1
|
Carlson BM, Mitchell BA, Dougherty K, Westerberg JA, Cox MA, Maier A. Does V1 response suppression initiate binocular rivalry? iScience 2023; 26:107359. [PMID: 37520732 PMCID: PMC10382945 DOI: 10.1016/j.isci.2023.107359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/02/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
During binocular rivalry (BR) only one eye's view is perceived. Neural underpinnings of BR are debated. Recent studies suggest that primary visual cortex (V1) initiates BR. One trigger might be response suppression across most V1 neurons at the onset of BR. Here, we utilize a variant of BR called binocular rivalry flash suppression (BRFS) to test this hypothesis. BRFS is identical to BR, except stimuli are shown with a ∼1s delay. If V1 response suppression was required to initiate BR, it should occur during BRFS as well. To test this, we compared V1 spiking in two macaques observing BRFS. We found that BRFS resulted in response facilitation rather than response suppression across V1 neurons. However, BRFS still reduces responses in a subset of V1 neurons due to the adaptive effects of asynchronous stimulus presentation. We argue that this selective response suppression could serve as an alternate initiator of BR.
Collapse
Affiliation(s)
- Brock M. Carlson
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Nashville, TN 37235, USA
| | - Blake A. Mitchell
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Nashville, TN 37235, USA
| | - Kacie Dougherty
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Nashville, TN 37235, USA
- Department of Psychology, Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Jacob A. Westerberg
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Nashville, TN 37235, USA
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, the Netherlands
| | - Michele A. Cox
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Nashville, TN 37235, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Alexander Maier
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
2
|
Dwarakanath A, Kapoor V, Werner J, Safavi S, Fedorov LA, Logothetis NK, Panagiotaropoulos TI. Bistability of prefrontal states gates access to consciousness. Neuron 2023; 111:1666-1683.e4. [PMID: 36921603 DOI: 10.1016/j.neuron.2023.02.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/24/2022] [Accepted: 02/16/2023] [Indexed: 03/15/2023]
Abstract
Access of sensory information to consciousness has been linked to the ignition of content-specific representations in association cortices. How does ignition interact with intrinsic cortical state fluctuations to give rise to conscious perception? We addressed this question in the prefrontal cortex (PFC) by combining multi-electrode recordings with a binocular rivalry (BR) paradigm inducing spontaneously driven changes in the content of consciousness, inferred from the reflexive optokinetic nystagmus (OKN) pattern. We find that fluctuations between low-frequency (LF, 1-9 Hz) and beta (∼20-40 Hz) local field potentials (LFPs) reflect competition between spontaneous updates and stability of conscious contents, respectively. Both LF and beta events were locally modulated. The phase of the former locked differentially to the competing populations just before a spontaneous transition while the latter synchronized the neuronal ensemble coding the consciously perceived content. These results suggest that prefrontal state fluctuations gate conscious perception by mediating internal states that facilitate perceptual update and stability.
Collapse
Affiliation(s)
- Abhilash Dwarakanath
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany; Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Energie Atomique et aux énergies alternatives, Université Paris-Saclay, NeuroSpin Center, 91191 Gif-sur-Yvette, France.
| | - Vishal Kapoor
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany; International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China
| | - Joachim Werner
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
| | - Shervin Safavi
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany; International Max Planck Research School, Tübingen 72076, Germany
| | - Leonid A Fedorov
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
| | - Nikos K Logothetis
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany; Division of Imaging Science and Biomedical Engineering, University of Manchester, Manchester M13 9PT, UK; International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China
| | - Theofanis I Panagiotaropoulos
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany; Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Energie Atomique et aux énergies alternatives, Université Paris-Saclay, NeuroSpin Center, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
3
|
Conscious interpretation: A distinct aspect for the neural markers of the contents of consciousness. Conscious Cogn 2023; 108:103471. [PMID: 36736210 DOI: 10.1016/j.concog.2023.103471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023]
Abstract
Progress in the science of consciousness depends on the experimental paradigms and varieties of contrastive analysis available to researchers. Here we highlight paradigms where the object is represented in consciousness as a set of its features but the interpretation of this set alternates in consciousness. We group experimental paradigms with this property under the label "conscious interpretation". We compare the paradigms studying conscious interpretation of the already consciously perceived objects with other types of experimental paradigms. We review previous and recent studies investigating this interpretative aspect of consciousness and propose future directions. We put forward the hypothesis that there are types of stimuli with a hierarchy of interpretations for which the rule applies: conscious experience is drawn towards higher-level interpretation and reverting back to the lower level of interpretation is impossible. We discuss how theories of consciousness might incorporate knowledge and constraints arising from the characteristics of conscious interpretation.
