1
|
Cross N, O'Byrne J, Weiner O, Giraud J, Perrault A, Dang‐Vu T. Phase-Amplitude Coupling of NREM Sleep Oscillations Shows Between-Night Stability and is Related to Overnight Memory Gains. Eur J Neurosci 2025; 61:e70108. [PMID: 40214027 PMCID: PMC11987483 DOI: 10.1111/ejn.70108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/17/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
There is growing evidence in humans linking the temporal coupling between spindles and slow oscillations during NREM sleep with the overnight stabilization of memories encoded from daytime experiences in humans. However, whether the type and strength of learning influence that relationship is still unknown. Here we tested whether the amount or type of verbal word-pair learning prior to sleep affects subsequent phase-amplitude coupling (PAC) between spindles and slow oscillations (SO). We measured the strength and preferred timing of such coupling in the EEG of 41 healthy human participants over a post-learning and control night to compare intra-individual changes with inter-individual differences. We leveraged learning paradigms of varying word-pair (WP) load: 40 WP learned to a minimum criterion of 60% correct (n = 11); 40 WP presented twice (n = 15); 120 WP presented twice (n = 15). There were no significant differences in the preferred phase or strength between the control and post-learning nights, in all learning conditions. We observed an overnight consolidation effect (improved performance at delayed recall) for the criterion learning condition only, and only in this condition was the overnight change in memory performance significantly positively correlated with the phase of SO-spindle coupling. These results suggest that the coupling of brain oscillations during human NREM sleep is stable traits that are not modulated by the amount of pre-sleep learning, yet are implicated in the sleep-dependent consolidation of memory-especially when overnight gains in memory are observed.
Collapse
Affiliation(s)
- Nathan Cross
- Department of Health, Kinesiology and Applied PhysiologyConcordia UniversityMontrealQCCanada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de MontréalMontrealQCCanada
- PERFORM Centre and Centre for Studies in Behavioral NeurobiologyConcordia UniversityMontrealQCCanada
- School of PsychologyThe University of SydneyCamperdownAustralia
| | - Jordan O'Byrne
- Department of Health, Kinesiology and Applied PhysiologyConcordia UniversityMontrealQCCanada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de MontréalMontrealQCCanada
- Department of PsychologyUniversité de MontréalMontrealQCCanada
| | - Oren M. Weiner
- Centre de Recherche de l'Institut Universitaire de Gériatrie de MontréalMontrealQCCanada
- PERFORM Centre and Centre for Studies in Behavioral NeurobiologyConcordia UniversityMontrealQCCanada
- Department of PsychologyConcordia UniversityMontrealQCCanada
| | - Julia Giraud
- Centre de Recherche de l'Institut Universitaire de Gériatrie de MontréalMontrealQCCanada
- Department of PsychologyConcordia UniversityMontrealQCCanada
- Department of NeurosciencesUniversité de MontréalMontrealQCCanada
| | - Aurore A. Perrault
- Department of Health, Kinesiology and Applied PhysiologyConcordia UniversityMontrealQCCanada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de MontréalMontrealQCCanada
- PERFORM Centre and Centre for Studies in Behavioral NeurobiologyConcordia UniversityMontrealQCCanada
| | - Thien Thanh Dang‐Vu
- Department of Health, Kinesiology and Applied PhysiologyConcordia UniversityMontrealQCCanada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de MontréalMontrealQCCanada
- PERFORM Centre and Centre for Studies in Behavioral NeurobiologyConcordia UniversityMontrealQCCanada
- Department of PsychologyConcordia UniversityMontrealQCCanada
| |
Collapse
|
2
|
Pun M, Guadagni V, Longman RS, Hanly PJ, Hill MD, Anderson TJ, Hogan DB, Rawling JM, Poulin M. Sex differences in the association of sleep spindle density and cognitive performance among community-dwelling middle-aged and older adults with obstructive sleep apnea. J Sleep Res 2024; 33:e14095. [PMID: 37963455 DOI: 10.1111/jsr.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Recent studies have found associations between obstructive sleep apnea and cognitive decline. The underlying mechanisms are still unclear. Here, we investigate the associations between changes in micro-architecture, specifically sleep spindles, and cognitive function in community-dwelling middle-aged and older adults, some with obstructive sleep apnea, with a focus on sex differences. A total of 125 voluntary participants (mean age 66.0 ± 6.4 years, 64 females) from a larger cohort (participants of the Brain in Motion Studies I and II) underwent 1 night of in-home polysomnography and a neuropsychological battery (sleep and cognitive testing were conducted within 2 weeks of each other). A semi-automatic computerized algorithm was used to score polysomnography data and detect spindle characteristics in non-rapid eye movement Stages 2 and 3 in both frontal and central electrodes. Based on their apnea-hypopnea index, participants were divided into those with no obstructive sleep apnea (apnea-hypopnea index < 5 per hr, n = 21), mild obstructive sleep apnea (5 ≥ apnea-hypopnea index < 15, n = 47), moderate obstructive sleep apnea (15 ≥ apnea-hypopnea index < 30, n = 34) and severe obstructive sleep apnea (apnea-hypopnea index ≥ 30, n = 23). There were no significant differences in spindle characteristics between the four obstructive sleep apnea severity groups. Spindle density and percentage of fast spindles were positively associated with some verbal fluency measures on the cognitive testing. Sex might be linked with these associations. Biological sex could play a role in the associations between spindle characteristics and some verbal fluency measures. Obstructive sleep apnea severity was not found to be a contributing factor in this non-clinical community-dwelling cohort.
Collapse
Affiliation(s)
- Matiram Pun
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Veronica Guadagni
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Richard Stewart Longman
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Psychology Service, Foothills Medical Centre, Alberta Health Service, Calgary, Alberta, Canada
| | - Patrick J Hanly
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Sleep Centre, Foothills Medical Centre, Calgary, Alberta, Canada
| | - Michael D Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Todd J Anderson
- Department of Cardiac Science, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David B Hogan
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jean M Rawling
- Department of Family Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marc Poulin
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Weiner OM, O'Byrne J, Cross NE, Giraud J, Tarelli L, Yue V, Homer L, Walker K, Carbone R, Dang-Vu TT. Slow oscillation-spindle cross-frequency coupling predicts overnight declarative memory consolidation in older adults. Eur J Neurosci 2024; 59:662-685. [PMID: 37002805 DOI: 10.1111/ejn.15980] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/06/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023]
Abstract
Cross-frequency coupling (CFC) between brain oscillations during non-rapid-eye-movement (NREM) sleep (e.g. slow oscillations [SO] and spindles) may be a neural mechanism of overnight memory consolidation. Declines in CFC across the lifespan might accompany coinciding memory problems with ageing. However, there are few reports of CFC changes during sleep after learning in older adults, controlling for baseline effects. Our objective was to examine NREM CFC in healthy older adults, with an emphasis on spindle activity and SOs from frontal electroencephalogram (EEG), during a learning night after a declarative learning task, as compared to a baseline night without learning. Twenty-five older adults (M [SD] age = 69.12 [5.53] years; 64% female) completed a two-night study, with a pre- and post-sleep word-pair associates task completed on the second night. SO-spindle coupling strength and a measure of coupling phase distance from the SO up-state were both examined for between-night differences and associations with memory consolidation. Coupling strength and phase distance from the up-state peak were both stable between nights. Change in coupling strength between nights was not associated with memory consolidation, but a shift in coupling phase towards (vs. away from) the up-state peak after learning predicted better memory consolidation. Also, an exploratory interaction model suggested that associations between coupling phase closer to the up-state peak and memory consolidation may be moderated by higher (vs. lower) coupling strength. This study supports a role for NREM CFC in sleep-related memory consolidation in older adults.
