1
|
Mohammadi-Nejad AR, Mahmoudzadeh M, Hassanpour MS, Wallois F, Muzik O, Papadelis C, Hansen A, Soltanian-Zadeh H, Gelovani J, Nasiriavanaki M. Neonatal brain resting-state functional connectivity imaging modalities. PHOTOACOUSTICS 2018; 10:1-19. [PMID: 29511627 PMCID: PMC5832677 DOI: 10.1016/j.pacs.2018.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/12/2018] [Accepted: 01/27/2018] [Indexed: 05/12/2023]
Abstract
Infancy is the most critical period in human brain development. Studies demonstrate that subtle brain abnormalities during this state of life may greatly affect the developmental processes of the newborn infants. One of the rapidly developing methods for early characterization of abnormal brain development is functional connectivity of the brain at rest. While the majority of resting-state studies have been conducted using magnetic resonance imaging (MRI), there is clear evidence that resting-state functional connectivity (rs-FC) can also be evaluated using other imaging modalities. The aim of this review is to compare the advantages and limitations of different modalities used for the mapping of infants' brain functional connectivity at rest. In addition, we introduce photoacoustic tomography, a novel functional neuroimaging modality, as a complementary modality for functional mapping of infants' brain.
Collapse
Affiliation(s)
- Ali-Reza Mohammadi-Nejad
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Departments of Radiology and Research Administration, Henry Ford Health System, Detroit, MI, USA
| | - Mahdi Mahmoudzadeh
- INSERM, U1105, Université de Picardie, CURS, F80036, Amiens, France
- INSERM U1105, Exploration Fonctionnelles du Système Nerveux Pédiatrique, South University Hospital, F80054, Amiens Cedex, France
| | | | - Fabrice Wallois
- INSERM, U1105, Université de Picardie, CURS, F80036, Amiens, France
- INSERM U1105, Exploration Fonctionnelles du Système Nerveux Pédiatrique, South University Hospital, F80054, Amiens Cedex, France
| | - Otto Muzik
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Christos Papadelis
- Boston Children’s Hospital, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Anne Hansen
- Boston Children’s Hospital, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Hamid Soltanian-Zadeh
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Departments of Radiology and Research Administration, Henry Ford Health System, Detroit, MI, USA
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Juri Gelovani
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
- Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Mohammadreza Nasiriavanaki
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
- Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
2
|
Spence MJ, Granier-Deferre C, Schaal B. L’étude du comportement est unique pour comprendre la cognition fœtale et néonatale – L’imagerie cérébrale la complète lorsqu’elle s’inspire de validité écologique. ENFANCE 2017. [DOI: 10.3917/enf1.173.0307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
3
|
Meimani N, Abani N, Gelovani J, Avanaki MR. A numerical analysis of a semi-dry coupling configuration in photoacoustic computed tomography for infant brain imaging. PHOTOACOUSTICS 2017; 7:27-35. [PMID: 28702357 PMCID: PMC5487250 DOI: 10.1016/j.pacs.2017.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/13/2017] [Accepted: 06/06/2017] [Indexed: 05/04/2023]
Abstract
In the application of photoacoustic human infant brain imaging, debubbled ultrasound gel or water is commonly used as a couplant for ultrasonic transducers due to their acoustic properties. The main challenge in using such a couplant is its discomfort for the patient. In this study, we explore the feasibility of a semi-dry coupling configuration to be used in photoacoustic computed tomography (PACT) systems. The coupling system includes an inflatable container consisting of a thin layer of Aqualene with ultrasound gel or water inside of it. Finite element method (FEM) is used for static and dynamic structural analysis of the proposed configuration to be used in PACT for infant brain imaging. The outcome of the analysis is an optimum thickness of Aqualene in order to meet the weight tolerance requirement with the least attenuation and best impedance match to recommend for an experimental setting.
Collapse
Affiliation(s)
- Najme Meimani
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA
- Basir Eye Health Research Center, Tehran, Iran
| | - Nina Abani
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA
| | - Juri Gelovani
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Mohammad R.N Avanaki
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|