1
|
Liaukovich K, Panfilova E, Khayrullina G, Martynova O. Event-related potentials and presaccadic activity in response to affective stimuli in participants with obsessive-compulsive disorder. Int J Psychophysiol 2025; 207:112475. [PMID: 39581551 DOI: 10.1016/j.ijpsycho.2024.112475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Individuals with obsessive-compulsive disorder (OCD) have difficulty with regulating their emotions and show reduced functioning of inhibitory control. It was reported previously that OCD patients had delayed antisaccade response and increased error rate only when affective pictures with negative valence served as fixation stimuli in "the antisaccade emotional fixation task". Complementary to the previous research, eye movements and late positive potential (LPP) for fixation stimuli and the presaccadic positivity (PSP) and spike potential (SP) before saccade onset, were compared in two groups of OCD and healthy volunteers. Both groups exhibited increased fixation on emotional images, particularly on unpleasant ones, and showed heightened LPP responses without significant between-group differences. However, individuals with OCD had lower PSP and SP amplitudes for unpleasant images compared to the control group, although there were no differences within conditions for each group. These results suggest that while both groups displayed similar effects of unpleasant images on the involuntary orientation of attention, the findings on presaccadic potentials correlate with behavioral data on increased error rate in antisaccade tasks in OCD. This suggests that emotional dysregulation may contribute to impaired inhibitory control in individuals with OCD.
Collapse
Affiliation(s)
- Krystsina Liaukovich
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 5A, Butlerova str., Moscow 117484, Russia.
| | - Elizaveta Panfilova
- Federal Scientific Center for Psychological and Interdisciplinary Research, 9/4, Mokhovaya str., Moscow 125009, Russia
| | - Guzal Khayrullina
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 5A, Butlerova str., Moscow 117484, Russia; Centre for Cognition and Decision Making, National Research University Higher School of Economics, 20, Myasnitskaya str., Moscow 101000, Russia
| | - Olga Martynova
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 5A, Butlerova str., Moscow 117484, Russia; Centre for Cognition and Decision Making, National Research University Higher School of Economics, 20, Myasnitskaya str., Moscow 101000, Russia
| |
Collapse
|
2
|
Woodcock EA, Greenwald MK, Chen I, Feng D, Cohn JA, Lundahl LH. HIV chronicity as a predictor of hippocampal memory deficits in daily cannabis users living with HIV. DRUG AND ALCOHOL DEPENDENCE REPORTS 2023; 9:100189. [PMID: 37736522 PMCID: PMC10509297 DOI: 10.1016/j.dadr.2023.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Background Antiretroviral medications have increased the lifespan of persons living with HIV (PLWH) thereby unmasking memory decline that may be attributed to chronological age, HIV symptomatology, HIV disease chronicity, and/or substance use (especially cannabis use which is common among PLWH). To date, few studies have attempted to disentangle these effects. In a sample of daily cannabis-using PLWH, we investigated whether hippocampal memory function, assessed via an object-location associative learning task, was associated with age, HIV chronicity and symptom severity, or substance use. Methods 48 PLWH (12.9 ± 9.6 years since HIV diagnosis), who were 44 years old on average (range: 24-64 years; 58 % male) and reported daily cannabis use (recent use confirmed by urinalysis) completed the study. We assessed each participant's demographics, substance use, medical history, current HIV symptoms, and hippocampal memory function via a well-validated object-location associative learning task. Results Multiple regression analyses found that living more years since HIV+ diagnosis predicted significantly worse associative learning total score (r=-0.40) and learning rate (r=-0.34) whereas chronological age, cannabis-use characteristics, and recent HIV symptom severity were not significantly related to hippocampal memory function. Conclusions In daily cannabis-using PLWH, HIV chronicity was related to worse hippocampal memory function independent from cannabis use, age, and HIV symptomatology. Object-location associative learning performance could serve as an 'early-warning' metric of cognitive decline among PLWH. Future research should examine longitudinal changes in associative learning proficiency and evaluate interventions to prevent hippocampal memory decline among PLWH. ClinicalTrials.gov: NCT01536899.