Collapse
Affiliation(s)
- Oren M Weiner
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l'île-de-Montréal, Montréal, Quebec, Canada
| | - Jordan O'Byrne
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montréal, Quebec, Canada
| | - Nathan E Cross
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l'île-de-Montréal, Montréal, Quebec, Canada
| | - Julia Giraud
- Department of Neurosciences, Université de Montréal, Montréal, Quebec, Canada
| | - Lukia Tarelli
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l'île-de-Montréal, Montréal, Quebec, Canada
| | - Victoria Yue
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
| | - Léa Homer
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
| | - Katherine Walker
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
| | - Roxanne Carbone
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
| | - Thien Thanh Dang-Vu
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l'île-de-Montréal, Montréal, Quebec, Canada
- Department of Neurosciences, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
4
|
Cho S, Choi JH. A guide towards optimal detection of transient oscillatory bursts with unknown parameters. J Neural Eng 2023; 20:046007. [PMID: 37339619 DOI: 10.1088/1741-2552/acdffd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
Objectives. Recent event-based analyses of transient neural activities have characterized the oscillatory bursts as a neural signature that bridges dynamic neural states to cognition and behaviors. Following this insight, our study aimed to (1) compare the efficacy of common burst detection algorithms under varying signal-to-noise ratios and event durations using synthetic signals and (2) establish a strategic guideline for selecting the optimal algorithm for real datasets with undefined properties.Approach.We tested the robustness of burst detection algorithms using a simulation dataset comprising bursts of multiple frequencies. To systematically assess their performance, we used a metric called 'detection confidence', quantifying classification accuracy and temporal precision in a balanced manner. Given that burst properties in empirical data are often unknown in advance, we then proposed a selection rule to identify an optimal algorithm for a given dataset and validated its application on local field potentials of basolateral amygdala recorded from male mice (n=8) exposed to a natural threat.Main Results.Our simulation-based evaluation demonstrated that burst detection is contingent upon event duration, whereas accurately pinpointing burst onsets is more susceptible to noise level. For real data, the algorithm chosen based on the selection rule exhibited superior detection and temporal accuracy, although its statistical significance differed across frequency bands. Notably, the algorithm chosen by human visual screening differed from the one recommended by the rule, implying a potential misalignment between human priors and mathematical assumptions of the algorithms.Significance.Therefore, our findings underscore that the precise detection of transient bursts is fundamentally influenced by the chosen algorithm. The proposed algorithm-selection rule suggests a potentially viable solution, while also emphasizing the inherent limitations originating from algorithmic design and volatile performances across datasets. Consequently, this study cautions against relying solely on heuristic-based approaches, advocating for a careful algorithm selection in burst detection studies.
Collapse
Affiliation(s)
- SungJun Cho
- Center for Neuroscience, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, United Kingdom
| | - Jee Hyun Choi
- Center for Neuroscience, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Neural Sciences, University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
- Department of Physics and Center for Theoretical Physics, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Gonzalez C, Jiang X, Gonzalez-Martinez J, Halgren E. Human Spindle Variability. J Neurosci 2022; 42:4517-4537. [PMID: 35477906 PMCID: PMC9172080 DOI: 10.1523/jneurosci.1786-21.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
In humans, sleep spindles are 10- to 16-Hz oscillations lasting approximately 0.5-2 s. Spindles, along with cortical slow oscillations, may facilitate memory consolidation by enabling synaptic plasticity. Early recordings of spindles at the scalp found anterior channels had overall slower frequency than central-posterior channels. This robust, topographical finding led to dichotomizing spindles as "slow" versus "fast," modeled as two distinct spindle generators in frontal versus posterior cortex. Using a large dataset of intracranial stereoelectroencephalographic (sEEG) recordings from 20 patients (13 female, 7 male) and 365 bipolar recordings, we show that the difference in spindle frequency between frontal and parietal channels is comparable to the variability in spindle frequency within the course of individual spindles, across different spindles recorded by a given site, and across sites within a given region. Thus, fast and slow spindles only capture average differences that obscure a much larger underlying overlap in frequency. Furthermore, differences in mean frequency are only one of several ways that spindles differ. For example, compared with parietal, frontal spindles are smaller, tend to occur after parietal when both are engaged, and show a larger decrease in frequency within-spindles. However, frontal and parietal spindles are similar in being longer, less variable, and more widespread than occipital, temporal, and Rolandic spindles. These characteristics are accentuated in spindles which are highly phase-locked to posterior hippocampal spindles. We propose that rather than a strict parietal-fast/frontal-slow dichotomy, spindles differ continuously and quasi-independently in multiple dimensions, with variability due about equally to within-spindle, within-region, and between-region factors.SIGNIFICANCE STATEMENT Sleep spindles are 10- to 16-Hz neural oscillations generated by cortico-thalamic circuits that promote memory consolidation. Spindles are often dichotomized into slow-anterior and fast-posterior categories for cognitive and clinical studies. Here, we show that the anterior-posterior difference in spindle frequency is comparable to that observed between different cycles of individual spindles, between spindles from a given site, or from different sites within a region. Further, we show that spindles vary on other dimensions such as duration, amplitude, spread, primacy and consistency, and that these multiple dimensions vary continuously and largely independently across cortical regions. These findings suggest that multiple continuous variables rather than a strict frequency dichotomy may be more useful biomarkers for memory consolidation or psychiatric disorders.
Collapse
Affiliation(s)
- Christopher Gonzalez
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California 92093
- Mental Illness Research, Education, and Clinical Center, Veterans Affairs San Diego Healthcare System/University of California San Diego, San Diego, California 92161
| | - Xi Jiang
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California 92093
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Jorge Gonzalez-Martinez
- Epilepsy Center, Cleveland Clinic, Cleveland, Ohio 44106
- Epilepsy and Movement Disorders Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Eric Halgren
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
- Department of Radiology, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
6
|
Bastian L, Samanta A, Ribeiro de Paula D, Weber FD, Schoenfeld R, Dresler M, Genzel L. Spindle-slow oscillation coupling correlates with memory performance and connectivity changes in a hippocampal network after sleep. Hum Brain Mapp 2022; 43:3923-3943. [PMID: 35488512 PMCID: PMC9374888 DOI: 10.1002/hbm.25893] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 11/10/2022] Open
Abstract
After experiences are encoded, post‐encoding reactivations during sleep have been proposed to mediate long‐term memory consolidation. Spindle–slow oscillation coupling during NREM sleep is a candidate mechanism through which a hippocampal‐cortical dialogue may strengthen a newly formed memory engram. Here, we investigated the role of fast spindle‐ and slow spindle–slow oscillation coupling in the consolidation of spatial memory in humans with a virtual watermaze task involving allocentric and egocentric learning strategies. Furthermore, we analyzed how resting‐state functional connectivity evolved across learning, consolidation, and retrieval of this task using a data‐driven approach. Our results show task‐related connectivity changes in the executive control network, the default mode network, and the hippocampal network at post‐task rest. The hippocampal network could further be divided into two subnetworks of which only one showed modulation by sleep. Decreased functional connectivity in this subnetwork was associated with higher spindle–slow oscillation coupling power, which was also related to better memory performance at test. Overall, this study contributes to a more holistic understanding of the functional resting‐state networks and the mechanisms during sleep associated to spatial memory consolidation.
Collapse
Affiliation(s)
- Lisa Bastian
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Anumita Samanta
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Demetrius Ribeiro de Paula
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Frederik D Weber
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Martin Dresler
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Lisa Genzel
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Gombos F, Bódizs R, Pótári A, Bocskai G, Berencsi A, Szakács H, Kovács I. Topographical relocation of adolescent sleep spindles reveals a new maturational pattern in the human brain. Sci Rep 2022; 12:7023. [PMID: 35487959 PMCID: PMC9054798 DOI: 10.1038/s41598-022-11098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/18/2022] [Indexed: 11/23/2022] Open
Abstract
Current theories of human neural development emphasize the posterior-to-anterior pattern of brain maturation. However, this scenario leaves out significant brain areas not directly involved with sensory input and behavioral control. Suggesting the relevance of cortical activity unrelated to sensory stimulation, such as sleep, we investigated adolescent transformations in the topography of sleep spindles. Sleep spindles are known to be involved in neural plasticity and in adults have a bimodal topography: slow spindles are frontally dominant, while fast spindles have a parietal/precuneal origin. The late functional segregation of the precuneus from the frontoparietal network during adolescence suggests that spindle topography might approach the adult state relatively late in development, and it may not be a result of the posterior-to-anterior maturational pattern. We analyzed the topographical distribution of spindle parameters in HD-EEG polysomnographic sleep recordings of adolescents and found that slow spindle duration maxima traveled from central to anterior brain regions, while fast spindle density, amplitude and frequency peaks traveled from central to more posterior brain regions. These results provide evidence for the gradual posteriorization of the anatomical localization of fast sleep spindles during adolescence and indicate the existence of an anterior-to-posterior pattern of human brain maturation.