Collapse
|
4
|
Enriched category as a model of qualia structure based on similarity judgements. Conscious Cogn 2022; 101:103319. [DOI: 10.1016/j.concog.2022.103319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/11/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022]
|
5
|
Blake R. The Perceptual Magic of Binocular Rivalry. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2022. [DOI: 10.1177/09637214211057564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Binocular rivalry (BR) refers to the spontaneous, unpredictable fluctuations in visual awareness provoked by dissimilar stimulation of the two eyes. Reports of the phenomenon date back several centuries, but interest in BR has exploded in recent years as researchers in diverse disciplines—psychology, neuroscience, medicine, philosophy—have found reasons to study it. New ideas about BR have emerged, sparking controversies about its neural bases, which may be resolved thanks to new methodological developments. This essay provides a synopsis of some key empirically determined aspects of BR as well as an overview of theoretical developments in this field. Work published during the past decade or so is emphasized (and explicitly referenced); earlier key findings are mentioned and referenced in the annotated bibliography included in the Supplemental Material.
Collapse
|
6
|
Abstract
Most animals have at least some binocular overlap, i.e., a region of space that is viewed by both eyes. This reduces the overall visual field and raises the problem of combining two views of the world, seen from different vantage points, into a coherent whole. However, binocular vision also offers many potential advantages, including increased ability to see around obstacles and increased contrast sensitivity. One particularly interesting use for binocular vision is comparing information from both eyes to derive information about depth. There are many different ways in which this might be done, but in this review, I refer to them all under the general heading of stereopsis. This review examines the different possible uses of binocular vision and stereopsis and compares what is currently known about the neural basis of stereopsis in different taxa. Studying different animals helps us break free of preconceptions stemming from the way that stereopsis operates in human vision and provides new insights into the different possible forms of stereopsis. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jenny C A Read
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom;
| |
Collapse
|
7
|
Quettier T, Gambarota F, Tsuchiya N, Sessa P. Blocking facial mimicry during binocular rivalry modulates visual awareness of faces with a neutral expression. Sci Rep 2021; 11:9972. [PMID: 33976281 PMCID: PMC8113223 DOI: 10.1038/s41598-021-89355-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/21/2021] [Indexed: 01/09/2023] Open
Abstract
Several previous studies have interfered with the observer’s facial mimicry during a variety of facial expression recognition tasks providing evidence in favor of the role of facial mimicry and sensorimotor activity in emotion processing. In this theoretical context, a particularly intriguing facet has been neglected, namely whether blocking facial mimicry modulates conscious perception of facial expressions of emotions. To address this issue, we used a binocular rivalry paradigm, in which two dissimilar stimuli presented to the two eyes alternatingly dominate conscious perception. On each trial, female participants (N = 32) were exposed to a rivalrous pair of a neutral and a happy expression of the same individual through anaglyph glasses in two conditions: in one, they could freely use their facial mimicry, in the other they had to keep a chopstick between their lips, constraining the mobility of the zygomatic muscle and producing ‘noise’ for sensorimotor simulation. We found that blocking facial mimicry affected the perceptual dominance in terms of cumulative time favoring neutral faces, but it did not change the time before the first dominance was established. Taken together, our results open a door to future investigation of the intersection between sensorimotor simulation models and conscious perception of emotional facial expressions.