Collapse
Affiliation(s)
- Eric A. Woodcock
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI USA
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI USA
| | - Mark K. Greenwald
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI USA
| | - Irene Chen
- Wayne State University School of Medicine, Detroit, MI USA
| | - Danni Feng
- Wayne State University School of Medicine, Detroit, MI USA
| | - Jonathan A. Cohn
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI USA
| | - Leslie H. Lundahl
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI USA
| |
Collapse
|
3
|
Huang Y, Weng Y, Lan L, Zhu C, Shen T, Tang W, Lai HY. Insight in obsessive-compulsive disorder: conception, clinical characteristics, neuroimaging, and treatment. PSYCHORADIOLOGY 2023; 3:kkad025. [PMID: 38666121 PMCID: PMC10917385 DOI: 10.1093/psyrad/kkad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 04/28/2024]
Abstract
Obsessive-compulsive disorder (OCD) is a chronic disabling disease with often unsatisfactory therapeutic outcomes. The fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) has broadened the diagnostic criteria for OCD, acknowledging that some OCD patients may lack insight into their symptoms. Previous studies have demonstrated that insight can impact therapeutic efficacy and prognosis, underscoring its importance in the treatment of mental disorders, including OCD. In recent years, there has been a growing interest in understanding the influence of insight on mental disorders, leading to advancements in related research. However, to the best of our knowledge, there is dearth of comprehensive reviews on the topic of insight in OCD. In this review article, we aim to fill this gap by providing a concise overview of the concept of insight and its multifaceted role in clinical characteristics, neuroimaging mechanisms, and treatment for OCD.
Collapse
Affiliation(s)
- Yueqi Huang
- Department of Psychiatry, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310007, China
| | - Yazhu Weng
- Fourth Clinical School of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lan Lan
- Department of Psychology and Behavior Science, Zhejiang University, Hangzhou 310058, China
| | - Cheng Zhu
- Department of Psychiatry, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310007, China
| | - Ting Shen
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, PA, USA
| | - Wenxin Tang
- Department of Psychiatry, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310007, China
| | - Hsin-Yi Lai
- Department of Psychiatry, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310007, China
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310029, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 311121, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Zhang J, Grant JE. Significance of family history in understanding and subtyping trichotillomania. Compr Psychiatry 2022; 119:152349. [PMID: 36215772 DOI: 10.1016/j.comppsych.2022.152349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND AIMS The existence of subtypes of trichotillomania (TTM) have long been hypothesized, and recent studies have further elucidated characteristic subtypes of TTM and possible ramifications of subtyping for treatment. In clinical applications of subtyping for treatment of TTM, family history (FH) of psychiatric disorders in patients may serve as a tool to differentiate disorder presentations and inform care. We compared prevalence of psychiatric illnesses in first-degree relatives of participants with TTM and healthy controls, respectively, in a large sample, and examined associations between those psychiatric disorders that were significantly different in the FH between groups and measures of disability, severity, and neuropsychological constructs. METHODS We compared FHs of 152 participants (mean age = 29.9) with TTM and 71 healthy controls (mean age = 29.6), utilizing chi-squared tests to determine which psychiatric illnesses were more prevalent in FHs of participants with TTM. We then used two-tailed t-tests to compare TTM participants with those more prevalent FHs to participants without those FHs on measures of disorder severity, disability, and neuropsychological constructs. FINDINGS Obsessive-compulsive disorder (OCD), TTM, skin picking disorder (SPD), and major depressive disorder (MDD) were significantly more frequent in first-degree relatives (p < 0.0033) of TTM participants than those of healthy controls. TTM participants with a FH of OCD scored significantly higher on measures of impulsivity and lower on measures of distress tolerance. Those with FH of TTM, SPD, and MDD did not differ significantly across measured variables. CONCLUSION OCD, TTM, SPD, and MDD are more prevalent in the FHs of people with TTM, as compared to healthy controls. TTM participants with a family history of OCD may be more likely to demonstrate decreased distress tolerance and increased impulsivity. In all, as understanding of TTM subtypes develops, the FH may prove a useful tool in delineating subtypes and informing care.