Collapse
Affiliation(s)
- Ferenc Gombos
- Laboratory for Psychological Research, Pázmány Péter Catholic University, 1 Mikszáth Kálmán Sq., Budapest, 1088, Hungary.,Adolescent Development Research Group, Hungarian Academy of Sciences - Pázmány Péter Catholic University, Budapest, 1088, Hungary
| | - Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Budapest, 1089, Hungary.,National Institute of Clinical Neurosciences, Budapest, 1145, Hungary
| | - Adrián Pótári
- Adolescent Development Research Group, Hungarian Academy of Sciences - Pázmány Péter Catholic University, Budapest, 1088, Hungary
| | - Gábor Bocskai
- Laboratory for Psychological Research, Pázmány Péter Catholic University, 1 Mikszáth Kálmán Sq., Budapest, 1088, Hungary.,Doctoral School of Mental Health Sciences, Semmelweis University, Üllői st. 26, Budapest, 1085, Hungary
| | - Andrea Berencsi
- Adolescent Development Research Group, Hungarian Academy of Sciences - Pázmány Péter Catholic University, Budapest, 1088, Hungary.,Institute for the Methodology of Special Needs Education and Rehabilitation, Bárczi Gusztáv Faculty of Special Needs Education, Eötvös Loránd University, Budapest, 1097, Hungary
| | - Hanna Szakács
- Laboratory for Psychological Research, Pázmány Péter Catholic University, 1 Mikszáth Kálmán Sq., Budapest, 1088, Hungary.,Doctoral School of Mental Health Sciences, Semmelweis University, Üllői st. 26, Budapest, 1085, Hungary
| | - Ilona Kovács
- Laboratory for Psychological Research, Pázmány Péter Catholic University, 1 Mikszáth Kálmán Sq., Budapest, 1088, Hungary. .,Adolescent Development Research Group, Hungarian Academy of Sciences - Pázmány Péter Catholic University, Budapest, 1088, Hungary. .,Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, 1117, Hungary.
| |
Collapse
|
8
|
Association of polygenic risk for schizophrenia with fast sleep spindle density depends on pro-cognitive variants. Eur Arch Psychiatry Clin Neurosci 2022; 272:1193-1203. [PMID: 35723738 PMCID: PMC9508216 DOI: 10.1007/s00406-022-01435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/15/2022] [Indexed: 11/14/2022]
Abstract
Cognitive impairment is a common feature in schizophrenia and the strongest prognostic factor for long-term outcome. Identifying a trait associated with the genetic background for cognitive outcome in schizophrenia may aid in a deeper understanding of clinical disease subtypes. Fast sleep spindles may represent such a biomarker as they are strongly genetically determined, associated with cognitive functioning and impaired in schizophrenia and unaffected relatives. We measured fast sleep spindle density in 150 healthy adults and investigated its association with a genome-wide polygenic score for schizophrenia (SCZ-PGS). The association between SCZ-PGS and fast spindle density was further characterized by stratifying it to the genetic background of intelligence. SCZ-PGS was positively associated with fast spindle density. This association mainly depended on pro-cognitive genetic variants. Our results strengthen the evidence for a genetic background of spindle abnormalities in schizophrenia. Spindle density might represent an easily accessible marker for a favourable cognitive outcome which should be further investigated in clinical samples.
Collapse
|
9
|
Klinzing JG, Tashiro L, Ruf S, Wolff M, Born J, Ngo HVV. Auditory stimulation during sleep suppresses spike activity in benign epilepsy with centrotemporal spikes. Cell Rep Med 2021; 2:100432. [PMID: 34841286 PMCID: PMC8606903 DOI: 10.1016/j.xcrm.2021.100432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 06/12/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022]
Abstract
Benign epilepsy with centrotemporal spikes (BECTS) is a common form of childhood epilepsy linked to diverse cognitive abnormalities. The electroencephalogram of patients shows focal interictal epileptic spikes, particularly during non-rapid eye movement (NonREM) sleep. Spike formation involves thalamocortical networks, which also contribute to the generation of sleep slow oscillations (SOs) and spindles. Motivated by evidence that SO-spindle activity can be controlled through closed-loop auditory stimulation, here, we show in seven patients that auditory stimulation also reduces spike rates in BECTS. Stimulation during NonREM sleep decreases spike rates, with most robust reductions when tones are presented 1.5 to 3.5 s after spikes. Stimulation further reduces the amplitude of spikes closely following tones. Sleep spindles are negatively correlated with spike rates, suggesting that tone-evoked spindle activity mediates the spike suppression. We hypothesize spindle-related refractoriness in thalamocortical circuits as a potential mechanism. Our results open an avenue for the non-pharmacological treatment of BECTS. Spikes in BECTS epilepsy and sleep spindles may share thalamocortical generation Auditory stimulation during sleep evokes sleep spindles and suppresses spikes Stimulation may reduce spiking by inducing thalamocortical refractoriness
Collapse
Affiliation(s)
- Jens G Klinzing
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany.,Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Lilian Tashiro
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Susanne Ruf
- University Children's Hospital Tübingen, 72076 Tübingen, Germany
| | - Markus Wolff
- Department of Pediatric Neurology, Vivantes Hospital Neukölln, 12351 Berlin, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Hong-Viet V Ngo
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany.,Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
10
|
Kurz EM, Conzelmann A, Barth GM, Renner TJ, Zinke K, Born J. How do children with autism spectrum disorder form gist memory during sleep? A study of slow oscillation-spindle coupling. Sleep 2021; 44:zsaa290. [PMID: 33367905 PMCID: PMC8193554 DOI: 10.1093/sleep/zsaa290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Sleep is assumed to support memory through an active systems consolidation process that does not only strengthen newly encoded representations but also facilitates the formation of more abstract gist memories. Studies in humans and rodents indicate a key role of the precise temporal coupling of sleep slow oscillations (SO) and spindles in this process. The present study aimed at bolstering these findings in typically developing (TD) children, and at dissecting particularities in SO-spindle coupling underlying signs of enhanced gist memory formation during sleep found in a foregoing study in children with autism spectrum disorder (ASD) without intellectual impairment. Sleep data from 19 boys with ASD and 20 TD boys (9-12 years) were analyzed. Children performed a picture-recognition task and the Deese-Roediger-McDermott (DRM) task before nocturnal sleep (encoding) and in the next morning (retrieval). Sleep-dependent benefits for visual-recognition memory were comparable between groups but were greater for gist abstraction (recall of DRM critical lure words) in ASD than TD children. Both groups showed a closely comparable SO-spindle coupling, with fast spindle activity nesting in SO-upstates, suggesting that a key mechanism of memory processing during sleep is fully functioning already at childhood. Picture-recognition at retrieval after sleep was positively correlated to frontocortical SO-fast-spindle coupling in TD children, and less in ASD children. Critical lure recall did not correlate with SO-spindle coupling in TD children but showed a negative correlation (r = -.64, p = .003) with parietal SO-fast-spindle coupling in ASD children, suggesting other mechanisms specifically conveying gist abstraction, that may even compete with SO-spindle coupling.
Collapse
Affiliation(s)
- Eva-Maria Kurz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Psychiatry and Psychotherapy, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Annette Conzelmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Psychiatry and Psychotherapy, Tübingen, Germany
- PFH – Private University of Applied Sciences, Department of Psychology (Clinical Psychology II), Göttingen, Germany
| | - Gottfried Maria Barth
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Psychiatry and Psychotherapy, Tübingen, Germany
| | - Tobias J Renner
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Psychiatry and Psychotherapy, Tübingen, Germany
| | - Katharina Zinke
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Institute for Diabetes Research & Metabolic Diseases of the Helmholtz Center Munich at the University Tübingen (IDM), Tübingen, Germany
| |
Collapse
|
11
|
Stokes PA, Prerau MJ. Estimation of Time-Varying Spectral Peaks and Decomposition of EEG Spectrograms. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:218257-218278. [PMID: 33816040 PMCID: PMC8015841 DOI: 10.1109/access.2020.3042737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Detection of spectral peaks and estimation of their properties, including frequency and amplitude, are fundamental to many applications of signal processing. Electroencephalography (EEG) of sleep, in particular, displays characteristic oscillations that change continuously throughout the night. Capturing these dynamics is essential to understanding the sleep process and characterizing the heterogeneity observed across individuals. Most sleep EEG analyses rely on either time-averaged spectra or bandpassed amplitude/power. Unfortunately, these approaches obscure the time-variability of peak properties, require specification of a priori criteria, and cannot distinguish power from nearby oscillations. More sophisticated approaches, using various spectral models, have been proposed to better estimate oscillatory properties, but these too have limitations. We present an improved approach to spectrogram decomposition, tracking time-varying parameterized peak functions and dynamically estimating their parameters using a modified form of the iterated extended Kalman filter (IEKF) that incorporates discrete On/Off-switching of peak combinations and a sampling step to draw the initial reference trajectory. We evaluate this approach on two types of simulated examples-one nearly within the model class and one outside. We find excellent performance, in terms of spectral fits and accuracy of estimated states, for both simulation types. We then apply the approach to real EEG data of sleep onset, obtaining quality spectral estimates with estimated peak combinations closely matching the expert-scored sleep stages. This approach offers not only the ability to estimate time-varying parameters of spectral peaks but, moving forward, the potential to estimate the governing dynamics and analyze their variability across nights, subjects, and clinical groups.
