1
|
Ross JM, Santarnecchi E, Lian SJ, Fong TG, Touroutoglou A, Cavallari M, Travison TG, Marcantonio ER, Libermann TA, Schmitt E, Inouye SK, Shafi MM, Pascual-Leone A. Neurophysiologic predictors of individual risk for post-operative delirium after elective surgery. J Am Geriatr Soc 2023; 71:235-244. [PMID: 36226896 PMCID: PMC9870959 DOI: 10.1111/jgs.18072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Post-surgical delirium is associated with increased morbidity, lasting cognitive decline, and loss of functional independence. Within a conceptual framework that delirium is triggered by stressors when vulnerabilities exist in cerebral connectivity and plasticity, we previously suggested that neurophysiologic measures might identify individuals at risk for post-surgical delirium. Here we demonstrate the feasibility of the approach and provide preliminary experimental evidence of the predictive value of such neurophysiologic measures for the risk of delirium in older persons undergoing elective surgery. METHODS Electroencephalography (EEG) and transcranial magnetic stimulation (TMS) were collected from 23 patients prior to elective surgery. Resting-state EEG spectral power ratio (SPR) served as a measure of integrity of neural circuits. TMS-EEG metrics of plasticity (TMS-plasticity) were used as indicators of brain capacity to respond to stressors. Presence or absence of delirium was assessed using the confusion assessment method (CAM). We included individuals with no baseline clinically relevant cognitive impairment (MoCA scores ≥21) in order to focus on subclinical neurophysiological measures. RESULTS In patients with no baseline cognitive impairment (N = 20, age = 72 ± 6), 3 developed post-surgical delirium (MoCA = 24 ± 2.6) and 17 did not (controls; MoCA = 25 ± 2.4). Patients who developed delirium had pre-surgical resting-state EEG power ratios outside the 95% confidence interval of controls, and 2/3 had TMS-plasticity measures outside the 95% CI of controls. CONCLUSIONS Consistent with our proposed conceptual framework, this pilot study suggests that non-invasive and scalable neurophysiologic measures can identify individuals at risk of post-operative delirium. Specifically, abnormalities in resting-state EEG spectral power or TMS-plasticity may indicate sub-clinical risk for post-surgery delirium. Extension and confirmation of these findings in a larger sample is needed to assess the clinical utility of the proposed neurophysiologic markers, and to identify specific connectivity and plasticity targets for therapeutic interventions that might minimize the risk of delirium.
Collapse
Affiliation(s)
- Jessica M. Ross
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford Medical School, Stanford, CA, USA
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Precision Neuroscience & Neuromodulation Program (PNN), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shu Jing Lian
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tamara G. Fong
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, Boston, MA, USA
| | - Alexandra Touroutoglou
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michele Cavallari
- Center for Neurological Imaging, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas G. Travison
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Edward R. Marcantonio
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Towia A. Libermann
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Eva Schmitt
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, Boston, MA, USA
| | - Sharon K. Inouye
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Hinda and Arthur Marcus Institute for Aging Research, and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
| | - Mouhsin M. Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Hinda and Arthur Marcus Institute for Aging Research, and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
- Guttmann Brain Health Institute, Institut Guttmann, Barcelona, Spain
| |
Collapse
|
2
|
