1
|
Correlates of individual voice and face preferential responses during resting state. Sci Rep 2022; 12:7117. [PMID: 35505233 PMCID: PMC9065073 DOI: 10.1038/s41598-022-11367-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/15/2022] [Indexed: 11/20/2022] Open
Abstract
Human nonverbal social signals are transmitted to a large extent by vocal and facial cues. The prominent importance of these cues is reflected in specialized cerebral regions which preferentially respond to these stimuli, e.g. the temporal voice area (TVA) for human voices and the fusiform face area (FFA) for human faces. But it remained up to date unknown whether there are respective specializations during resting state, i.e. in the absence of any cues, and if so, whether these representations share neural substrates across sensory modalities. In the present study, resting state functional connectivity (RSFC) as well as voice- and face-preferential activations were analysed from functional magnetic resonance imaging (fMRI) data sets of 60 healthy individuals. Data analysis comprised seed-based analyses using the TVA and FFA as regions of interest (ROIs) as well as multi voxel pattern analyses (MVPA). Using the face- and voice-preferential responses of the FFA and TVA as regressors, we identified several correlating clusters during resting state spread across frontal, temporal, parietal and occipital regions. Using these regions as seeds, characteristic and distinct network patterns were apparent with a predominantly convergent pattern for the bilateral TVAs whereas a largely divergent pattern was observed for the bilateral FFAs. One region in the anterior medial frontal cortex displayed a maximum of supramodal convergence of informative connectivity patterns reflecting voice- and face-preferential responses of both TVAs and the right FFA, pointing to shared neural resources in supramodal voice and face processing. The association of individual voice- and face-preferential neural activity with resting state connectivity patterns may support the perspective of a network function of the brain beyond an activation of specialized regions.
Collapse
|
2
|
Rovetti J, Copelli F, Russo FA. Audio and visual speech emotion activate the left pre-supplementary motor area. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:291-303. [PMID: 34811708 DOI: 10.3758/s13415-021-00961-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Sensorimotor brain areas have been implicated in the recognition of emotion expressed on the face and through nonverbal vocalizations. However, no previous study has assessed whether sensorimotor cortices are recruited during the perception of emotion in speech-a signal that includes both audio (speech sounds) and visual (facial speech movements) components. To address this gap in the literature, we recruited 24 participants to listen to speech clips produced in a way that was either happy, sad, or neutral in expression. These stimuli also were presented in one of three modalities: audio-only (hearing the voice but not seeing the face), video-only (seeing the face but not hearing the voice), or audiovisual. Brain activity was recorded using electroencephalography, subjected to independent component analysis, and source-localized. We found that the left presupplementary motor area was more active in response to happy and sad stimuli than neutral stimuli, as indexed by greater mu event-related desynchronization. This effect did not differ by the sensory modality of the stimuli. Activity levels in other sensorimotor brain areas did not differ by emotion, although they were greatest in response to visual-only and audiovisual stimuli. One possible explanation for the pre-SMA result is that this brain area may actively support speech emotion recognition by using our extensive experience expressing emotion to generate sensory predictions that in turn guide our perception.
Collapse
Affiliation(s)
- Joseph Rovetti
- Department of Psychology, Ryerson University, Toronto, ON, M5B 2K3, Canada
- Department of Psychology, Western University, London, ON, Canada
| | - Fran Copelli
- Department of Psychology, Ryerson University, Toronto, ON, M5B 2K3, Canada
| | - Frank A Russo
- Department of Psychology, Ryerson University, Toronto, ON, M5B 2K3, Canada.