Collapse
Affiliation(s)
- Patrick A Stokes
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Michael J Prerau
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
12
|
Au CH, Harvey CJ. Systematic review: the relationship between sleep spindle activity with cognitive functions, positive and negative symptoms in psychosis. Sleep Med X 2020; 2:100025. [PMID: 33870177 PMCID: PMC8041130 DOI: 10.1016/j.sleepx.2020.100025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/07/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sleep disturbances are associated with worse cognitive and psychotic symptoms in individuals with schizophrenia. Growing literature reveals sleep spindle deficits in schizophrenia may be an endophenotype reflecting a dysfunctional thalamo-thalamic reticular nucleus-cortical circuit. Since thalamic functions link to cognitive, positive and negative symptoms, it is possible that sleep spindle activity is associated with these symptoms. The primary objectives of this systematic review were to assess the associations of sleep spindle activity in psychotic patients with 1) cognitive functions; and 2) positive and negative symptom severity. A secondary objective was to examine which spindle parameter would be the most consistent parameter correlating with cognitive functions, and positive and negative symptoms. METHOD Observational studies reporting an association between sleep spindle activity and cognitive functions, positive and negative symptoms in patients with psychotic disorders were considered eligible. We developed a comprehensive electronic search strategy to identify peer-reviewed studies in Pubmed, Embase, PsycINFO and CINAHL covering all dates up to the search date in May 2020 with no language restriction. The references of published articles were hand-searched for additional materials. The authors of published articles were contacted for newer or unpublished data. Risk of bias was assessed by Appraisal of Cross-sectional Studies (AXIS). RESULTS A total 11 cross-sectional studies (n = 255) with low-to-moderate quality, were selected for the systematic review. 8 of them addressed the association between sleep spindle activity and cognitive functions (n = 193), of which 6 studies reported positive correlations (r only reported in 4 studies, from 0.45 to 0.75). Out of multiple cognitive domains, we have only found attention/cognitive processing speed to have a more consistent positive association with sleep spindle activity. On the other hand, 8 studies investigated the relationship between sleep spindle and positive/negative symptom severity (n = 190), but findings were inconsistent. Spindle density is the most consistent parameter correlating with cognitive functions, while the best spindle parameter for correlating with positive and negative symptom severity cannot be identified due to mixed results. DISCUSSION This systematic review confirms the linkage between sleep spindle activity and cognitive functions. However, included studies had small sample sizes, with high risks of sampling and response bias. Moreover, confounders were often not controlled. The heterogeneous report of spindle parameters and use of cognitive assessment tools rendered meta-analysis infeasible. It is necessary to examine the longitudinal change of sleep spindle activity with the course of illness, as well as the effect of sleep spindle enhancing agents on cognitive function.
Collapse
|
13
|
Hahn MA, Heib D, Schabus M, Hoedlmoser K, Helfrich RF. Slow oscillation-spindle coupling predicts enhanced memory formation from childhood to adolescence. eLife 2020; 9:e53730. [PMID: 32579108 PMCID: PMC7314542 DOI: 10.7554/elife.53730] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
Precise temporal coordination of slow oscillations (SO) and sleep spindles is a fundamental mechanism of sleep-dependent memory consolidation. SO and spindle morphology changes considerably throughout development. Critically, it remains unknown how the precise temporal coordination of these two sleep oscillations develops during brain maturation and whether their synchronization indexes the development of memory networks. Here, we use a longitudinal study design spanning from childhood to adolescence, where participants underwent polysomnography and performed a declarative word-pair learning task. Performance on the memory task was better during adolescence. After disentangling oscillatory components from 1/f activity, we found frequency shifts within SO and spindle frequency bands. Consequently, we devised an individualized cross-frequency coupling approach, which demonstrates that SO-spindle coupling strength increases during maturation. Critically, this increase indicated enhanced memory formation from childhood to adolescence. Our results provide evidence that improved coordination between SOs and spindles indexes the development of sleep-dependent memory networks.
Collapse
Affiliation(s)
- Michael A Hahn
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Dominik Heib
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Manuel Schabus
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Kerstin Hoedlmoser
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Randolph F Helfrich
- Hertie-Institute for Clinical Brain Research, University of TübingenTübingenGermany
| |
Collapse
|
14
|
Iotchev IB, Szabó D, Kis A, Kubinyi E. Possible association between spindle frequency and reversal-learning in aged family dogs. Sci Rep 2020; 10:6505. [PMID: 32300165 PMCID: PMC7162895 DOI: 10.1038/s41598-020-63573-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
In both humans and dogs sleep spindle occurrence between acquisition and recall of a specific memory correlate with learning performance. However, it is not known whether sleep spindle characteristics are also linked to performance beyond the span of a day, except in regard to general mental ability in humans. Such a relationship is likely, as both memory and spindle expression decline with age in both species (in dogs specifically the density and amplitude of slow spindles). We investigated if spindle amplitude, density (spindles/minute) and/or frequency (waves/second) correlate with performance on a short-term memory and a reversal-learning task in old dogs (> 7 years), when measurements of behavior and EEG were on average a month apart. Higher frequencies of fast (≥ 13 Hz) spindles on the frontal and central midline electrodes, and of slow spindles (≤ 13 Hz) on the central midline electrode were linked to worse performance on a reversal-learning task. The present findings suggest a role for spindle frequency as a biomarker of cognitive aging across species: Changes in spindle frequency are associated with dementia risk and onset in humans and declining learning performance in the dog.
Collapse
Affiliation(s)
| | - Dóra Szabó
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Anna Kis
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Enikő Kubinyi
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
15
|
Muehlroth BE, Sander MC, Fandakova Y, Grandy TH, Rasch B, Lee Shing Y, Werkle-Bergner M. Memory quality modulates the effect of aging on memory consolidation during sleep: Reduced maintenance but intact gain. Neuroimage 2020; 209:116490. [PMID: 31883456 PMCID: PMC7068706 DOI: 10.1016/j.neuroimage.2019.116490] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 12/10/2019] [Accepted: 12/21/2019] [Indexed: 01/29/2023] Open
Abstract
Successful consolidation of associative memories relies on the coordinated interplay of slow oscillations and sleep spindles during non-rapid eye movement (NREM) sleep. This enables the transfer of labile information from the hippocampus to permanent memory stores in the neocortex. During senescence, the decline of the structural and functional integrity of the hippocampus and neocortical regions is paralleled by changes of the physiological events that stabilize and enhance associative memories during NREM sleep. However, the currently available evidence is inconclusive as to whether and under which circumstances memory consolidation is impacted during aging. To approach this question, 30 younger adults (19-28 years) and 36 older adults (63-74 years) completed a memory task based on scene-word associations. By tracing the encoding quality of participants' individual memory associations, we demonstrate that previous learning determines the extent of age-related impairments in memory consolidation. Specifically, the detrimental effects of aging on memory maintenance were greatest for mnemonic contents of intermediate encoding quality, whereas memory gain of poorly encoded memories did not differ by age. Ambulatory polysomnography (PSG) and structural magnetic resonance imaging (MRI) data were acquired to extract potential predictors of memory consolidation from each participant's NREM sleep physiology and brain structure. Partial Least Squares Correlation was used to identify profiles of interdependent alterations in sleep physiology and brain structure that are characteristic for increasing age. Across age groups, both the 'aged' sleep profile, defined by decreased slow-wave activity (0.5-4.5 Hz), and a reduced presence of slow oscillations (0.5-1 Hz), slow, and fast spindles (9-12.5 Hz; 12.5-16 Hz), as well as the 'aged' brain structure profile, characterized by gray matter reductions in the medial prefrontal cortex, thalamus, entorhinal cortex, and hippocampus, were associated with reduced memory maintenance. However, inter-individual differences in neither sleep nor structural brain integrity alone qualified as the driving force behind age differences in sleep-dependent consolidation in the present study. Our results underscore the need for novel and age-fair analytic tools to provide a mechanistic understanding of age differences in memory consolidation.