Trajkovic J, Di Gregorio F, Marcantoni E, Thut G, Romei V. A TMS/EEG protocol for the causal assessment of the functions of the oscillatory brain rhythms in perceptual and cognitive processes. STAR Protoc 2022; 3:101435. [PMID: 35677610 PMCID: PMC9168164 DOI: 10.1016/j.xpro.2022.101435] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The combined use of transcranial magnetic stimulation (TMS), electroencephalogram (EEG), and behavioral performance allows investigation of causal relationships between neural markers and their functional relevance across a number of perceptual and cognitive processes. Here, we present a protocol for combining and applying these techniques on human subjects. We describe correlation approach and causal approach to disentangle the role of different oscillatory parameters, namely alpha frequency and amplitude that control for accuracy and metacognitive abilities, respectively, in a visual detection task. For complete details on the use and execution of this protocol, please refer to Di Gregorio et al. (2022). EEG-behavior correlations to frame hypotheses on how the brain shapes behavior Combined TMS-EEG-behavior to establish causal brain-behavior relationships Tune alpha frequency and amplitude to shape perceptual accuracy and metacognition
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
|
3
|
Identifying novel biomarkers with TMS-EEG - Methodological possibilities and challenges. J Neurosci Methods 2022; 377:109631. [PMID: 35623474 DOI: 10.1016/j.jneumeth.2022.109631] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/09/2022] [Accepted: 05/21/2022] [Indexed: 12/17/2022]
Abstract
Biomarkers are essential for understanding the underlying pathologies in brain disorders and for developing effective treatments. Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) is an emerging neurophysiological tool that can be used for biomarker development. This method can identify biomarkers associated with the function and dynamics of the inhibitory and excitatory neurotransmitter systems and effective connectivity between brain areas. In this review, we outline the current state of the TMS-EEG biomarker field by summarizing the existing protocols and the possibilities and challenges associated with this methodology.
Collapse
|
4
|
Spaccasassi C, Zanon M, Borgomaneri S, Avenanti A. Mu rhythm and corticospinal excitability capture two different frames of motor resonance: A TMS/EEG co-registration study. Cortex 2022; 154:197-211. [DOI: 10.1016/j.cortex.2022.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/28/2022] [Accepted: 04/18/2022] [Indexed: 11/03/2022]
|
5
|
Zito GA, Worbe Y, Lamy JC, Kälin J, Bühler J, Weber S, Müri RM, Aybek S. Behavioral Differences Across Theta Burst Stimulation Protocols. A Study on the Sense of Agency in Healthy Humans. Front Neurosci 2021; 15:658688. [PMID: 34305515 PMCID: PMC8299722 DOI: 10.3389/fnins.2021.658688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/09/2021] [Indexed: 11/27/2022] Open
Abstract
Background Theta burst stimulation (TBS) is a non-invasive brain stimulation method. Various stimulation protocols have been proposed, for instance, stimulation at 50 Hz with pattern at 5 Hz, or at 30 Hz with pattern at 6 Hz. To identify better stimulation parameters for behavioral applications, we investigated the effects of 50-Hz continuous TBS (cTBS) on the sense of agency (SoA), and compared them with a previously published study with 30-Hz cTBS. Methods Based on power analysis from a previous sample using two applications of 30-Hz cTBS, we recruited 20 healthy subjects in a single-blind, Vertex-controlled, randomized, crossover trial. Participants were stimulated with one application of 50-Hz cTBS over the right posterior parietal cortex (rPPC), a key area for agency processing, and the vertex, in a random order. A behavioral task targeting the SoA was done before and after stimulation. After controlling for baseline differences across samples, we studied the effect of stimulation in the two protocols separately. Results Compared to the previously published 30-Hz protocol, 50-Hz cTBS over the rPPC did not reveal significant changes in the SoA, similar to sham Vertex stimulation. Conclusion One application of 50-Hz cTBS was not sufficient to elicit behavioral effects, compared to two applications of 30-Hz cTBS, as previously described. This may be due to a mechanism of synaptic plasticity, consolidated through consecutive stimulation cycles. Our results are relevant for future studies aiming at modulating activity of the rPPC in cognitive domains other than agency, and in patients affected by abnormal agency, who could benefit from treatment options based on TBS.