Collapse
Affiliation(s)
- Thomas Quettier
- Department of Developmental and Social Psychology, University of Padua, Via Venezia 8, 35121, Padua, Italy
| | - Filippo Gambarota
- Department of Developmental and Social Psychology, University of Padua, Via Venezia 8, 35121, Padua, Italy
| | - Naotsugu Tsuchiya
- School of Psychological Sciences, Monash University, Clayton, Australia
| | - Paola Sessa
- Department of Developmental and Social Psychology, University of Padua, Via Venezia 8, 35121, Padua, Italy. .,Padova Neuroscience Center (PNC), University of Padua, Padua, Italy.
| |
Collapse
|
8
|
Maier A, Tsuchiya N. Growing evidence for separate neural mechanisms for attention and consciousness. Atten Percept Psychophys 2021; 83:558-576. [PMID: 33034851 PMCID: PMC7886945 DOI: 10.3758/s13414-020-02146-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 11/08/2022]
Abstract
Our conscious experience of the world seems to go in lockstep with our attentional focus: We tend to see, hear, taste, and feel what we attend to, and vice versa. This tight coupling between attention and consciousness has given rise to the idea that these two phenomena are indivisible. In the late 1950s, the honoree of this special issue, Charles Eriksen, was among a small group of early pioneers that sought to investigate whether a transient increase in overall level of attention (alertness) in response to a noxious stimulus can be decoupled from conscious perception using experimental techniques. Recent years saw a similar debate regarding whether attention and consciousness are two dissociable processes. Initial evidence that attention and consciousness are two separate processes primarily rested on behavioral data. However, the past couple of years witnessed an explosion of studies aimed at testing this conjecture using neuroscientific techniques. Here we provide an overview of these and related empirical studies on the distinction between the neuronal correlates of attention and consciousness, and detail how advancements in theory and technology can bring about a more detailed understanding of the two. We argue that the most promising approach will combine ever-evolving neurophysiological and interventionist tools with quantitative, empirically testable theories of consciousness that are grounded in a mathematically formalized understanding of phenomenology.
Collapse
Affiliation(s)
- Alexander Maier
- Department of Psychology, Vanderbilt University, Nashville, TN, USA.
| | - Naotsugu Tsuchiya
- Turner Institute for Brain and Mental Health & School of Psychological Sciences, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, VIC, Australia
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka, 565-0871, Japan
- Advanced Telecommunications Research Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan
| |
Collapse
|
9
|
Davidson MJ, Mithen W, Hogendoorn H, van Boxtel JJA, Tsuchiya N. The SSVEP tracks attention, not consciousness, during perceptual filling-in. eLife 2020; 9:e60031. [PMID: 33170121 PMCID: PMC7682990 DOI: 10.7554/elife.60031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Research on the neural basis of conscious perception has almost exclusively shown that becoming aware of a stimulus leads to increased neural responses. By designing a novel form of perceptual filling-in (PFI) overlaid with a dynamic texture display, we frequency-tagged multiple disappearing targets as well as their surroundings. We show that in a PFI paradigm, the disappearance of a stimulus and subjective invisibility is associated with increases in neural activity, as measured with steady-state visually evoked potentials (SSVEPs), in electroencephalography (EEG). We also find that this increase correlates with alpha-band activity, a well-established neural measure of attention. These findings cast doubt on the direct relationship previously reported between the strength of neural activity and conscious perception, at least when measured with current tools, such as the SSVEP. Instead, we conclude that SSVEP strength more closely measures changes in attention.
Collapse
Affiliation(s)
- Matthew J Davidson
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Science, Monash UniversityMelbourneAustralia
- Department of Experimental Psychology, Faculty of Medicine, University of OxfordOxfordUnited Kingdom
| | - Will Mithen
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Science, Monash UniversityMelbourneAustralia
| | - Hinze Hogendoorn
- Melbourne School of Psychological Sciences, University of MelbourneMelbourneAustralia
| | - Jeroen JA van Boxtel
- Discipline of Psychology, Faculty of Health, University of CanberraCanberraAustralia
| | - Naotsugu Tsuchiya
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Science, Monash UniversityMelbourneAustralia
- Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Science, Monash UniversityMelbourneAustralia
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT)SuitaJapan
- Advanced Telecommunications Research Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gunKyotoJapan
| |
Collapse
|
10
|
Abstract
We showcase an optical phenomenon that we call Third-Eye Rivalry. The effect is most easily induced by viewing one's own reflection in a mirror. Using the pupil of the opposing eye as a fixation target, people can easily cross their eyes in free fusion to experience vivid rivalry. The resulting percept is of a prominent central "third" eye and two peripheral faces rivaling for perceptual dominance. We illustrate the process of achieving third-eye rivalry and discuss historical connotations of the third eye in scientific and mystical contexts.