Collapse
Affiliation(s)
- Beate E Muehlroth
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany.
| | - Myriam C Sander
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany
| | - Yana Fandakova
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany
| | - Thomas H Grandy
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany
| | - Björn Rasch
- Department of Psychology, University of Fribourg, Rue P.-A.-de-Faucigny 2, 1701, Fribourg, Switzerland
| | - Yee Lee Shing
- Department of Developmental Psychology, Goethe University Frankfurt, Theodor-W.-Adorno-Platz 6, 60629, Frankfurt Am Main, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany.
| |
Collapse
|
16
|
Abstract
Sleep spindles are burstlike signals in the electroencephalogram (EEG) of the sleeping mammalian brain and electrical surface correlates of neuronal oscillations in thalamus. As one of the most inheritable sleep EEG signatures, sleep spindles probably reflect the strength and malleability of thalamocortical circuits that underlie individual cognitive profiles. We review the characteristics, organization, regulation, and origins of sleep spindles and their implication in non-rapid-eye-movement sleep (NREMS) and its functions, focusing on human and rodent. Spatially, sleep spindle-related neuronal activity appears on scales ranging from small thalamic circuits to functional cortical areas, and generates a cortical state favoring intracortical plasticity while limiting cortical output. Temporally, sleep spindles are discrete events, part of a continuous power band, and elements grouped on an infraslow time scale over which NREMS alternates between continuity and fragility. We synthesize diverse and seemingly unlinked functions of sleep spindles for sleep architecture, sensory processing, synaptic plasticity, memory formation, and cognitive abilities into a unifying sleep spindle concept, according to which sleep spindles 1) generate neural conditions of large-scale functional connectivity and plasticity that outlast their appearance as discrete EEG events, 2) appear preferentially in thalamic circuits engaged in learning and attention-based experience during wakefulness, and 3) enable a selective reactivation and routing of wake-instated neuronal traces between brain areas such as hippocampus and cortex. Their fine spatiotemporal organization reflects NREMS as a physiological state coordinated over brain and body and may indicate, if not anticipate and ultimately differentiate, pathologies in sleep and neurodevelopmental, -degenerative, and -psychiatric conditions.
Collapse
Affiliation(s)
- Laura M J Fernandez
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Cox R, Mylonas DS, Manoach DS, Stickgold R. Large-scale structure and individual fingerprints of locally coupled sleep oscillations. Sleep 2019; 41:5089926. [PMID: 30184179 DOI: 10.1093/sleep/zsy175] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 11/14/2022] Open
Abstract
Slow oscillations and sleep spindles, the canonical electrophysiological oscillations of nonrapid eye movement sleep, are thought to gate incoming sensory information, underlie processes of sleep-dependent memory consolidation, and are altered in various neuropsychiatric disorders. Accumulating evidence of the predominantly local expression of these individual oscillatory rhythms suggests that their cross-frequency interactions may have a similar local component. However, it is unclear whether locally coordinated sleep oscillations exist across the cortex, and whether and how these dynamics differ between fast and slow spindles, and sleep stages. Moreover, substantial individual variability in the expression of both spindles and slow oscillations raises the possibility that their temporal organization shows similar individual differences. Using two nights of multichannel electroencephalography recordings from 24 healthy individuals, we characterized the topography of slow oscillation-spindle coupling. We found that while slow oscillations are highly restricted in spatial extent, the phase of the local slow oscillation modulates local spindle activity at virtually every cortical site. However, coupling dynamics varied with spindle class, sleep stage, and cortical region. Moreover, the slow oscillation phase at which spindles were maximally expressed differed markedly across individuals while remaining stable across nights. These findings both add an important spatial aspect to our understanding of the temporal coupling of sleep oscillations and demonstrate the heterogeneity of coupling dynamics, which must be taken into account when formulating mechanistic accounts of sleep-related memory processing.
Collapse
Affiliation(s)
- Roy Cox
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA.,Department of Psychiatry, Harvard Medical School, Boston, MA.,Department of Epileptology, University of Bonn, Germany
| | - Dimitris S Mylonas
- Department of Psychiatry, Harvard Medical School, Boston, MA.,Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA.,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA
| | - Dara S Manoach
- Department of Psychiatry, Harvard Medical School, Boston, MA.,Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA.,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA.,Department of Psychiatry, Harvard Medical School, Boston, MA
| |
Collapse
|
18
|
Cox R, Rüber T, Staresina BP, Fell J. Heterogeneous profiles of coupled sleep oscillations in human hippocampus. Neuroimage 2019; 202:116178. [PMID: 31505272 PMCID: PMC6853182 DOI: 10.1016/j.neuroimage.2019.116178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 11/24/2022] Open
Abstract
Cross-frequency coupling of sleep oscillations is thought to mediate memory consolidation. While the hippocampus is deemed central to this process, detailed knowledge of which oscillatory rhythms interact in the sleeping human hippocampus is lacking. Combining intracranial hippocampal and non-invasive electroencephalography from twelve neurosurgical patients, we characterized spectral power and coupling during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Hippocampal coupling was extensive, with the majority of channels expressing spectral interactions. NREM consistently showed delta–ripple coupling, but ripples were also modulated by slow oscillations (SOs) and sleep spindles. SO–delta and SO–theta coupling, as well as interactions between delta/theta and spindle/beta frequencies also occurred. During REM, limited interactions between delta/theta and beta frequencies emerged. Moreover, oscillatory organization differed substantially between i) hippocampus and scalp, ii) sites along the anterior-posterior hippocampal axis, and iii) individuals. Overall, these results extend and refine our understanding of hippocampal sleep oscillations. Sleep oscillations in human hippocampus exhibit cross-frequency coupling during non-rapid eye movement sleep Coupling occurs between various frequency pairs, including slow oscillation, delta, theta, spindle, beta, and ripple bands Oscillatory organization varies between hippocampus and scalp, sites along the hippocampal axis, and individuals
Collapse
Affiliation(s)
- Roy Cox
- Department of Epileptology, University of Bonn, Bonn, Germany.
| | - Theodor Rüber
- Department of Epileptology, University of Bonn, Bonn, Germany; Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany; Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Juergen Fell
- Department of Epileptology, University of Bonn, Bonn, Germany
| |
Collapse
|
19
|
Muehlroth BE, Sander MC, Fandakova Y, Grandy TH, Rasch B, Shing YL, Werkle-Bergner M. Precise Slow Oscillation-Spindle Coupling Promotes Memory Consolidation in Younger and Older Adults. Sci Rep 2019; 9:1940. [PMID: 30760741 PMCID: PMC6374430 DOI: 10.1038/s41598-018-36557-z] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/25/2018] [Indexed: 01/17/2023] Open
Abstract
Memory consolidation during sleep relies on the precisely timed interaction of rhythmic neural events. Here, we investigate differences in slow oscillations (SO; 0.5-1 Hz), sleep spindles (SP), and their coupling across the adult human lifespan and ask whether observed alterations relate to the ability to retain associative memories across sleep. We demonstrate that older adults do not show the fine-tuned coupling of fast SPs (12.5-16 Hz) to the SO peak present in younger adults but, instead, are characterized most by a slow SP power increase (9-12.5 Hz) at the end of the SO up-state. This slow SP power increase, typical for older adults, coincides with worse memory consolidation in young age already, whereas the tight precision of SO-fast SP coupling promotes memory consolidation across younger and older adults. Crucially, brain integrity in source regions of SO and SP generation, including the medial prefrontal cortex, thalamus, hippocampus and entorhinal cortex, reinforces this beneficial SO-SP coupling in old age. Our results reveal that cognitive functioning is not only determined by maintaining structural brain integrity across the adult lifespan, but also by the preservation of precisely timed neural interactions during sleep that enable the consolidation of declarative memories.