Collapse
Affiliation(s)
- Giuseppe A Zito
- Movement Investigation and Therapeutics Team, ICM, Inserm U1127, CNRS UMR 7225, UM75, Sorbonne University, Paris, France
| | - Yulia Worbe
- Movement Investigation and Therapeutics Team, ICM, Inserm U1127, CNRS UMR 7225, UM75, Sorbonne University, Paris, France.,Department of Neurophysiology, Saint-Antoine Hospital, APHP.6 - Sorbonne University, Paris, France
| | - Jean-Charles Lamy
- Movement Investigation and Therapeutics Team, ICM, Inserm U1127, CNRS UMR 7225, UM75, Sorbonne University, Paris, France
| | - Joel Kälin
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Janine Bühler
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Samantha Weber
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - René M Müri
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Perception and Eye Movement Laboratory, Department of Neurology and Biomedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Selma Aybek
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
de Tommaso M, Betti V, Bocci T, Bolognini N, Di Russo F, Fattapposta F, Ferri R, Invitto S, Koch G, Miniussi C, Piccione F, Ragazzoni A, Sartucci F, Rossi S, Valeriani M. Pearl and pitfalls in brain functional analysis by event-related potentials: a narrative review by the Italian Psychophysiology and Cognitive Neuroscience Society on methodological limits and clinical reliability-part II. Neurol Sci 2020; 41:3503-3515. [PMID: 32683566 DOI: 10.1007/s10072-020-04527-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 06/21/2020] [Indexed: 12/13/2022]
Abstract
This review focuses on new and/or less standardized event-related potentials methods, in order to improve their knowledge for future clinical applications. The olfactory event-related potentials (OERPs) assess the olfactory functions in time domain, with potential utility in anosmia and degenerative diseases. The transcranial magnetic stimulation-electroencephalography (TMS-EEG) could support the investigation of the intracerebral connections with very high temporal discrimination. Its application in the diagnosis of disorders of consciousness has achieved recent confirmation. Magnetoencephalography (MEG) and event-related fields (ERF) could improve spatial accuracy of scalp signals, with potential large application in pre-surgical study of epileptic patients. Although these techniques have methodological limits, such as high inter- and intraindividual variability and high costs, their diffusion among researchers and clinicians is hopeful, pending their standardization.
Collapse
Affiliation(s)
- Marina de Tommaso
- Applied Neurophysiology and Pain Unit-AnpLab-University of Bari Aldo Moro, Bari, Italy
| | - Viviana Betti
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Tommaso Bocci
- Dipartimento di Scienze della Salute, University of Milano, Milan, Italy
| | - Nadia Bolognini
- Department of Psychology & NeuroMi, University of Milano Bicocca, Milan, Italy.,Laboratory of Neuropsychology, IRCCS Istituto Auxologico, Milan, Italy
| | - Francesco Di Russo
- Dept. of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | | | | | - Sara Invitto
- INSPIRE - Laboratory of Cognitive and Psychophysiological Olfactory Processes, University of Salento, Lecce, Italy
| | - Giacomo Koch
- Fondazione Santa Lucia, Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, Italy.,Neuroscience Department, Policlinico Tor Vergata, Rome, Italy
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy.,Cognitive Neuroscience Section, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Francesco Piccione
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Aldo Ragazzoni
- Unit of Neurology and Clinical Neurophysiology, Fondazione PAS, Scandicci, Florence, Italy
| | - Ferdinando Sartucci
- Section of Neurophysiopathology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,CNR Institute of Neuroscience, Pisa, Italy
| | - Simone Rossi
- Department of Medicine, Surgery and Neuroscience Siena Brain Investigation and Neuromodulation LAb (SI-BIN Lab), University of Siena, Siena, Italy
| | - Massimiliano Valeriani
- Neurology Unit, Bambino Gesù Hospital, Rome, Italy. .,Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
7
|
Zito GA, Anderegg LB, Apazoglou K, Müri RM, Wiest R, Holtforth MG, Aybek S. Transcranial magnetic stimulation over the right temporoparietal junction influences the sense of agency in healthy humans. J Psychiatry Neurosci 2020; 45:271-278. [PMID: 32329986 PMCID: PMC7828927 DOI: 10.1503/jpn.190099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/09/2019] [Accepted: 11/11/2019] [Indexed: 01/02/2023] Open
Abstract