| |
Collapse
|
3
|
Hettwer MD, Lancaster TM, Raspor E, Hahn PK, Mota NR, Singer W, Reif A, Linden DEJ, Bittner RA. Evidence From Imaging Resilience Genetics for a Protective Mechanism Against Schizophrenia in the Ventral Visual Pathway. Schizophr Bull 2022; 48:551-562. [PMID: 35137221 PMCID: PMC9077432 DOI: 10.1093/schbul/sbab151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Illuminating neurobiological mechanisms underlying the protective effect of recently discovered common genetic resilience variants for schizophrenia is crucial for more effective prevention efforts. Current models implicate adaptive neuroplastic changes in the visual system and their pro-cognitive effects as a schizophrenia resilience mechanism. We investigated whether common genetic resilience variants might affect brain structure in similar neural circuits. METHOD Using structural magnetic resonance imaging, we measured the impact of an established schizophrenia polygenic resilience score (PRSResilience) on cortical volume, thickness, and surface area in 101 healthy subjects and in a replication sample of 33 224 healthy subjects (UK Biobank). FINDING We observed a significant positive whole-brain correlation between PRSResilience and cortical volume in the right fusiform gyrus (FFG) (r = 0.35; P = .0004). Post-hoc analyses in this cluster revealed an impact of PRSResilience on cortical surface area. The replication sample showed a positive correlation between PRSResilience and global cortical volume and surface area in the left FFG. CONCLUSION Our findings represent the first evidence of a neurobiological correlate of a genetic resilience factor for schizophrenia. They support the view that schizophrenia resilience emerges from strengthening neural circuits in the ventral visual pathway and an increased capacity for the disambiguation of social and nonsocial visual information. This may aid psychosocial functioning, ameliorate the detrimental effects of subtle perceptual and cognitive disturbances in at-risk individuals, and facilitate coping with the cognitive and psychosocial consequences of stressors. Our results thus provide a novel link between visual cognition, the vulnerability-stress concept, and schizophrenia resilience models.
Collapse
Affiliation(s)
- Meike D Hettwer
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany,Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thomas M Lancaster
- School of Psychology, Bath University, Bath, UK,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Eva Raspor
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Peter K Hahn
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Nina Roth Mota
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands,Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Wolf Singer
- Ernst Strüngmann Institute for Neuroscience (ESI) in Cooperation with Max Planck Society, Frankfurt am Main, Germany,Max Planck Institute for Brain Research (MPI BR), Frankfurt am Main, Germany,Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - David E J Linden
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK,School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Robert A Bittner
- To whom correspondence should be addressed; Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt am Main, Germany; tel: 69-6301-84713, fax: 69-6301-81775, e-mail:
| |
Collapse
|
4
|
Kreifelts B, Ethofer T, Wiegand A, Brück C, Wächter S, Erb M, Lotze M, Wildgruber D. The Neural Correlates of Face-Voice-Integration in Social Anxiety Disorder. Front Psychiatry 2020; 11:657. [PMID: 32765311 PMCID: PMC7381153 DOI: 10.3389/fpsyt.2020.00657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/24/2020] [Indexed: 12/04/2022] Open
Abstract
Faces and voices are very important sources of threat in social anxiety disorder (SAD), a common psychiatric disorder where core elements are fears of social exclusion and negative evaluation. Previous research in social anxiety evidenced increased cerebral responses to negative facial or vocal expressions and also generally increased hemodynamic responses to voices and faces. But it is unclear if also the cerebral process of face-voice-integration is altered in SAD. Applying functional magnetic resonance imaging, we investigated the correlates of the audiovisual integration of dynamic faces and voices in SAD as compared to healthy individuals. In the bilateral midsections of the superior temporal sulcus (STS) increased integration effects in SAD were observed driven by greater activation increases during audiovisual stimulation as compared to auditory stimulation. This effect was accompanied by increased functional connectivity with the visual association cortex and a more anterior position of the individual integration maxima along the STS in SAD. These findings demonstrate that the audiovisual integration of facial and vocal cues in SAD is not only systematically altered with regard to intensity and connectivity but also the individual location of the integration areas within the STS. These combined findings offer a novel perspective on the neuronal representation of social signal processing in individuals suffering from SAD.