Collapse
Affiliation(s)
- Beate E Muehlroth
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
| | - Myriam C Sander
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Yana Fandakova
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Thomas H Grandy
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Björn Rasch
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Yee Lee Shing
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Department of Developmental Psychology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
| |
Collapse
|
20
|
Simor P, Zavecz Z, Horváth K, Éltető N, Török C, Pesthy O, Gombos F, Janacsek K, Nemeth D. Deconstructing Procedural Memory: Different Learning Trajectories and Consolidation of Sequence and Statistical Learning. Front Psychol 2019; 9:2708. [PMID: 30687169 PMCID: PMC6333905 DOI: 10.3389/fpsyg.2018.02708] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/17/2018] [Indexed: 11/13/2022] Open
Abstract
Procedural learning is a fundamental cognitive function that facilitates efficient processing of and automatic responses to complex environmental stimuli. Here, we examined training-dependent and off-line changes of two sub-processes of procedural learning: namely, sequence learning and statistical learning. Whereas sequence learning requires the acquisition of order-based relationships between the elements of a sequence, statistical learning is based on the acquisition of probabilistic associations between elements. Seventy-eight healthy young adults (58 females and 20 males) completed the modified version of the Alternating Serial Reaction Time task that was designed to measure Sequence and Statistical Learning simultaneously. After training, participants were randomly assigned to one of three conditions: active wakefulness, quiet rest, or daytime sleep. We examined off-line changes in Sequence and Statistical Learning as well as further improvements after extended practice. Performance in Sequence Learning increased during training, while Statistical Learning plateaued relatively rapidly. After the off-line period, both the acquired sequence and statistical knowledge was preserved, irrespective of the vigilance state (awake, quiet rest or sleep). Sequence Learning further improved during extended practice, while Statistical Learning did not. Moreover, within the sleep group, cortical oscillations and sleep spindle parameters showed differential associations with Sequence and Statistical Learning. Our findings can contribute to a deeper understanding of the dynamic changes of multiple parallel learning and consolidation processes that occur during procedural memory formation.
Collapse
Affiliation(s)
- Peter Simor
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Zsofia Zavecz
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE NAP Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kata Horváth
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE NAP Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Noémi Éltető
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Csenge Török
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Orsolya Pesthy
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ferenc Gombos
- Department of General Psychology, Pázmány Péter Catholic University, Budapest, Hungary
- MTA-PPKE Adolescent Development Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE NAP Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dezso Nemeth
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE NAP Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Lyon Neuroscience Research Center (CRNL), Université de Lyon, Lyon, France
| |
Collapse
|
21
|
Farmer CA, Chilakamarri P, Thurm AE, Swedo SE, Holmes GL, Buckley AW. Spindle activity in young children with autism, developmental delay, or typical development. Neurology 2018; 91:e112-e122. [PMID: 29875224 DOI: 10.1212/wnl.0000000000005759] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To determine whether spindle activity differs in young children with and without autism. METHODS We investigated differences in spindle density, duration, and oscillatory features in 135 young children with autism, developmental delay without autism (DD), or typical development (TD) and secondarily assessed the dimensional relationship between spindle density and both cognitive ability and social functioning. RESULTS Compared to TD, both spindle density (Cohen d 0.93, 95% confidence interval [CI] 0.49-1.37) and duration (Cohen d 0.58, 95% CI 0.15-1.01) were significantly decreased in autism. Spindle density was also significantly reduced in autism compared to DD (Cohen d 0.61, 95% CI 0.13-1.09). Decreased spindle frequency in autism compared to both TD (Cohen d 0.47, 95% CI 0.04-0.90) and DD (Cohen d 0.58, 95% CI 0.10-1.06) did not survive correction. The DD group did not differ significantly from the TD group on any spindle parameter. These results, suggesting a relationship between spindle density and autism but not DD, were further illustrated in exploratory analyses, wherein nonverbal ratio IQ (RIQ) and the Vineland Socialization domain standard score were strongly correlated with spindle density in the full sample (r = 0.33, p ≤ 001 and r = 0.41, p ≤ 001, respectively) but not within group. After nonverbal RIQ was accounted for, the relationship between spindle density and Vineland Socialization remained statistically significant (r = 0.23, p < 0.01). However, Vineland Socialization scores accounted for the relationship between spindle density and nonverbal RIQ (r = 0.04, p = 0.67). CONCLUSION In a large cohort of young children with autism, spindle density was reduced compared to groups of age-matched children with DD or TD. Alterations in the maturational trajectory of spindles may provide valuable insight into the neurophysiologic differences related to behavior in disorders of neurodevelopment.
Collapse
Affiliation(s)
- Cristan A Farmer
- From the National Institute of Mental Health (C.A.F., A.E.T., S.E.S., A.W.B.), NIH, Bethesda, MD; and Department of Neurological Sciences (P.C., G.L.H.), University of Vermont, Burlington
| | - Priyanka Chilakamarri
- From the National Institute of Mental Health (C.A.F., A.E.T., S.E.S., A.W.B.), NIH, Bethesda, MD; and Department of Neurological Sciences (P.C., G.L.H.), University of Vermont, Burlington
| | - Audrey E Thurm
- From the National Institute of Mental Health (C.A.F., A.E.T., S.E.S., A.W.B.), NIH, Bethesda, MD; and Department of Neurological Sciences (P.C., G.L.H.), University of Vermont, Burlington
| | - Susan E Swedo
- From the National Institute of Mental Health (C.A.F., A.E.T., S.E.S., A.W.B.), NIH, Bethesda, MD; and Department of Neurological Sciences (P.C., G.L.H.), University of Vermont, Burlington
| | - Gregory L Holmes
- From the National Institute of Mental Health (C.A.F., A.E.T., S.E.S., A.W.B.), NIH, Bethesda, MD; and Department of Neurological Sciences (P.C., G.L.H.), University of Vermont, Burlington
| | - Ashura W Buckley
- From the National Institute of Mental Health (C.A.F., A.E.T., S.E.S., A.W.B.), NIH, Bethesda, MD; and Department of Neurological Sciences (P.C., G.L.H.), University of Vermont, Burlington.
| |
Collapse
|
22
|
Seshagiri DV, Botta R, Sasidharan A, Kumar Pal P, Jain S, Yadav R, Kutty BM. Assessment of Sleep Spindle Density among Genetically Positive Spinocerebellar Ataxias Types 1, 2, and 3 Patients. Ann Neurosci 2018; 25:106-111. [PMID: 30140122 DOI: 10.1159/000484516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/19/2017] [Indexed: 01/18/2023] Open
Abstract
Objective The effect of thalamic degeneration in patients with spinocerebellar ataxias (SCA) and sleep spindle (SS) abnormalities has not been studied so far, although there is a strong association between these disorders. This study was done to evaluate and compare the SS densities (SSDs) of genetically proven autosomal dominant SCA1, SCA2 and SCA3 patients with controls. Methods Prospectively and genetically confirmed cases of SCA and controls were recruited. Patients were assessed clinically, were evaluated with sleep questionnaires and an overnight polysomnography was performed. SSDs were analyzed using neuroloop gain plugin of Polyman version 1.15 software. Results Eighteen patients of SCA1 (n = 6), SCA2 (n = 5), SCA3 (n = 7) and 6 controls were recruited in our study. The mean age of SCA1 patients was 39.2 ± 5.4, of SCA2 patients was 30.8 ± 9.5 and of SCA3 patients was 35.4 ± 6.4 years. The mean duration of illness in SCA1 was 4.7 ± 1.7 years, in SCA2 it was 4.3 ± 4.4 years and in SCA3 it was 5 ± 2.3 years. The median SSD values (percentage loop gain) during stage 2 of non-rapid eye movement sleep were 16.9% in SCA1, 0% in SCA2, 1.2% in SCA3 and 59.5% in controls. There was a significant difference in SSD values in SCA2 (p = 0.04), SCA3 (p = 0.02) patients and controls. Conclusion SSDs were significantly decreased in patients with SCA, which is a novel finding. This is likely due to the "thalamic switch" disruption, observed as reduced SSDs in SCA2 and SCA3. Sleep spindle deficits could act as one of the biomarkers of ongoing neurodegeneration in the thalamic circuitry of SCA patients.