Background The sense of agency is an important aspect of motor control. Impaired sense of agency has been linked to several medical conditions, including schizophrenia and functional neurological disorders. A complex brain network subserves the sense of agency, and the right temporoparietal junction is one of its main nodes. In this paper, we tested whether transcranial magnetic stimulation over the right temporoparietal junction elicited behavioural changes in the sense of agency. Methods In experiment 1, 15 healthy participants performed a behavioural task during functional MRI, with the goal of localizing the area relevant for the sense of agency in the right temporoparietal junction. In the task, the movement of a cursor (controlled by the participants) was artificially manipulated, and the sense of agency was either diminished (turbulence) or enhanced (magic). In experiment 2, we applied transcranial magnetic stimulation in 20 healthy participants in a sham-controlled, crossover trial with excitatory, inhibitory or sham (vertex) stimulation. We measured the summary agency score, an indicator of the sense of agency (lower values correspond to diminished sense of agency). Results Experiment 1 revealed a peak of activation during agency manipulation in the right temporoparietal junction (Montreal Neurological Institute coordinates x, y, z: 68, -26, 34). Experiment 2 showed that inhibition of the right temporoparietal junction significantly reduced the summary agency score in both turbulence (from -14.4 ± 11.4% to -22.5 ± 8.9%), and magic (from -0.7 ± 5.8% to -4.4 ± 4.4%). Limitations We found no excitatory effects, possibly because of a ceiling effect (because healthy participants have a normal sense of agency) or noneffectiveness of the excitatory protocol. Conclusion Our experiments showed that the network subserving the sense of agency was amenable to neuromodulation in healthy participants. This sets the ground for further research in patients with impaired sense of agency. Clinical trial identification: DRKS00012992 (German clinical trials registry).
Collapse
Affiliation(s)
- Giuseppe A Zito
- From the Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland (Zito, Anderegg, Müri, Holtforth, Aybek); the Support Centre for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Switzerland (Zito, Wiest); Department of Neuroscience, Faculty of Medicine, University of Geneva, Switzerland (Apazoglou); the Perception and Eye Movement Laboratory, Department of Neurology and Biomedical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland (Müri); and the Institute of Psychology, University of Bern, Bern, Switzerland (Holtforth)
| | - Laura B Anderegg
- From the Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland (Zito, Anderegg, Müri, Holtforth, Aybek); the Support Centre for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Switzerland (Zito, Wiest); Department of Neuroscience, Faculty of Medicine, University of Geneva, Switzerland (Apazoglou); the Perception and Eye Movement Laboratory, Department of Neurology and Biomedical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland (Müri); and the Institute of Psychology, University of Bern, Bern, Switzerland (Holtforth)
| | - Kallia Apazoglou
- From the Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland (Zito, Anderegg, Müri, Holtforth, Aybek); the Support Centre for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Switzerland (Zito, Wiest); Department of Neuroscience, Faculty of Medicine, University of Geneva, Switzerland (Apazoglou); the Perception and Eye Movement Laboratory, Department of Neurology and Biomedical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland (Müri); and the Institute of Psychology, University of Bern, Bern, Switzerland (Holtforth)
| | - René M Müri
- From the Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland (Zito, Anderegg, Müri, Holtforth, Aybek); the Support Centre for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Switzerland (Zito, Wiest); Department of Neuroscience, Faculty of Medicine, University of Geneva, Switzerland (Apazoglou); the Perception and Eye Movement Laboratory, Department of Neurology and Biomedical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland (Müri); and the Institute of Psychology, University of Bern, Bern, Switzerland (Holtforth)
| | - Roland Wiest
- From the Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland (Zito, Anderegg, Müri, Holtforth, Aybek); the Support Centre for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Switzerland (Zito, Wiest); Department of Neuroscience, Faculty of Medicine, University of Geneva, Switzerland (Apazoglou); the Perception and Eye Movement Laboratory, Department of Neurology and Biomedical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland (Müri); and the Institute of Psychology, University of Bern, Bern, Switzerland (Holtforth)
| | - Martin Grosse Holtforth
- From the Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland (Zito, Anderegg, Müri, Holtforth, Aybek); the Support Centre for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Switzerland (Zito, Wiest); Department of Neuroscience, Faculty of Medicine, University of Geneva, Switzerland (Apazoglou); the Perception and Eye Movement Laboratory, Department of Neurology and Biomedical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland (Müri); and the Institute of Psychology, University of Bern, Bern, Switzerland (Holtforth)
| | - Selma Aybek