Collapse
Affiliation(s)
- Benjamin Kreifelts
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Thomas Ethofer
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Ariane Wiegand
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Carolin Brück
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Sarah Wächter
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Michael Erb
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Martin Lotze
- Functional Imaging Group, Department for Diagnostic Radiology and Neuroradiology, University of Greifswald, Greifswald, Germany
| | - Dirk Wildgruber
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Cerebral resting state markers of biased perception in social anxiety. Brain Struct Funct 2018; 224:759-777. [PMID: 30506458 DOI: 10.1007/s00429-018-1803-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/24/2018] [Indexed: 01/29/2023]
Abstract
Social anxiety (SA) comprises a multitude of persistent fears around the central element of dreaded negative evaluation and exclusion. This very common anxiety is spectrally distributed among the general population and associated with social perception biases deemed causal in its maintenance. Here, we investigated cerebral resting state markers linking SA and biased social perception. To this end, resting state functional connectivity (RSFC) was assessed as the neurobiological marker in a study population with greatly varying SA using fMRI in the first step of the experiment. One month later the impact of unattended laughter-exemplifying social threat-on a face rating task was evaluated as a measure of biased social perception. Applying a dimensional approach, SA-related cognitive biases tied to the valence, dominance and arousal of the threat signal and their underlying RSFC patterns among central nodes of the cerebral emotion, voice and face processing networks were identified. In particular, the connectivity patterns between the amygdalae and the right temporal voice area met all criteria for a cerebral mediation of the association between SA and the laughter valence-related interpretation bias. Thus, beyond this identification of non-state-dependent cerebral markers of biased perception in SA, this study highlights both a starting point and targets for future research on the causal relationships between cerebral connectivity patterns, SA and biased perception, potentially via neurofeedback methods.
Collapse
|
6
|
Karle KN, Ethofer T, Jacob H, Brück C, Erb M, Lotze M, Nizielski S, Schütz A, Wildgruber D, Kreifelts B. Neurobiological correlates of emotional intelligence in voice and face perception networks. Soc Cogn Affect Neurosci 2018; 13:233-244. [PMID: 29365199 PMCID: PMC5827352 DOI: 10.1093/scan/nsy001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/07/2018] [Indexed: 01/27/2023] Open
Abstract
Facial expressions and voice modulations are among the most important communicational signals to convey emotional information. The ability to correctly interpret this information is highly relevant for successful social interaction and represents an integral component of emotional competencies that have been conceptualized under the term emotional intelligence. Here, we investigated the relationship of emotional intelligence as measured with the Salovey-Caruso-Emotional-Intelligence-Test (MSCEIT) with cerebral voice and face processing using functional and structural magnetic resonance imaging. MSCEIT scores were positively correlated with increased voice-sensitivity and gray matter volume of the insula accompanied by voice-sensitivity enhanced connectivity between the insula and the temporal voice area, indicating generally increased salience of voices. Conversely, in the face processing system, higher MSCEIT scores were associated with decreased face-sensitivity and gray matter volume of the fusiform face area. Taken together, these findings point to an alteration in the balance of cerebral voice and face processing systems in the form of an attenuated face-vs-voice bias as one potential factor underpinning emotional intelligence.
Collapse
Affiliation(s)
- Kathrin N Karle
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas Ethofer
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany.,Department for Biomedical Magnetic Resonance, University of Tübingen, 72076 Tübingen, Germany
| | - Heike Jacob
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Carolin Brück
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Michael Erb
- Department for Biomedical Magnetic Resonance, University of Tübingen, 72076 Tübingen, Germany
| | - Martin Lotze
- Functional Imaging Group, Department for Diagnostic Radiology and Neuroradiology, University of Greifswald, 17475 Greifswald, Germany
| | - Sophia Nizielski
- Department of Psychology, Technical University Chemnitz, 09111 Chemnitz, Germany
| | - Astrid Schütz
- Department of Psychology, University of Bamberg, 96045 Bamberg, Germany
| | - Dirk Wildgruber
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Benjamin Kreifelts
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Klasen M, von Marschall C, Isman G, Zvyagintsev M, Gur RC, Mathiak K. Prosody production networks are modulated by sensory cues and social context. Soc Cogn Affect Neurosci 2018. [PMID: 29514331 PMCID: PMC5928400 DOI: 10.1093/scan/nsy015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The neurobiology of emotional prosody production is not well investigated. In particular, the effects of cues and social context are not known. The present study sought to differentiate cued from free emotion generation and the effect of social feedback from a human listener. Online speech filtering enabled functional magnetic resonance imaging during prosodic communication in 30 participants. Emotional vocalizations were (i) free, (ii) auditorily cued, (iii) visually cued or (iv) with interactive feedback. In addition to distributed language networks, cued emotions increased activity in auditory and—in case of visual stimuli—visual cortex. Responses were larger in posterior superior temporal gyrus at the right hemisphere and the ventral striatum when participants were listened to and received feedback from the experimenter. Sensory, language and reward networks contributed to prosody production and were modulated by cues and social context. The right posterior superior temporal gyrus is a central hub for communication in social interactions—in particular for interpersonal evaluation of vocal emotions.