Collapse
Affiliation(s)
| | - Ragasudha Botta
- Department of Clinical Neurosciences, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Arun Sasidharan
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Pramod Kumar Pal
- Department of Clinical Neurosciences, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Ravi Yadav
- Department of Clinical Neurosciences, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| |
Collapse
|
23
|
Cox R, Schapiro AC, Manoach DS, Stickgold R. Individual Differences in Frequency and Topography of Slow and Fast Sleep Spindles. Front Hum Neurosci 2017; 11:433. [PMID: 28928647 PMCID: PMC5591792 DOI: 10.3389/fnhum.2017.00433] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/15/2017] [Indexed: 11/25/2022] Open
Abstract
Sleep spindles are transient oscillatory waveforms that occur during non-rapid eye movement (NREM) sleep across widespread cortical areas. In humans, spindles can be classified as either slow or fast, but large individual differences in spindle frequency as well as methodological difficulties have hindered progress towards understanding their function. Using two nights of high-density electroencephalography recordings from 28 healthy individuals, we first characterize the individual variability of NREM spectra and demonstrate the difficulty of determining subject-specific spindle frequencies. We then introduce a novel spatial filtering approach that can reliably separate subject-specific spindle activity into slow and fast components that are stable across nights and across N2 and N3 sleep. We then proceed to provide detailed analyses of the topographical expression of individualized slow and fast spindle activity. Group-level analyses conform to known spatial properties of spindles, but also uncover novel differences between sleep stages and spindle classes. Moreover, subject-specific examinations reveal that individual topographies show considerable variability that is stable across nights. Finally, we demonstrate that topographical maps depend nontrivially on the spindle metric employed. In sum, our findings indicate that group-level approaches mask substantial individual variability of spindle dynamics, in both the spectral and spatial domains. We suggest that leveraging, rather than ignoring, such differences may prove useful to further our understanding of the physiology and functional role of sleep spindles.
Collapse
Affiliation(s)
- Roy Cox
- Department of Psychiatry, Beth Israel Deaconess Medical CenterBoston, MA, United States.,Department of Psychiatry, Harvard Medical SchoolBoston, MA, United States
| | - Anna C Schapiro
- Department of Psychiatry, Beth Israel Deaconess Medical CenterBoston, MA, United States.,Department of Psychiatry, Harvard Medical SchoolBoston, MA, United States
| | - Dara S Manoach
- Department of Psychiatry, Harvard Medical SchoolBoston, MA, United States.,Department of Psychiatry, Massachusetts General HospitalCharlestown, MA, United States.,Athinoula A. Martinos Center for Biomedical ImagingCharlestown, MA, United States
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical CenterBoston, MA, United States.,Department of Psychiatry, Harvard Medical SchoolBoston, MA, United States
| |
Collapse
|
24
|
Ioannides AA, Liu L, Poghosyan V, Kostopoulos GK. Using MEG to Understand the Progression of Light Sleep and the Emergence and Functional Roles of Spindles and K-Complexes. Front Hum Neurosci 2017; 11:313. [PMID: 28670270 PMCID: PMC5472839 DOI: 10.3389/fnhum.2017.00313] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 05/31/2017] [Indexed: 12/20/2022] Open
Abstract
We used tomographic analysis of MEG signals to characterize regional spectral changes in the brain at sleep onset and during light sleep. We identified two key processes that may causally link to loss of consciousness during the quiet or "core" periods of NREM1. First, active inhibition in the frontal lobe leads to delta and theta spectral power increases. Second, activation suppression leads to sharp drop of spectral power in alpha and higher frequencies in posterior parietal cortex. During NREM2 core periods, the changes identified in NREM1 become more widespread, but focal increases also emerge in alpha and low sigma band power in frontal midline cortical structures, suggesting reemergence of some monitoring of internal and external environment. Just before spindles and K-complexes (KCs), the hallmarks of NREM2, we identified focal spectral power changes in pre-frontal cortex, mid cingulate, and areas involved in environmental and internal monitoring, i.e., the rostral and sub-genual anterior cingulate. During both spindles and KCs, alpha and low sigma bands increases. Spindles emerge after further active inhibition (increase in delta power) of the frontal areas responsible for environmental monitoring, while in posterior parietal cortex, power increases in low and high sigma bands. KCs are correlated with increase in alpha power in the monitoring areas. These specific regional changes suggest strong and varied vigilance changes for KCs, but vigilance suppression and sharpening of cognitive processing for spindles. This is consistent with processes designed to ensure accurate and uncorrupted memory consolidation. The changes during KCs suggest a sentinel role: evaluation of the salience of provoking events to decide whether to increase processing and possibly wake up, or to actively inhibit further processing of intruding influences. The regional spectral patterns of NREM1, NREM2, and their dynamic changes just before spindles and KCs reveal an edge effect facilitating the emergence of spindles and KCs and defining the precise loci where they might emerge. In the time domain, the spindles are seen in widespread areas of the cortex just as reported from analysis of intracranial data, consistent with the emerging consensus of a differential topography that depends on the kind of memory stored.
Collapse
Affiliation(s)
- Andreas A. Ioannides
- Laboratory for Human Brain Dynamics, AAI Scientific Cultural Services Ltd.Nicosia, Cyprus
| | - Lichan Liu
- Laboratory for Human Brain Dynamics, AAI Scientific Cultural Services Ltd.Nicosia, Cyprus
| | - Vahe Poghosyan
- Laboratory for Human Brain Dynamics, AAI Scientific Cultural Services Ltd.Nicosia, Cyprus
- MEG Unit, Department of Neurophysiology, King Fahad Medical CityRiyadh, Saudi Arabia
| | - George K. Kostopoulos
- Neurophysiology Unit, Department of Physiology, Medical School, University of PatrasRion, Greece
| |
Collapse
|
25
|
Laventure S, Fogel S, Lungu O, Albouy G, Sévigny-Dupont P, Vien C, Sayour C, Carrier J, Benali H, Doyon J. NREM2 and Sleep Spindles Are Instrumental to the Consolidation of Motor Sequence Memories. PLoS Biol 2016; 14:e1002429. [PMID: 27032084 PMCID: PMC4816304 DOI: 10.1371/journal.pbio.1002429] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 03/11/2016] [Indexed: 11/18/2022] Open
Abstract
Although numerous studies have convincingly demonstrated that sleep plays a critical role in motor sequence learning (MSL) consolidation, the specific contribution of the different sleep stages in this type of memory consolidation is still contentious. To probe the role of stage 2 non-REM sleep (NREM2) in this process, we used a conditioning protocol in three different groups of participants who either received an odor during initial training on a motor sequence learning task and were re-exposed to this odor during different sleep stages of the post-training night (i.e., NREM2 sleep [Cond-NREM2], REM sleep [Cond-REM], or were not conditioned during learning but exposed to the odor during NREM2 [NoCond]). Results show that the Cond-NREM2 group had significantly higher gains in performance at retest than both the Cond-REM and NoCond groups. Also, only the Cond-NREM2 group yielded significant changes in sleep spindle characteristics during cueing. Finally, we found that a change in frequency of sleep spindles during cued-memory reactivation mediated the relationship between the experimental groups and gains in performance the next day. These findings strongly suggest that cued-memory reactivation during NREM2 sleep triggers an increase in sleep spindle activity that is then related to the consolidation of motor sequence memories.
Collapse
Affiliation(s)
- Samuel Laventure
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Quebec, Canada
| | - Stuart Fogel
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Quebec, Canada
- Department of Psychology, Western University, The Brain & Mind Institute, London, Ontario, Canada
| | - Ovidiu Lungu
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Quebec, Canada
| | - Geneviève Albouy
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Quebec, Canada
- KU Leuven, Leuven, Belgium
| | | | - Catherine Vien
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Quebec, Canada
| | - Chadi Sayour
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Quebec, Canada
| | - Julie Carrier
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Quebec, Canada
- Center for Advanced Research in Sleep Medicine, Montreal, Quebec, Canada
| | - Habib Benali
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale (LIB), Paris, France
| | - Julien Doyon
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Quebec, Canada
| |
Collapse
|
26
|
Ujma PP, Bódizs R, Gombos F, Stintzing J, Konrad BN, Genzel L, Steiger A, Dresler M. Nap sleep spindle correlates of intelligence. Sci Rep 2015; 5:17159. [PMID: 26607963 PMCID: PMC4660428 DOI: 10.1038/srep17159] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/26/2015] [Indexed: 11/09/2022] Open
Abstract
Sleep spindles are thalamocortical oscillations in non-rapid eye movement (NREM) sleep, that play an important role in sleep-related neuroplasticity and offline information processing. Several studies with full-night sleep recordings have reported a positive association between sleep spindles and fluid intelligence scores, however more recently it has been shown that only few sleep spindle measures correlate with intelligence in females, and none in males. Sleep spindle regulation underlies a circadian rhythm, however the association between spindles and intelligence has not been investigated in daytime nap sleep so far. In a sample of 86 healthy male human subjects, we investigated the correlation between fluid intelligence and sleep spindle parameters in an afternoon nap of 100 minutes. Mean sleep spindle length, amplitude and density were computed for each subject and for each derivation for both slow and fast spindles. A positive association was found between intelligence and slow spindle duration, but not any other sleep spindle parameter. As a positive correlation between intelligence and slow sleep spindle duration in full-night polysomnography has only been reported in females but not males, our results suggest that the association between intelligence and sleep spindles is more complex than previously assumed.