- From the Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland (Zito, Anderegg, Müri, Holtforth, Aybek); the Support Centre for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Switzerland (Zito, Wiest); Department of Neuroscience, Faculty of Medicine, University of Geneva, Switzerland (Apazoglou); the Perception and Eye Movement Laboratory, Department of Neurology and Biomedical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland (Müri); and the Institute of Psychology, University of Bern, Bern, Switzerland (Holtforth)
| |
Collapse
|
8
|
Noda Y. Toward the establishment of neurophysiological indicators for neuropsychiatric disorders using transcranial magnetic stimulation-evoked potentials: A systematic review. Psychiatry Clin Neurosci 2020; 74:12-34. [PMID: 31587446 DOI: 10.1111/pcn.12936] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/14/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022]
Abstract
Transcranial magnetic stimulation (TMS) can depolarize the neurons directly under the coil when applied to the cerebral cortex, and modulate the neural circuit associated with the stimulation site, which makes it possible to measure the neurophysiological index to evaluate excitability and inhibitory functions. Concurrent TMS and electroencephalography (TMS-EEG) has been developed to assess the neurophysiological characteristics of cortical regions other than the motor cortical region noninvasively. The aim of this review is to comprehensively discuss TMS-EEG research in the healthy brain focused on excitability, inhibition, and plasticity following neuromodulatory TMS paradigms from a neurophysiological perspective. A search was conducted in PubMed to identify articles that examined humans and that were written in English and published by September 2018. The search terms were as follows: (TMS OR 'transcranial magnetic stimulation') AND (EEG OR electroencephalog*) NOT (rTMS OR 'repetitive transcranial magnetic stimulation' OR TBS OR 'theta burst stimulation') AND (healthy). The study presents an overview of TMS-EEG methodology and neurophysiological indices and reviews previous findings from TMS-EEG in healthy individuals. Furthermore, this review discusses the potential application of TMS-EEG neurophysiology in the clinical setting to study healthy and diseased brain conditions in the future. Combined TMS-EEG is a powerful tool to probe and map neural circuits in the human brain noninvasively and represents a promising approach for determining the underlying pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yoshihiro Noda
- Multidisciplinary Translational Research Lab, Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
G-Causality Brain Connectivity Differences of Finger Movements between Motor Execution and Motor Imagery. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:5068283. [PMID: 31662834 PMCID: PMC6791225 DOI: 10.1155/2019/5068283] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/09/2019] [Indexed: 01/25/2023]
Abstract
Motor imagery is one of the classical paradigms which have been used in brain-computer interface and motor function recovery. Finger movement-based motor execution is a complex biomechanical architecture and a crucial task for establishing most complicated and natural activities in daily life. Some patients may suffer from alternating hemiplegia after brain stroke and lose their ability of motor execution. Fortunately, the ability of motor imagery might be preserved independently and worked as a backdoor for motor function recovery. The efficacy of motor imagery for achieving significant recovery for the motor cortex after brain stroke is still an open question. In this study, we designed a new paradigm to investigate the neural mechanism of thirty finger movements in two scenarios: motor execution and motor imagery. Eleven healthy participants performed or imagined thirty hand gestures twice based on left and right finger movements. The electroencephalogram (EEG) signal for each subject during sixty trials left and right finger motor execution and imagery were recorded during our proposed experimental paradigm. The Granger causality (G-causality) analysis method was employed to analyze the brain connectivity and its strength between contralateral premotor, motor, and sensorimotor areas. Highest numbers for G-causality trials of 37 ± 7.3, 35.5 ± 8.8, 36.3 ± 10.3, and 39.2 ± 9.0 and lowest Granger causality coefficients of 9.1 ± 3.2, 10.9 ± 3.7, 13.2 ± 0.6, and 13.4 ± 0.6 were achieved from the premotor to motor area during execution/imagination tasks of right and left finger movements, respectively. These results provided a new insight into motor execution and motor imagery based on hand gestures, which might be useful to build a new biomarker of finger motor recovery for partially or even completely plegic patients. Furthermore, a significant difference of the G-causality trial number was observed during left finger execution/imagery and right finger imagery, but it was not observed during the right finger execution phase. Significant difference of the G-causality coefficient was observed during left finger execution and imagery, but it was not observed during right finger execution and imagery phases. These results suggested that different MI-based brain motor function recovery strategies should be taken for right-hand and left-hand patients after brain stroke.