Collapse
Affiliation(s)
- Regan M. Gallagher
- School of Psychological Science, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| |
Collapse
|
11
|
Kornmeier J, Friedel E, Hecker L, Schmidt S, Wittmann M. What happens in the brain of meditators when perception changes but not the stimulus? PLoS One 2019; 14:e0223843. [PMID: 31647833 PMCID: PMC6812751 DOI: 10.1371/journal.pone.0223843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/30/2019] [Indexed: 11/30/2022] Open
Abstract
During the observation of an ambiguous figure our perception alternates between mutually exclusive interpretations, although the stimulus itself remains unchanged. The rate of these endogenous reversals has been discussed as reflecting basic aspects of endogenous brain dynamics. Recent evidence indicates that extensive meditation practice evokes long-term functional and anatomic changes in the brain, also affecting the endogenous brain dynamics. As one of several consequences the rate of perceptual reversals during ambiguous figure perception decreases. In the present study we compared EEG-correlates of endogenous reversals of ambiguous figures between meditators and non-meditating controls in order to better understand timing and brain locations of this altered endogenous brain dynamics. A well-established EEG paradigm was used to measure the neural processes underlying endogenous perceptual reversals of ambiguous figures with high temporal precision. We compared reversal-related ERPs between experienced meditators and non-meditating controls. For both groups we found highly similar chains of reversal-related ERPs, starting early in visual areas, therewith replicating previous findings from the literature. Meditators, however, showed an additional frontal ERP signature already 160 ms after stimulus onset (Frontal Negativity). We interpret the additional, meditation-specific ERP results as evidence that extensive meditation practice provides control of frontal brain areas over early sensory processing steps. This may allow meditators to overcome phylogenetically evolved perceptual and attentional processing automatisms.
Collapse
Affiliation(s)
- Jürgen Kornmeier
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Evelyn. Friedel
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Hecker
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Eye Center, Medical Center, University of Freiburg, Freiburg, Germany
| | - Stefan Schmidt
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center, University of Freiburg, Freiburg, Germany
| | - Marc Wittmann
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
| |
Collapse
|
12
|
Cox MA, Dougherty K, Westerberg JA, Schall MS, Maier A. Temporal dynamics of binocular integration in primary visual cortex. J Vis 2019; 19:13. [PMID: 31622471 PMCID: PMC6797477 DOI: 10.1167/19.12.13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Whenever we open our eyes, our brain quickly integrates the two eyes' perspectives into a combined view. This process of binocular integration happens so rapidly that even incompatible stimuli are briefly fused before one eye's view is suppressed in favor of the other (binocular rivalry). The neuronal basis for this brief period of fusion during incompatible binocular stimulation is unclear. Neuroanatomically, the eyes provide two largely separate streams of information that are integrated into a binocular response by the primary visual cortex (V1). However, the temporal dynamics underlying the formation of this binocular response are largely unknown. To address this question, we examined the temporal profile of binocular responses in V1 of fixating monkeys. We found that V1 processes binocular stimuli in a dynamic sequence that comprises at least two distinct temporal phases. An initial transient phase is characterized by enhanced spiking responses for both compatible and incompatible binocular stimuli compared to monocular stimulation. This transient is followed by a sustained response that differed markedly between congruent and incongruent binocular stimulation. Specifically, incompatible binocular stimulation resulted in overall response reduction relative to monocular stimulation (binocular suppression). In contrast, responses to compatible stimuli were either suppressed or enhanced (binocular facilitation) depending on the neurons' ocularity (selectivity for one eye over the other) and laminar location. These results suggest that binocular integration in V1 occurs in at least two sequential steps that comprise initial additive combination of the two eyes' signals followed by widespread differentiation between binocular concordance and discordance.