Collapse
Affiliation(s)
- Martin Klasen
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany.,JARA - Translational Brain Medicine, 52074 Aachen, Germany
| | - Clara von Marschall
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany.,JARA - Translational Brain Medicine, 52074 Aachen, Germany
| | - Güldehen Isman
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Mikhail Zvyagintsev
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany.,JARA - Translational Brain Medicine, 52074 Aachen, Germany
| | - Ruben C Gur
- Department of Psychiatry, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany.,JARA - Translational Brain Medicine, 52074 Aachen, Germany
| |
Collapse
|
8
|
Sato W, Kochiyama T, Uono S, Yoshimura S, Kubota Y, Sawada R, Sakihama M, Toichi M. Reduced Gray Matter Volume in the Social Brain Network in Adults with Autism Spectrum Disorder. Front Hum Neurosci 2017; 11:395. [PMID: 28824399 PMCID: PMC5543091 DOI: 10.3389/fnhum.2017.00395] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/18/2017] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by behavioral impairment in social interactions. Although theoretical and empirical evidence suggests that impairment in the social brain network could be the neural underpinnings of ASD, previous structural magnetic resonance imaging (MRI) studies in adults with ASD have not provided clear support for this, possibly due to confounding factors, such as language impairments. To further explore this issue, we acquired structural MRI data and analyzed gray matter volume in adults with ASD (n = 36) who had no language impairments (diagnosed with Asperger’s disorder or pervasive developmental disorder not otherwise specified, with symptoms milder than those of Asperger’s disorder), had no comorbidity, and were not taking medications, and in age- and sex-matched typically developing (TD) controls (n = 36). Univariate voxel-based morphometry analyses revealed that regional gray matter volume was lower in the ASD than in the control group in several brain regions, including the right inferior occipital gyrus, left fusiform gyrus, right middle temporal gyrus, bilateral amygdala, right inferior frontal gyrus, right orbitofrontal cortex, and left dorsomedial prefrontal cortex. A multivariate approach using a partial least squares (PLS) method showed that these regions constituted a network that could be used to discriminate between the ASD and TD groups. A PLS discriminant analysis using information from these regions showed high accuracy, sensitivity, specificity, and precision (>80%) in discriminating between the groups. These results suggest that reduced gray matter volume in the social brain network represents the neural underpinnings of behavioral social malfunctioning in adults with ASD.
Collapse
Affiliation(s)
- Wataru Sato
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto UniversityKyoto, Japan
| | - Takanori Kochiyama
- Brain Activity Imaging Center, Advanced Telecommunications Research Institute InternationalKyoto, Japan
| | - Shota Uono
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto UniversityKyoto, Japan
| | - Sayaka Yoshimura
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto UniversityKyoto, Japan
| | - Yasutaka Kubota
- Health and Medical Services Center, Shiga UniversityShiga, Japan
| | - Reiko Sawada
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto UniversityKyoto, Japan
| | | | - Motomi Toichi
- Faculty of Human Health Science, Kyoto UniversityKyoto, Japan.,The Organization for Promoting Neurodevelopmental Disorder ResearchKyoto, Japan
| |
Collapse
|
9
|
Liebenthal E, Silbersweig DA, Stern E. The Language, Tone and Prosody of Emotions: Neural Substrates and Dynamics of Spoken-Word Emotion Perception. Front Neurosci 2016; 10:506. [PMID: 27877106 PMCID: PMC5099784 DOI: 10.3389/fnins.2016.00506] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 10/24/2016] [Indexed: 11/24/2022] Open
Abstract
Rapid assessment of emotions is important for detecting and prioritizing salient input. Emotions are conveyed in spoken words via verbal and non-verbal channels that are mutually informative and unveil in parallel over time, but the neural dynamics and interactions of these processes are not well understood. In this paper, we review the literature on emotion perception in faces, written words, and voices, as a basis for understanding the functional organization of emotion perception in spoken words. The characteristics of visual and auditory routes to the amygdala—a subcortical center for emotion perception—are compared across these stimulus classes in terms of neural dynamics, hemispheric lateralization, and functionality. Converging results from neuroimaging, electrophysiological, and lesion studies suggest the existence of an afferent route to the amygdala and primary visual cortex for fast and subliminal processing of coarse emotional face cues. We suggest that a fast route to the amygdala may also function for brief non-verbal vocalizations (e.g., laugh, cry), in which emotional category is conveyed effectively by voice tone and intensity. However, emotional prosody which evolves on longer time scales and is conveyed by fine-grained spectral cues appears to be processed via a slower, indirect cortical route. For verbal emotional content, the bulk of current evidence, indicating predominant left lateralization of the amygdala response and timing of emotional effects attributable to speeded lexical access, is more consistent with an indirect cortical route to the amygdala. Top-down linguistic modulation may play an important role for prioritized perception of emotions in words. Understanding the neural dynamics and interactions of emotion and language perception is important for selecting potent stimuli and devising effective training and/or treatment approaches for the alleviation of emotional dysfunction across a range of neuropsychiatric states.