Collapse
|
10
|
Zifman N, Levy-Lamdan O, Suzin G, Efrati S, Tanne D, Fogel H, Dolev I. Introducing a Novel Approach for Evaluation and Monitoring of Brain Health Across Life Span Using Direct Non-invasive Brain Network Electrophysiology. Front Aging Neurosci 2019; 11:248. [PMID: 31551761 PMCID: PMC6745309 DOI: 10.3389/fnagi.2019.00248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/21/2019] [Indexed: 12/17/2022] Open
Abstract
Objective Evaluation and monitoring of brain health throughout aging by direct electrophysiological imaging (DELPHI) which analyzes TMS (transcranial magnetic stimulation) evoked potentials. Methods Transcranial magnetic stimulation evoked potentials formation, coherence and history dependency, measured using electroencephalogram (EEG), was extracted from 80 healthy subjects in different age groups, 25–85 years old, and 20 subjects diagnosed with mild dementia (MD), over 70 years old. Subjects brain health was evaluated using MRI scans, neurocognitive evaluation, and computerized testing and compared to DELPHI analysis of brain network functionality. Results A significant decrease in signal coherence is observed with age in connectivity maps, mostly in inter-hemispheric temporal, and parietal areas. MD patients display a pronounced decrease in global and inter-hemispheric frontal connectivity compared to healthy controls. Early and late signal slope ratio also display a significant, age dependent, change with pronounced early slope, phase shift, between normal healthy aging, and MD. History dependent analysis demonstrates a binary step function classification of healthy brain vs. abnormal aging subjects mostly for late slope. DELPHI measures demonstrate high reproducibility with reliability coefficients of around 0.9. Conclusion These results indicate that features of evoked response, as charge transfer, slopes of response, and plasticity are altered during abnormal aging and that these fundamental properties of network functionality can be directly evaluated and monitored using DELPHI.