Collapse
Affiliation(s)
- James Zhang
- Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Jon E Grant
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Similarities and differences in working memory and neurometabolism of obsessive-compulsive disorder and major depressive disorder. J Affect Disord 2022; 311:556-564. [PMID: 35588910 DOI: 10.1016/j.jad.2022.05.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) and major depressive disorder (MDD) both showed cognitive impairment, and the altered neurometabolic may associate with cognitive impairment. However, there are limited comparative working memory (WM) and neuroimaging studies on these two disorders. Therefore, we investigated the characteristics of WM and neurometabolic changes in patients with OCD and MDD. METHODS A total of 64 unmedicated patients (32 OCD and 32 MDD), and 33 healthy controls (HC) were included to conduct WM assessment comprising Digit Span Test (DST), 2-back task and Stroop Color and Word Test (SCWT). Additionally, all subjects underwent protons magnetic resonance spectroscopy (1H-MRS) to collect neurometabolic ratios of N-acetyl aspartate (NAA) and choline-containing compounds (Cho) to creatine (Cr) in the prefrontal cortex (PFC) and lentiform nucleus (LN). Finally, differential and correlation analysis were conducted to investigate their characteristics and relationships. RESULTS Compared with HC, both OCD and MDD patients exhibited a lower accuracy rate in the 2-back task, and only MDD patients performed worse in DST scores and longer reaction times in SCWT (all p < 0.05). Both OCD and MDD patients had lower NAA/Cr ratios in bilateral PFC (all p < 0.05). And the decreased NAA/Cr ratios in right PFC were positively correlated to DST scores in MDD group (r = 0.518, p = 0.003). CONCLUSIONS Both OCD and MDD showed WM impairment and neurometabolic alterations in PFC. Besides, MDD performed more severe and broader WM impairment compared to OCD. Moreover, the dysfunction of PFC may underlie the neural basis of WM impairment in MDD.
Collapse
|
6
|
Thomas KS, Birch RE, Jones CRG, Vanderwert RE. Neural Correlates of Executive Functioning in Anorexia Nervosa and Obsessive-Compulsive Disorder. Front Hum Neurosci 2022; 16:841633. [PMID: 35693540 PMCID: PMC9179647 DOI: 10.3389/fnhum.2022.841633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Anorexia nervosa (AN) and obsessive-compulsive disorder (OCD) are commonly reported to co-occur and present with overlapping symptomatology. Executive functioning difficulties have been implicated in both mental health conditions. However, studies directly comparing these functions in AN and OCD are extremely limited. This review provides a synthesis of behavioral and neuroimaging research examining executive functioning in AN and OCD to bridge this gap in knowledge. We outline the similarities and differences in behavioral and neuroimaging findings between AN and OCD, focusing on set shifting, working memory, response inhibition, and response monitoring. This review aims to facilitate understanding of transdiagnostic correlates of executive functioning and highlights important considerations for future research. We also discuss the importance of examining both behavioral and neural markers when studying transdiagnostic correlates of executive functions.