Collapse
Affiliation(s)
- Einat Liebenthal
- Department of Psychiatry, Brigham and Women's Hospital Boston, MA, USA
| | | | - Emily Stern
- Department of Psychiatry, Brigham and Women's HospitalBoston, MA, USA; Department of Radiology, Brigham and Women's HospitalBoston, MA, USA
| |
Collapse
|
10
|
Lima CF, Krishnan S, Scott SK. Roles of Supplementary Motor Areas in Auditory Processing and Auditory Imagery. Trends Neurosci 2016; 39:527-542. [PMID: 27381836 PMCID: PMC5441995 DOI: 10.1016/j.tins.2016.06.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/26/2016] [Accepted: 06/09/2016] [Indexed: 11/28/2022]
Abstract
Although the supplementary and pre-supplementary motor areas have been intensely investigated in relation to their motor functions, they are also consistently reported in studies of auditory processing and auditory imagery. This involvement is commonly overlooked, in contrast to lateral premotor and inferior prefrontal areas. We argue here for the engagement of supplementary motor areas across a variety of sound categories, including speech, vocalizations, and music, and we discuss how our understanding of auditory processes in these regions relate to findings and hypotheses from the motor literature. We suggest that supplementary and pre-supplementary motor areas play a role in facilitating spontaneous motor responses to sound, and in supporting a flexible engagement of sensorimotor processes to enable imagery and to guide auditory perception. Hearing and imagining sounds–including speech, vocalizations, and music–can recruit SMA and pre-SMA, which are normally discussed in relation to their motor functions. Emerging research indicates that individual differences in the structure and function of SMA and pre-SMA can predict performance in auditory perception and auditory imagery tasks. Responses during auditory processing primarily peak in pre-SMA and in the boundary area between pre-SMA and SMA. This boundary area is crucially involved in the control of speech and vocal production, suggesting that sounds engage this region in an effector-specific manner. Activating sound-related motor representations in SMA and pre-SMA might facilitate behavioral responses to sounds. This might also support a flexible generation of sensory predictions based on previous experience to enable imagery and guide perception.
Collapse
Affiliation(s)
- César F Lima
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Saloni Krishnan
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Sophie K Scott
- Institute of Cognitive Neuroscience, University College London, London, UK.