Collapse
Affiliation(s)
- Noa Zifman
- QuantalX Neuroscience, Tel Aviv-Yafo, Israel
| | | | - Gil Suzin
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Ramle, Israel
| | - Shai Efrati
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Ramle, Israel.,Sackler School of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - David Tanne
- Sackler School of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv-Yafo, Israel.,Stroke and Cognition Institute, Rambam Healthcare Campus, Haifa, Israel
| | - Hilla Fogel
- QuantalX Neuroscience, Tel Aviv-Yafo, Israel
| | | |
Collapse
|
11
|
Määttä S, Säisänen L, Kallioniemi E, Lakka TA, Lintu N, Haapala EA, Koskenkorva P, Niskanen E, Ferreri F, Könönen M. Maturation changes the excitability and effective connectivity of the frontal lobe: A developmental TMS-EEG study. Hum Brain Mapp 2019; 40:2320-2335. [PMID: 30648321 DOI: 10.1002/hbm.24525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/07/2018] [Accepted: 01/07/2019] [Indexed: 12/22/2022] Open
Abstract
The combination of transcranial magnetic stimulation with simultaneous electroencephalography (TMS-EEG) offers direct neurophysiological insight into excitability and connectivity within neural circuits. However, there have been few developmental TMS-EEG studies to date, and they all have focused on primary motor cortex stimulation. In the present study, we used navigated high-density TMS-EEG to investigate the maturation of the superior frontal cortex (dorsal premotor cortex [PMd]), which is involved in a broad range of motor and cognitive functions known to develop with age. We demonstrated that reactivity to frontal cortex TMS decreases with development. We also showed that although frontal cortex TMS elicits an equally complex TEP waveform in all age groups, the statistically significant between-group differences in the topography of the TMS-evoked peaks and differences in current density maps suggest changes in effective connectivity of the right PMd with maturation. More generally, our results indicate that direct study of the brain's excitability and effective connectivity via TMS-EEG co-registration can also be applied to pediatric populations outside the primary motor cortex, and may provide useful information for developmental studies and studies on developmental neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sara Määttä
- Faculty of Health Sciences, Department of Clinical Neurophysiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio Campus, Finland.,Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| | - Laura Säisänen
- Faculty of Health Sciences, Department of Clinical Neurophysiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio Campus, Finland.,Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| | - Elisa Kallioniemi
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Timo A Lakka
- Faculty of Health Sciences, Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland.,Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland.,Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Niina Lintu
- Faculty of Health Sciences, Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland
| | - Eero A Haapala
- Faculty of Health Sciences, Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland.,Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Päivi Koskenkorva
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Eini Niskanen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Florinda Ferreri
- Department of Neuroscience, Unit of Neurology and Neurophysiology, University of Padua, Padua, Italy
| | - Mervi Könönen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland.,Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
12
|
Tremblay S, Rogasch NC, Premoli I, Blumberger DM, Casarotto S, Chen R, Di Lazzaro V, Farzan F, Ferrarelli F, Fitzgerald PB, Hui J, Ilmoniemi RJ, Kimiskidis VK, Kugiumtzis D, Lioumis P, Pascual-Leone A, Pellicciari MC, Rajji T, Thut G, Zomorrodi R, Ziemann U, Daskalakis ZJ. Clinical utility and prospective of TMS–EEG. Clin Neurophysiol 2019; 130:802-844. [DOI: 10.1016/j.clinph.2019.01.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
|
13
|
Phase-Amplitude Coupling of Neural Oscillations Can Be Effectively Probed with Concurrent TMS-EEG. Neural Plast 2019; 2019:6263907. [PMID: 31049054 PMCID: PMC6462323 DOI: 10.1155/2019/6263907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/12/2019] [Accepted: 01/23/2019] [Indexed: 11/17/2022] Open
Abstract
Despite the widespread use of transcranial magnetic stimulation (TMS), knowledge of its neurophysiological mode of action is still incomplete. Recently, TMS has been proposed to synchronise neural oscillators and to thereby increase the detectability of corresponding oscillations at the population level. As oscillations in the human brain are known to interact within nested hierarchies via phase-amplitude coupling, TMS might also be able to increase the macroscopic detectability of such coupling. In a concurrent TMS-electroencephalography study, we therefore examined the technique's influence on theta-gamma, alpha-gamma, and beta-gamma phase-amplitude coupling by delivering single-pulse TMS (sTMS) and repetitive TMS (rTMS) over the left motor cortex and right visual cortex of healthy participants. The rTMS pulse trains were of 5 Hz, 11 Hz, and 23 Hz for the three coupling variations, respectively. Relative to sham stimulation, all conditions showed transient but significant increases in phase-amplitude coupling at the stimulation site. In addition, we observed enhanced coupling over various other cortical sites, with a more extensive propagation during rTMS than during sTMS. By indicating that scalp-recorded phase-amplitude coupling can be effectively probed with TMS, these findings open the door to the technique's application in manipulative dissections of such coupling during human cognition and behaviour in healthy and pathological conditions.
