1
|
McLoughlin G, Palmer J, Makeig S, Bigdely-Shamlo N, Banaschewski T, Laucht M, Brandeis D. EEG Source Imaging Indices of Cognitive Control Show Associations with Dopamine System Genes. Brain Topogr 2017; 31:392-406. [PMID: 29222686 PMCID: PMC5889775 DOI: 10.1007/s10548-017-0601-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 10/10/2017] [Indexed: 01/09/2023]
Abstract
Cognitive or executive control is a critical mental ability, an important marker of mental illness, and among the most heritable of neurocognitive traits. Two candidate genes, catechol-O-methyltransferase (COMT) and DRD4, which both have a roles in the regulation of cortical dopamine, have been consistently associated with cognitive control. Here, we predicted that individuals with the COMT Met/Met allele would show improved response execution and inhibition as indexed by event-related potentials in a Go/NoGo task, while individuals with the DRD4 7-repeat allele would show impaired brain activity. We used independent component analysis (ICA) to separate brain source processes contributing to high-density EEG scalp signals recorded during the task. As expected, individuals with the DRD4 7-repeat polymorphism had reduced parietal P3 source and scalp responses to response (Go) compared to those without the 7-repeat. Contrary to our expectation, the COMT homozygous Met allele was associated with a smaller frontal P3 source and scalp response to response-inhibition (NoGo) stimuli, suggesting that while more dopamine in frontal cortical areas has advantages in some tasks, it may also compromise response inhibition function. An interaction effect emerged for P3 source responses to Go stimuli. These were reduced in those with both the 7-repeat DRD4 allele and either the COMT Val/Val or the Met/Met homozygous polymorphisms but not in those with the heterozygous Val/Met polymorphism. This epistatic interaction between DRD4 and COMT replicates findings that too little or too much dopamine impairs cognitive control. The anatomic and functional separated maximally independent cortical EEG sources proved more informative than scalp channel measures for genetic studies of brain function and thus better elucidate the complex mechanisms in psychiatric illness.
Collapse
Affiliation(s)
- G McLoughlin
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, PO80, London, UK.
| | - J Palmer
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
| | - S Makeig
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
| | - N Bigdely-Shamlo
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
| | - T Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany
| | - M Laucht
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany
- Department of Psychology, University of Potsdam, Potsdam, Germany
| | - D Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zürich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zurich, Switzerland
| |
Collapse
|
2
|
Panduro A, Rivera-Iñiguez I, Sepulveda-Villegas M, Roman S. Genes, emotions and gut microbiota: The next frontier for the gastroenterologist. World J Gastroenterol 2017; 23:3030-3042. [PMID: 28533660 PMCID: PMC5423040 DOI: 10.3748/wjg.v23.i17.3030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/10/2017] [Accepted: 04/12/2017] [Indexed: 02/06/2023] Open
Abstract
Most medical specialties including the field of gastroenterology are mainly aimed at treating diseases rather than preventing them. Genomic medicine studies the health/disease process based on the interaction of the human genes with the environment. The gastrointestinal (GI) system is an ideal model to analyze the interaction between our genes, emotions and the gut microbiota. Based on the current knowledge, this mini-review aims to provide an integrated synopsis of this interaction to achieve a better understanding of the GI disorders related to bad eating habits and stress-related disease. Since human beings are the result of an evolutionary process, many biological processes such as instincts, emotions and behavior are interconnected to guarantee survival. Nourishment is a physiological need triggered by the instinct of survival to satisfy the body's energy demands. The brain-gut axis comprises a tightly connected neural-neuroendocrine circuitry between the hunger-satiety center, the dopaminergic reward system involved in the pleasure of eating and the gut microbiota that regulates which food we eat and emotions. However, genetic variations and the consumption of high-sugar and high-fat diets have overridden this energy/pleasure neurocircuitry to the point of addiction of several foodstuffs. Consequently, a gut dysbiosis generates inflammation and a negative emotional state may lead to chronic diseases. Balancing this altered processes to regain health may involve personalized-medicine and genome-based strategies. Thus, an integrated approach based on the understanding of the gene-emotions-gut microbiota interaction is the next frontier that awaits the gastroenterologist to prevent and treat GI disorders associated with obesity and negative emotions.
Collapse
|
3
|
Bowers H, Smith D, de la Salle S, Choueiry J, Impey D, Philippe T, Dort H, Millar A, Daigle M, Albert PR, Beaudoin A, Knott V. COMT polymorphism modulates the resting-state EEG alpha oscillatory response to acute nicotine in male non-smokers. GENES, BRAIN, AND BEHAVIOR 2015; 14:466-76. [PMID: 26096691 PMCID: PMC4514526 DOI: 10.1111/gbb.12226] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 11/28/2022]
Abstract
Performance improvements in cognitive tasks requiring executive functions are evident with nicotinic acetylcholine receptor (nAChR) agonists, and activation of the underlying neural circuitry supporting these cognitive effects is thought to involve dopamine neurotransmission. As individual difference in response to nicotine may be related to a functional polymorphism in the gene encoding catechol-O-methyltransferase (COMT), an enzyme that strongly influences cortical dopamine metabolism, this study examined the modulatory effects of the COMT Val158Met polymorphism on the neural response to acute nicotine as measured with resting-state electroencephalographic (EEG) oscillations. In a sample of 62 healthy non-smoking adult males, a single dose (6 mg) of nicotine gum administered in a randomized, double-blind, placebo-controlled design was shown to affect α oscillatory activity, increasing power of upper α oscillations in frontocentral regions of Met/Met homozygotes and in parietal/occipital regions of Val/Met heterozygotes. Peak α frequency was also found to be faster with nicotine (vs. placebo) treatment in Val/Met heterozygotes, who exhibited a slower α frequency compared to Val/Val homozygotes. The data tentatively suggest that interindividual differences in brain α oscillations and their response to nicotinic agonist treatment are influenced by genetic mechanisms involving COMT.
Collapse
Affiliation(s)
- H. Bowers
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| | - D. Smith
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - S. de la Salle
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - J. Choueiry
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - D. Impey
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - T. Philippe
- University of Ottawa Institute of Mental Health Research, Royal Ottawa Mental Health Care Centre, Ottawa, ON, Canada
| | - H. Dort
- University of Ottawa Institute of Mental Health Research, Royal Ottawa Mental Health Care Centre, Ottawa, ON, Canada
| | - A. Millar
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - M. Daigle
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - P. R. Albert
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - A. Beaudoin
- University of Ottawa Institute of Mental Health Research, Royal Ottawa Mental Health Care Centre, Ottawa, ON, Canada
| | - V. Knott
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Institute of Mental Health Research, Royal Ottawa Mental Health Care Centre, Ottawa, ON, Canada
| |
Collapse
|