| |
Collapse
|
11
|
Huang X, Zhang Q, Hu PH, Zhong YL, Zhang Y, Wei R, Xu TT, Shao Y. White and Gray Matter Volume Changes and Correlation with Visual Evoked Potential in Patients with Optic Neuritis: A Voxel-Based Morphometry Study. Med Sci Monit 2016; 22:1115-23. [PMID: 27045330 PMCID: PMC4824464 DOI: 10.12659/msm.897837] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background The aim of this study was to investigate potential morphological alterations of gray and white matter in patients with optic neuritis (ON) and their relationship with behavioral performance, using voxel-based morphometry (VBM). Material/Methods Twelve (4 males, 8 females) patients with ON and 12 (4 males, 8 females) age-, sex-, and education-matched healthy controls (HCs) underwent magnetic resonance imaging (MRI). Imaging data were analyzed using two-sample t tests to identify group differences in gray and white matter volume (GMV, WMV). Correlation analysis was used to explore relationships between observed GMV and WMV of different areas and visual evoked potential (VEP) in ON. Results Compared with HCs, ON patients had: significantly decreased GMV in the left postcentral gyrus, left inferior frontal gyrus, left anterior cingulate, left and right middle frontal gyrus, and right inferior parietal lobule; decreased WMV in the left middle frontal gyrus, right superior frontal gyrus, left precentral gyrus and right inferior parietal lobule; and increased WMV in the left fusiform gyrus and left inferior parietal lobule. VEP latency of the right eye in ON correlated positively with WMV signal value of the left fusiform gyrus (r=0.726, p=0.008), and negatively with GMV signal value of the right inferior parietal lobule (r=−0.611, p=0.035). Duration of ON correlated negatively with WMV signal value of the right superior frontal gyrus (r=−0.662, p=0.019), while best-corrected visual acuity (VA) of the right eye correlated negatively with WMV signal value of the left middle frontal gyrus (r=−0.704, p=0.011). Conclusions These results suggest significant brain involvement in ON, which may reflect the underlying pathologic mechanism. Correlational results demonstrate that VEP in ON is closely associated with WMV and GMV atrophy in many brain regions.
Collapse
Affiliation(s)
- Xin Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province clinical ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi, China (mainland)
| | - Qiang Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province clinical ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi, China (mainland)
| | - Pei-Hong Hu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province clinical ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi, China (mainland)
| | - Yu-Lin Zhong
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province clinical ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi, China (mainland)
| | - Ying Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province clinical ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi, China (mainland)
| | - Rong Wei
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province clinical ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi, China (mainland)
| | - Ting-Ting Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province clinical ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi, China (mainland)
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province clinical ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi, China (mainland)
| | -
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province clinical ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
12
|
Abstract
The hypothalamic-pituitary-adrenal axis provides physiological adaptations to various environmental stimuli in mammals. These stimuli including maternal care, diet, immune challenge, stress, and others have the potential to stably modify or program the functioning of the HPA axis when experienced early in life or at later critical stages of development. Epigenetic mechanisms mediate the biological embedding of environmental stimuli or conditions. These changes are influenced by the genotype and both, environment and genotype contribute to the development of a specific phenotype with regard to the stress response that might be more susceptible or resilient to the development of mental conditions. The effects of stress might be a result of cumulative stress or a mismatch between the environments experienced early in life versus the conditions much later. These effects including the associated epigenetic modifications are potentially reversible.
Collapse
Affiliation(s)
- Jan P Buschdorf
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Canadian Neuroepigenetics Network, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Shao Y, Cai FQ, Zhong YL, Huang X, Zhang Y, Hu PH, Pei CG, Zhou FQ, Zeng XJ. Altered intrinsic regional spontaneous brain activity in patients with optic neuritis: a resting-state functional magnetic resonance imaging study. Neuropsychiatr Dis Treat 2015; 11:3065-73. [PMID: 26715848 PMCID: PMC4686319 DOI: 10.2147/ndt.s92968] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To investigate the underlying regional homogeneity (ReHo) in brain-activity deficit in patients with optic neuritis (ON) and its relationship with behavioral performance. MATERIALS AND METHODS In total, twelve patients with ON (four males and eight females) and twelve (four males and eight females) age-, sex-, and education-matched healthy controls underwent resting-state functional magnetic resonance imaging scans. The ReHo method was used to assess the local features of spontaneous brain activity. Correlation analysis was used to explore the relationship between the observed mean ReHo values of the different brain areas and the visual evoked potential (VEP) in patients with ON. RESULTS Compared with the healthy controls, patients with ON showed lower ReHo in the left cerebellum, posterior lobe, left middle temporal gyrus, right insula, right superior temporal gyrus, left middle frontal gyrus, bilateral anterior cingulate cortex, left superior frontal gyrus, right superior frontal gyrus, and right precentral gyrus, and higher ReHo in the cluster of the left fusiform gyrus and right inferior parietal lobule. Meanwhile, we found that the VEP amplitude of the right eye in patients with ON showed a positive correlation with the ReHo signal value of the left cerebellum posterior lobe (r=0.701, P=0.011), the right superior frontal gyrus (r=0.731, P=0.007), and the left fusiform gyrus (r=0.644, P=0.024). We also found that the VEP latency of the right eye in ON showed a positive correlation with the ReHo signal value of the right insula (r=0.595, P=0.041). CONCLUSION ON may involve dysfunction in the default-mode network, which may reflect the underlying pathologic mechanism.
