]
Abstract
Through sequential waves of drug-induced neurochemical stimulation, addiction co-opts the brain's neuronal circuits that mediate reward, motivation to behavioral inflexibility and a severe disruption of self-control and compulsive drug intake. Brain imaging technologies have allowed neuroscientists to map out the neural landscape of addiction in the human brain and to understand how drugs modify it.
Collapse
Affiliation(s)
- Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, United States.
| | | | | | | |
Collapse
|
22
|
Djamshidian A, O’Sullivan SS, Foltynie T, Aviles-Olmos I, Limousin P, Noyce A, Zrinzo L, Lees AJ, Averbeck BB. Dopamine agonists rather than deep brain stimulation cause reflection impulsivity in Parkinson's disease. JOURNAL OF PARKINSON'S DISEASE 2013; 3:139-44. [PMID: 23938343 PMCID: PMC4205962 DOI: 10.3233/jpd-130178] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Dopamine agonist therapy is the main risk factor for impulse control disorders in Parkinson's disease (PD). However, it is unclear whether bilateral deep brain stimulation of the subthalamic nucleus also causes impairment in decision making. OBJECTIVES To assess the role of dopamine agonist therapy and deep brain stimulation on reflection impulsivity in non-demented patients with PD. METHODS We recruited 61 PD patients, 20 treated with L-dopa in combination with a dopamine agonist, 14 taking L-dopa monotherapy, a further 16 PD patients with bilateral subthalamic nucleus deep brain stimulation treated with L-dopa in combination with a dopamine agonist, and 11 PD patients with bilateral subthalamic nucleus deep brain stimulation taking L-dopa but not a dopamine agonist. Results were compared with 18 healthy controls. Patients who had evidence of impulsive compulsive behaviour were excluded. Reflection impulsivity was assessed with the beads task, which is a validated information sampling task. RESULTS All patients treated with a dopamine agonist gathered significantly less information and made more irrational decisions than all other groups regardless of whether they had surgical treatment. CONCLUSIONS Our results imply that dopamine agonist therapy but not deep brain stimulation leads to "reflection impulsivity" in PD.
Collapse
Affiliation(s)
- Atbin Djamshidian
- Department of Molecular Neuroscience and Reta Lila Weston Institute for Neurological Studies, University of London, London, United Kingdom
| | - Sean S. O’Sullivan
- Department of Molecular Neuroscience and Reta Lila Weston Institute for Neurological Studies, University of London, London, United Kingdom
| | - Thomas Foltynie
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
| | - Iciar Aviles-Olmos
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
| | - Patricia Limousin
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
| | - Alastair Noyce
- Department of Molecular Neuroscience and Reta Lila Weston Institute for Neurological Studies, University of London, London, United Kingdom
| | - Ludvic Zrinzo
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
| | - Andrew J. Lees
- Department of Molecular Neuroscience and Reta Lila Weston Institute for Neurological Studies, University of London, London, United Kingdom
| | - Bruno B. Averbeck
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda MD, 20892-4415, USA
| |
Collapse
|
23
|
Ridderinkhof KR, van Wouwe NC, Band GPH, Wylie SA, Van der Stigchel S, van Hees P, Buitenweg J, van de Vijver I, van den Wildenberg WPM. A tribute to charlie chaplin: induced positive affect improves reward-based decision-learning in Parkinson's disease. Front Psychol 2012; 3:185. [PMID: 22707944 PMCID: PMC3374413 DOI: 10.3389/fpsyg.2012.00185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 05/21/2012] [Indexed: 11/13/2022] Open
Abstract
Reward-based decision-learning refers to the process of learning to select those actions that lead to rewards while avoiding actions that lead to punishments. This process, known to rely on dopaminergic activity in striatal brain regions, is compromised in Parkinson’s disease (PD). We hypothesized that such decision-learning deficits are alleviated by induced positive affect, which is thought to incur transient boosts in midbrain and striatal dopaminergic activity. Computational measures of probabilistic reward-based decision-learning were determined for 51 patients diagnosed with PD. Previous work has shown these measures to rely on the nucleus caudatus (outcome evaluation during the early phases of learning) and the putamen (reward prediction during later phases of learning). We observed that induced positive affect facilitated learning, through its effects on reward prediction rather than outcome evaluation. Viewing a few minutes of comedy clips served to remedy dopamine-related problems associated with frontostriatal circuitry and, consequently, learning to predict which actions will yield reward.
Collapse
Affiliation(s)
- K Richard Ridderinkhof
- Department of Psychology, Amsterdam center for the study of adaptive control in brain and behavior (Acacia), University of Amsterdam Amsterdam, Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rosa M, Giannicola G, Marceglia S, Fumagalli M, Barbieri S, Priori A. Neurophysiology of Deep Brain Stimulation. EMERGING HORIZONS IN NEUROMODULATION - NEW FRONTIERS IN BRAIN AND SPINE STIMULATION 2012. [DOI: 10.1016/b978-0-12-404706-8.00004-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|