Collapse
|
14
|
Busan P, Del Ben G, Russo LR, Bernardini S, Natarelli G, Arcara G, Manganotti P, Battaglini PP. Stuttering as a matter of delay in neural activation: A combined TMS/EEG study. Clin Neurophysiol 2019; 130:61-76. [DOI: 10.1016/j.clinph.2018.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 08/27/2018] [Accepted: 10/15/2018] [Indexed: 10/27/2022]
|
15
|
Zanon M, Borgomaneri S, Avenanti A. Action-related dynamic changes in inferior frontal cortex effective connectivity: A TMS/EEG coregistration study. Cortex 2018; 108:193-209. [DOI: 10.1016/j.cortex.2018.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/11/2018] [Accepted: 08/02/2018] [Indexed: 12/19/2022]
|
16
|
Cognitive control activity is modulated by the magnitude of interference and pre-activation of monitoring mechanisms. Sci Rep 2016; 6:39595. [PMID: 27995983 PMCID: PMC5171494 DOI: 10.1038/srep39595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 11/25/2016] [Indexed: 11/09/2022] Open
Abstract
The Simon task is used to study interference from irrelevant spatial information. Interference is manifested by longer reaction times when the required response -based on non-spatial features- is spatially incompatible with stimulus position. Interference is greater when incompatible trials are preceded by compatible trials (compatible-incompatible sequence) than when they are preceded by incompatible trials (incompatible-incompatible sequence). However, the relationships between spatial attention, interference and cognitive control have not been investigated. In the present study, we distinguished three experimental conditions according to sequential effects: same mappings (SM, compatible-compatible/incompatible-incompatible sequences: low interference), opposite mappings (OM, compatible-incompatible/incompatible-compatible sequences: high interference) and unrelated mappings (UM, central-compatible/central-incompatible sequences: intermediate interference). The negativity central contralateral (N2cc, a correlate of prevention of spatial response tendencies) was larger in OM than in SM, indicating greater cognitive control for greater interference. Furthermore, N2cc was larger in UM than in SM/OM, indicating lower neural efficiency for suppressing spatial tendencies of the response after central trials. Attentional processes (negativity posterior contralateral) were also delayed in UM relative to SM/OM, suggesting attentional facilitation by similar sets of attentional shifts in successive trials. Overall, the present findings showed that cognitive control is modulated by the magnitude of interference and pre-activation of monitoring mechanisms.
Collapse
|
17
|
Kitajo K, Hanakawa T, Ilmoniemi RJ, Miniussi C. A contemporary research topic: manipulative approaches to human brain dynamics. Front Hum Neurosci 2015; 9:118. [PMID: 25798100 PMCID: PMC4351636 DOI: 10.3389/fnhum.2015.00118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/16/2015] [Indexed: 02/02/2023] Open
Affiliation(s)
- Keiichi Kitajo
- Rhythm-based Brain Information Processing Unit, RIKEN BSI-TOYOTA Collaboration Center, RIKEN Brain Science Institute Wako, Japan ; Laboratory for Advanced Brain Signal Processing, RIKEN Brain Science Institute Wako, Japan
| | - Takashi Hanakawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry Kodaira, Japan
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science Espoo, Finland
| | - Carlo Miniussi
- Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli Brescia, Italy ; Neuroscience Section, Department of Clinical and Experimental Sciences, University of Brescia Brescia, Italy
| |
Collapse
|
18
|
Läppchen C, Ringer T, Blessin J, Schulz K, Seidel G, Lange R, Hamzei F. Daily iTBS worsens hand motor training — A combined TMS, fMRI and mirror training study. Neuroimage 2015; 107:257-265. [DOI: 10.1016/j.neuroimage.2014.12.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 11/25/2022] Open
|