Collapse
Affiliation(s)
- Péter P Ujma
- Institute of Behavioural Sciences, Semmelweis University, H-1089 Budapest, Hungary.,National Institute of Clinical Neuroscience, Epilepsy Centrum, Department of Neurology, H-1145 Budapest, Hungary
| | - Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, H-1089 Budapest, Hungary.,Department of General Psychology, Pázmány Péter Catholic University, H-1088 Budapest, Hungary
| | - Ferenc Gombos
- Department of General Psychology, Pázmány Péter Catholic University, H-1088 Budapest, Hungary
| | | | - Boris N Konrad
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525 EN Nijmegen, The Netherlands
| | - Lisa Genzel
- Centre for Cognitive and Neural Systems, University of Edinburgh, EH8 9JZ Edinburgh, UK
| | - Axel Steiger
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Martin Dresler
- Max Planck Institute of Psychiatry, 80804 Munich, Germany.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525 EN Nijmegen, The Netherlands
| |
Collapse
|
27
|
Adamczyk M, Genzel L, Dresler M, Steiger A, Friess E. Automatic Sleep Spindle Detection and Genetic Influence Estimation Using Continuous Wavelet Transform. Front Hum Neurosci 2015; 9:624. [PMID: 26635577 PMCID: PMC4652604 DOI: 10.3389/fnhum.2015.00624] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 10/30/2015] [Indexed: 11/21/2022] Open
Abstract
Mounting evidence for the role of sleep spindles in neuroplasticity has led to an increased interest in these non-rapid eye movement (NREM) sleep oscillations. It has been hypothesized that fast and slow spindles might play a different role in memory processing. Here, we present a new sleep spindle detection algorithm utilizing a continuous wavelet transform (CWT) and individual adjustment of slow and fast spindle frequency ranges. Eighteen nap recordings of ten subjects were used for algorithm validation. Our method was compared with both a human scorer and a commercially available SIESTA spindle detector. For the validation set, mean agreement between our detector and human scorer measured during sleep stage 2 using kappa coefficient was 0.45, whereas mean agreement between our detector and SIESTA algorithm was 0.62. Our algorithm was also applied to sleep-related memory consolidation data previously analyzed with a SIESTA detector and confirmed previous findings of significant correlation between spindle density and declarative memory consolidation. We then applied our method to a study in monozygotic (MZ) and dizygotic (DZ) twins, examining the genetic component of slow and fast sleep spindle parameters. Our analysis revealed strong genetic influence on variance of all slow spindle parameters, weaker genetic effect on fast spindles, and no effects on fast spindle density and number during stage 2 sleep.
Collapse
Affiliation(s)
| | - Lisa Genzel
- Centre for Cognitive and Neural Systems, University of Edinburgh Edinburgh, UK
| | - Martin Dresler
- Max Planck Institute of Psychiatry Munich, Germany ; Donders Institute for Brain, Cognition and Behaviour Nijmegen, Netherlands
| | - Axel Steiger
- Max Planck Institute of Psychiatry Munich, Germany
| | | |
Collapse
|
28
|
Plante DT, Goldstein MR, Cook JD, Smith R, Riedner BA, Rumble ME, Jelenchick L, Roth A, Tononi G, Benca RM, Peterson MJ. Effects of oral temazepam on sleep spindles during non-rapid eye movement sleep: A high-density EEG investigation. Eur Neuropsychopharmacol 2015. [PMID: 26195197 PMCID: PMC4600644 DOI: 10.1016/j.euroneuro.2015.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Benzodiazepines are commonly used medications that alter sleep spindles during non-rapid eye movement (NREM) sleep, however the topographic changes to these functionally significant waveforms have yet to be fully elucidated. This study utilized high-density electroencephalography (hdEEG) to investigate topographic changes in sleep spindles and spindle-range activity caused by temazepam during NREM sleep in 18 healthy adults. After an accommodation night, sleep for all participants was recorded on two separate nights after taking either placebo or oral temazepam 15 mg. Sleep was monitored using 256-channel hdEEG. Spectral analysis and spindle waveform detection of sleep EEG data were performed for each participant night. Global and topographic data were subsequently compared between temazepam and placebo conditions. Temazepam was associated with significant increases in spectral power from 10.33 to 13.83 Hz. Within this frequency band, temazepam broadly increased sleep spindle duration, and topographically increased spindle amplitude and density in frontal and central-posterior regions, respectively. Higher frequency sleep spindles demonstrated increased spindle amplitude and a paradoxical decrease in spindle density in frontal and centroparietal regions. Further analysis demonstrated temazepam both slowed the average frequency of spindle waveforms and increased the relative proportion of spindles at peak frequencies in frontal and centroparietal regions. These findings suggest that benzodiazepines have diverse effects on sleep spindles that vary by frequency and cortical topography. Further research that explores the relationships between topographic and frequency-dependent changes in pharmacologically-induced sleep spindles and the functional effects of these waveforms is indicated.
Collapse
Affiliation(s)
- D T Plante
- University of Wisconsin-Madison, Department of Psychiatry, Madison, WI, United States.
| | - M R Goldstein
- Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - J D Cook
- University of Wisconsin-Madison, Department of Psychiatry, Madison, WI, United States
| | - R Smith
- University of Wisconsin-Madison, Department of Psychiatry, Madison, WI, United States
| | - B A Riedner
- University of Wisconsin-Madison, Department of Psychiatry, Madison, WI, United States
| | - M E Rumble
- University of Wisconsin-Madison, Department of Psychiatry, Madison, WI, United States
| | - L Jelenchick
- University of Minnesota Medical Scientist Training Program Minneapolis, MN, United States
| | - A Roth
- Ferkauf Graduate School of Psychology, Yeshiva University, New York, NY, United States
| | - G Tononi
- University of Wisconsin-Madison, Department of Psychiatry, Madison, WI, United States
| | - R M Benca
- University of Wisconsin-Madison, Department of Psychiatry, Madison, WI, United States
| | - M J Peterson
- University of Wisconsin-Madison, Department of Psychiatry, Madison, WI, United States
| |
Collapse
|
29
|
Ujma PP, Gombos F, Genzel L, Konrad BN, Simor P, Steiger A, Dresler M, Bódizs R. Corrigendum: A comparison of two sleep spindle detection methods based on all night averages: individually adjusted vs. fixed frequencies. Front Hum Neurosci 2015; 9:415. [PMID: 26257631 PMCID: PMC4508513 DOI: 10.3389/fnhum.2015.00415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/06/2015] [Indexed: 11/14/2022] Open
Affiliation(s)
- Péter P. Ujma
- Institute of Behavioral Science, Semmelweis UniversityBudapest, Hungary
| | - Ferenc Gombos
- Department of General Psychology, Pázmány Péter Catholic UniversityBudapest, Hungary
| | - Lisa Genzel
- Centre for Cognitive and Neural Systems, University of EdinburghEdinburgh, UK
| | | | - Péter Simor
- Department of Cognitive Sciences, Budapest University of Technology and EconomicsBudapest, Hungary
- Nyírõ Gyula Hospital, National Institute of Psychiatry and AddictionsBudapest, Hungary
| | - Axel Steiger
- Max Planck Institute of PsychiatryMunich, Germany
| | - Martin Dresler
- Max Planck Institute of PsychiatryMunich, Germany
- Donders Institute, Radboud University Medical CentreNijmegen, Netherlands
- *Correspondence: Martin Dresler,
| | - Róbert Bódizs
- Institute of Behavioral Science, Semmelweis UniversityBudapest, Hungary
- Department of General Psychology, Pázmány Péter Catholic UniversityBudapest, Hungary
| |
Collapse
|