Collapse
Affiliation(s)
- Michele A Cox
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Cognitive and Integrative Neuroscience, Vanderbilt University, Nashville, TN, USA
| | - Kacie Dougherty
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Cognitive and Integrative Neuroscience, Vanderbilt University, Nashville, TN, USA
| | - Jacob A Westerberg
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Cognitive and Integrative Neuroscience, Vanderbilt University, Nashville, TN, USA
| | - Michelle S Schall
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Cognitive and Integrative Neuroscience, Vanderbilt University, Nashville, TN, USA
| | - Alexander Maier
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Cognitive and Integrative Neuroscience, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
13
|
Davidson MJ, Alais D, van Boxtel JJA, Tsuchiya N. Attention periodically samples competing stimuli during binocular rivalry. eLife 2018; 7:e40868. [PMID: 30507378 PMCID: PMC6298779 DOI: 10.7554/elife.40868] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022] Open
Abstract
The attentional sampling hypothesis suggests that attention rhythmically enhances sensory processing when attending to a single (~8 Hz), or multiple (~4 Hz) objects. Here, we investigated whether attention samples sensory representations that are not part of the conscious percept during binocular rivalry. When crossmodally cued toward a conscious image, subsequent changes in consciousness occurred at ~8 Hz, consistent with the rates of undivided attentional sampling. However, when attention was cued toward the suppressed image, changes in consciousness slowed to ~3.5 Hz, indicating the division of attention away from the conscious visual image. In the electroencephalogram, we found that at attentional sampling frequencies, the strength of inter-trial phase-coherence over fronto-temporal and parieto-occipital regions correlated with changes in perception. When cues were not task-relevant, these effects disappeared, confirming that perceptual changes were dependent upon the allocation of attention, and that attention can flexibly sample away from a conscious image in a task-dependent manner.
Collapse
Affiliation(s)
- Matthew J Davidson
- School of Psychological Sciences, Faculty of Medicine, Nursing, and Health SciencesMonash UniversityMelbourneAustralia
- Monash Institute of Cognitive and Clinical NeurosciencesMonash UniversityMelbourneAustralia
| | - David Alais
- School of PsychologyThe University of SydneyCamperdownAustralia
| | - Jeroen JA van Boxtel
- School of Psychological Sciences, Faculty of Medicine, Nursing, and Health SciencesMonash UniversityMelbourneAustralia
- Monash Institute of Cognitive and Clinical NeurosciencesMonash UniversityMelbourneAustralia
- School of Psychology, Faculty of HealthUniversity of CanberraCanberraAustralia
| | - Naotsugu Tsuchiya
- School of Psychological Sciences, Faculty of Medicine, Nursing, and Health SciencesMonash UniversityMelbourneAustralia
- Monash Institute of Cognitive and Clinical NeurosciencesMonash UniversityMelbourneAustralia
| |
Collapse
|
14
|
Dougherty K, Schmid MC, Maier A. Binocular response modulation in the lateral geniculate nucleus. J Comp Neurol 2018; 527:522-534. [PMID: 29473163 DOI: 10.1002/cne.24417] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/17/2018] [Accepted: 02/06/2018] [Indexed: 12/30/2022]
Abstract
The dorsal lateral geniculate nucleus of the thalamus (LGN) receives the main outputs of both eyes and relays those signals to the visual cortex. Each retina projects to separate layers of the LGN so that each LGN neuron is innervated by a single eye. In line with this anatomical separation, visual responses of almost all of LGN neurons are driven by one eye only. Nonetheless, many LGN neurons are sensitive to what is shown to the other eye as their visual responses differ when both eyes are stimulated compared to when the driving eye is stimulated in isolation. This, predominantly suppressive, binocular modulation of LGN responses might suggest that the LGN is the first location in the primary visual pathway where the outputs from the two eyes interact. Indeed, the LGN features several anatomical structures that would allow for LGN neurons responding to one eye to modulate neurons that respond to the other eye. However, it is also possible that binocular response modulation in the LGN arises indirectly as the LGN also receives input from binocular visual structures. Here we review the extant literature on the effects of binocular stimulation on LGN spiking responses, highlighting findings from cats and primates, and evaluate the neural circuits that might mediate binocular response modulation in the LGN.