Collapse
Affiliation(s)
- Yi Shao
- Department of Ophthalmology, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Feng-Qin Cai
- Department of Radiology, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yu-Lin Zhong
- Department of Ophthalmology, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Xin Huang
- Department of Ophthalmology, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China ; Department of Ophthalmology, First People's Hospital of Jiujiang, Jiujiang, People's Republic of China
| | - Ying Zhang
- Department of Ophthalmology, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Pei-Hong Hu
- Department of Ophthalmology, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Chong-Gang Pei
- Department of Ophthalmology, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Fu-Qing Zhou
- Department of Radiology, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Xian-Jun Zeng
- Department of Radiology, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
14
|
Meneguzzo P, Tsakiris M, Schioth HB, Stein DJ, Brooks SJ. Subliminal versus supraliminal stimuli activate neural responses in anterior cingulate cortex, fusiform gyrus and insula: a meta-analysis of fMRI studies. BMC Psychol 2014; 2:52. [PMID: 25593703 PMCID: PMC4271330 DOI: 10.1186/s40359-014-0052-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 11/13/2014] [Indexed: 11/25/2022] Open
Abstract
Background Non-conscious neural activation may underlie various psychological functions in health and disorder. However, the neural substrates of non-conscious processing have not been entirely elucidated. Examining the differential effects of arousing stimuli that are consciously, versus unconsciously perceived will improve our knowledge of neural circuitry involved in non-conscious perception. Here we conduct preliminary analyses of neural activation in studies that have used both subliminal and supraliminal presentation of the same stimulus. Methods We use Activation Likelihood Estimation (ALE) to examine functional Magnetic Resonance Imaging (fMRI) studies that uniquely present the same stimuli subliminally and supraliminally to healthy participants during functional magnetic resonance imaging (fMRI). We included a total of 193 foci from 9 studies representing subliminal stimulation and 315 foci from 10 studies representing supraliminal stimulation. Results The anterior cingulate cortex is significantly activated during both subliminal and supraliminal stimulus presentation. Subliminal stimuli are linked to significantly increased activation in the right fusiform gyrus and right insula. Supraliminal stimuli show significantly increased activation in the left rostral anterior cingulate. Conclusions Non-conscious processing of arousing stimuli may involve primary visual areas and may also recruit the insula, a brain area involved in eventual interoceptive awareness. The anterior cingulate is perhaps a key brain region for the integration of conscious and non-conscious processing. These preliminary data provide candidate brain regions for further study in to the neural correlates of conscious experience. Electronic supplementary material The online version of this article (doi:10.1186/s40359-014-0052-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paolo Meneguzzo
- Department of Neuroscience, University of Padua, Padova, Italy
| | - Manos Tsakiris
- Lab of Action and Body, Department of Psychology, Royal Holloway, University of London, London, UK
| | - Helgi B Schioth
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Anzio Road, Cape Town, 7995 South Africa
| | - Samantha J Brooks
- Department of Psychiatry and Mental Health, University of Cape Town, Anzio Road, Cape Town, 7995 South Africa
| |
Collapse
|
15
|
Klasen M, Kreifelts B, Chen YH, Seubert J, Mathiak K. Neural processing of emotion in multimodal settings. Front Hum Neurosci 2014; 8:822. [PMID: 25374523 PMCID: PMC4204532 DOI: 10.3389/fnhum.2014.00822] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/26/2014] [Indexed: 02/04/2023] Open
Affiliation(s)
- Martin Klasen
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical School, RWTH Aachen University Aachen, Germany ; Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University Aachen, Germany
| | - Benjamin Kreifelts
- Department of Psychiatry and Psychotherapy, University of Tuebingen Tuebingen, Germany
| | - Yu-Han Chen
- Department of Psychiatry, The University of New Mexico School of Medicine Albuquerque, NM, USA
| | - Janina Seubert
- Psychology Division, Department of Clinical Neuroscience, Karolinska Institutet Stockholm, Sweden
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical School, RWTH Aachen University Aachen, Germany ; Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University Aachen, Germany
| |
Collapse
|