Collapse
Affiliation(s)
- Kacie Dougherty
- Department of Psychology, Center for Cognitive and Integrative Neuroscience, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, Tennessee 37203
| | - Michael C Schmid
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Alexander Maier
- Department of Psychology, Center for Cognitive and Integrative Neuroscience, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, Tennessee 37203
| |
Collapse
|
15
|
Fujiwara M, Ding C, Kaunitz L, Stout JC, Thyagarajan D, Tsuchiya N. Optokinetic nystagmus reflects perceptual directions in the onset binocular rivalry in Parkinson's disease. PLoS One 2017; 12:e0173707. [PMID: 28288201 PMCID: PMC5348009 DOI: 10.1371/journal.pone.0173707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/24/2017] [Indexed: 11/20/2022] Open
Abstract
Optokinetic nystagmus (OKN), the reflexive eye movements evoked by a moving field, has recently gained interest among researchers as a useful tool to assess conscious perception. When conscious perception and stimulus are dissociated, such as in binocular rivalry-when dissimilar images are simultaneously presented to each eye and perception alternates between the two images over time-OKN correlates with perception rather than with the physical direction of the moving field. While this relationship is well established in healthy subjects, it is yet unclear whether it also generalizes to clinical populations, for example, patients with Parkinson's disease. Parkinson's disease is a motor disorder, causing tremor, slow movements and rigidity. It may also be associated with oculomotor deficits, such as impaired saccades and smooth pursuit eye movements. Here, we employed short-duration, onset binocular rivalry (2 s trial of stimulus presentation followed by 1 s inter-trial interval) with moving grating stimuli to assess OKN in Parkinson's disease patients (N = 39) and controls (N = 29) of a similar age. Each trial was either non-rivalrous (same stimuli presented to both eyes) or rivalrous, as in binocular rivalry. We analyzed OKN to discriminate direction of stimulus and perception on a trial-by-trial basis. Although the speed of slow-phase OKN was slower in the patients, discriminability of conscious perception based on OKN was comparable between the groups. Treatment with anti-Parkinson drugs and deep brain stimulation improved motor ability of patients, but did not impact on OKN. Furthermore, OKN-based measures were robust and their latencies were shorter than manual button-based measures in both groups and stimulus conditions. To our knowledge, our study is the first to demonstrate that OKN can be used as a reliable indicator of conscious perception in binocular rivalry even in Parkinson's disease patients in whom impaired manual dexterity may render button-press reports less reliable.
Collapse
Affiliation(s)
- Mana Fujiwara
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
- Araya Brain Imaging, Tokyo, Japan
| | - Catherine Ding
- Department of Neurosciences, Southern Clinical School, Monash Health, Melbourne, Victoria, Australia
| | - Lisandro Kaunitz
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Julie C. Stout
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
- Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Victoria, Australia
| | - Dominic Thyagarajan
- Department of Neurosciences, Southern Clinical School, Monash Health, Melbourne, Victoria, Australia
| | - Naotsugu Tsuchiya
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
- Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Abstract
In a famous series of experiments, Libet investigated the subjective timing of awareness of an intention to move, a task that can be considered a metacognitive judgement. The ability to strategically produce inaccurate metacognitions about intentions has been postulated to be central to the changes in judgements of agency common to all hypnotic responding. Therefore, differences in hypnotisability may be reflected in Libet’s measure. Specifically, the ability to sustain inaccurate judgements of agency displayed by highly hypnotisable people may result from their having coarser higher order representations of intentions. They, therefore, should report a delayed time of intention relative to less hypnotisable individuals. Conversely, mindfulness practice aims at accurate metacognition, including of intentions, and may lead to the development of finer grained higher order representations of intending. Thus, the long-term practice of mindfulness may produce an earlier judgement of the time of an intention. We tested these groups using Libet’s task, and found that, consistent with predictions, highly hypnotisable people reported a later time of intention than less hypnotisable people and meditators an earlier time than non-meditators. In a further two studies, we replicated the finding that hypnotisable people report later awareness of a motor intention and additionally found a negative relationship between trait mindfulness and this measure. Based on these findings, we argue that hypnotic response and meditation involve opposite processes.
Collapse
Affiliation(s)
- Peter Lush
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK.,School of Psychology, University of Sussex, Pevensey Building, Falmer BN1 9RH, UK
| | - Peter Naish
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK
| | - Zoltan Dienes
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK.,School of Psychology, University of Sussex, Pevensey Building, Falmer BN1 9RH, UK
| |
Collapse
|
17
|
Individual differences in the temporal dynamics of binocular rivalry and stimulus rivalry. Psychon Bull Rev 2016; 22:476-82. [PMID: 25092387 DOI: 10.3758/s13423-014-0695-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Binocular rivalry and stimulus rivalry are two forms of perceptual instability that arise when the visual system is confronted with conflicting stimulus information. In the case of binocular rivalry, dissimilar monocular stimuli are presented to the two eyes for an extended period of time, whereas for stimulus rivalry the dissimilar monocular stimuli are exchanged rapidly and repetitively between the eyes during extended viewing. With both forms of rivalry, one experiences extended durations of exclusive perceptual dominance that fluctuate between the two stimuli. Whether these two forms of rivalry arise within different stages of visual processing has remained debatable. Using an individual-differences approach, we found that both stimulus rivalry and binocular rivalry exhibited same-shaped distributions of dominance durations among a sample of 30 observers and, moreover, that the dominance durations measured during binocular and stimulus rivalry were significantly correlated among our sample of observers. Furthermore, we found a significant, positive correlation between alternation rate in binocular rivalry and the incidence of stimulus rivalry. These results suggest that the two forms of rivalry may be tapping common neural mechanisms, or at least different mechanisms with comparable time constants. It remains to be learned just why the incidences of binocular rivalry and stimulus rivalry vary so greatly among people.
Collapse
|
18
|
Abstract
This project examined whether previous visual history can bias perceptual dominance during onset rivalry. A predictive sequence of non-rivalrous stimuli preceded dichoptically presented rivalrous displays. One of the dichoptic images was the implied next step of the preceding sequence while the other was not. Observers reported their initial dominant percept. Across five experiments, we found that motion sequences biased perceptual selection such that a rivalrous stimulus that continued a motion sequence tended to dominate one that did not. However, signals generated by complex pattern of motion information or verbal-semantic information had no influence on selection. These results are consistent with the view that onset rivalry is an early phase of rivalry that is likely insensitive to modulation by factors originating beyond the visual system.
Collapse
Affiliation(s)
- Mouna Attarha
- Department of Psychology, University of Iowa, E11 Seashore Hall, Iowa City, IA, 52242-1407, USA,
| | | |
Collapse
|
19
|
Blake R, Brascamp J, Heeger DJ. Can binocular rivalry reveal neural correlates of consciousness? Philos Trans R Soc Lond B Biol Sci 2014; 369:20130211. [PMID: 24639582 DOI: 10.1098/rstb.2013.0211] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This essay critically examines the extent to which binocular rivalry can provide important clues about the neural correlates of conscious visual perception. Our ideas are presented within the framework of four questions about the use of rivalry for this purpose: (i) what constitutes an adequate comparison condition for gauging rivalry's impact on awareness, (ii) how can one distinguish abolished awareness from inattention, (iii) when one obtains unequivocal evidence for a causal link between a fluctuating measure of neural activity and fluctuating perceptual states during rivalry, will it generalize to other stimulus conditions and perceptual phenomena and (iv) does such evidence necessarily indicate that this neural activity constitutes a neural correlate of consciousness? While arriving at sceptical answers to these four questions, the essay nonetheless offers some ideas about how a more nuanced utilization of binocular rivalry may still provide fundamental insights about neural dynamics, and glimpses of at least some of the ingredients comprising neural correlates of consciousness, including those involved in perceptual decision-making.
Collapse
Affiliation(s)
- Randolph Blake
- Department of Psychology and Center for Integrative Neuroscience, Vanderbilt University, , Nashville TN 37212, USA
| | | | | |
Collapse
|