Collapse
Affiliation(s)
- Kai S. Thomas
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Cardiff University Centre for Human Developmental Science, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | | | - Catherine R. G. Jones
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Cardiff University Centre for Human Developmental Science, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Ross E. Vanderwert
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Cardiff University Centre for Human Developmental Science, School of Psychology, Cardiff University, Cardiff, United Kingdom
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
7
|
Yacou MA, Chowdury A, Easter P, Hanna GL, Rosenberg DR, Diwadkar VA. Sustained attention induces altered effective connectivity of the ascending thalamo-cortical relay in obsessive-compulsive disorder. Front Psychiatry 2022; 13:869106. [PMID: 36032258 PMCID: PMC9402224 DOI: 10.3389/fpsyt.2022.869106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Abnormal function of the thalamo-cortical relay is considered a hallmark of obsessive-compulsive disorder (OCD) and aberrant network interactions may underpin many of the clinical and cognitive symptoms that characterize the disorder. Several statistical approaches have been applied to in vivo fMRI data to support the general loss of thalamo-cortical connectivity in OCD. However, (a) few studies have assessed the contextual constraints under which abnormal network interactions arise or (b) have used methods of effective connectivity to understand abnormal network interactions. Effective connectivity is a particularly valuable method as it describes the putative causal influences that brain regions exert over each other, as opposed to the largely statistical consistencies captured in functional connectivity techniques. Here, using dynamic causal modeling (DCM), we evaluated how attention demand induced inter-group differences (HC ≠ OCD) in effective connectivity within a motivated thalamo-cortical network. Of interest was whether these effects were observed on the ascending thalamo-cortical relay, essential for the sensory innervation of the cortex. fMRI time series data from sixty-two participants (OCD, 30; HC, 32) collected using an established sustained attention task were submitted to a space of 162 competing models. Across the space, models distinguished between competing hypotheses of thalamo-cortical interactions. Bayesian model selection (BMS) identified marginally differing likely generative model architectures in OCD and HC groups. Bayesian model averaging (BMA), was used to weight connectivity parameter estimates across all models, with each parameter weighted by each model's posterior probability, thus providing more stable estimates of effective connectivity. Inferential statistical analyses of estimated parameters revealed two principal results: (1) Significantly reduced intrinsic connectivity of the V1 → SPC pathway in OCD, suggested connective weakness in the early constituents of the dorsal visual pathway; (2) More pertinent with the discovery possibilities afforded by DCM, sustained attention in OCD patients induced significantly reduced contextual modulation of the ascending relay from the thalamus to the prefrontal cortex. These results form an important complement to our understanding of the contextual bases of thalamo-cortical network deficits in OCD, emphasizing vulnerability of the ascending relay.
Collapse
Affiliation(s)
- Mario A Yacou
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Asadur Chowdury
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Philip Easter
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Gregory L Hanna
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - David R Rosenberg
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Vaibhav A Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
8
|
Abstract
In the last 20 years, functional magnetic resonance imaging (fMRI) has been extensively used to investigate system-level abnormalities in the brain of patients with obsessive-compulsive disorder (OCD). In this chapter, we start by reviewing the studies assessing regional brain differences between patients with OCD and healthy controls in task-based fMRI. Specifically, we review studies on executive functioning and emotional processing, protocols in which these patients have been described to show alterations at the behavioral level, as well as research using symptom provocation protocols. Next, we review studies on brain connectivity alterations, focusing on resting-state studies evaluating disruptions in fronto-subcortical functional connectivity and in cortical networks. Likewise, we also review research on effective connectivity, which, different from functional connectivity, allows for ascertaining the directionality of inter-regional connectivity alterations. We conclude by reviewing the most significant findings on a topic of translational impact, such as the use of different fMRI measurements to predict response across a variety of treatment approaches. Overall, results suggest that there exists a pattern of regions, involving, but not limited to, different nodes of the cortico-striatal-thalamo-cortical circuits, showing robust evidence of functional alteration across studies, although the nature of the alterations critically depends on the specific tasks and their particular demands. Moreover, such findings have been, to date, poorly translated into clinical practice. It is suggested that this may be partially accounted for by the difficulty to integrate into a common framework results obtained under a wide variety of analysis approaches.
Collapse
Affiliation(s)
- Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain. .,Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
9
|
Meram TD, Chowdury A, Easter P, Attisha T, Kallabat E, Hanna GL, Arnold P, Rosenberg DR, Diwadkar VA. Evoking network profiles of the dorsal anterior cingulate in youth with Obsessive-Compulsive Disorder during motor control and working memory. J Psychiatr Res 2021; 132:72-83. [PMID: 33068817 PMCID: PMC9351617 DOI: 10.1016/j.jpsychires.2020.09.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/04/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
Interest in the pathology of Obsessive-Compulsive Disorder\has focused on brain network profiles of the dorsal Anterior Cingulate Cortex (dACC), given its role as a principal control region. Both motor control and working memory tasks induce dysfunctional dACC profiles in OCD. H H We contrasted dACC network profiles in OCD and age-comparable controls during both tasks (from data collected in the same participants). The motor task required participants to tap their right forefinger in response to a flashing white probe; the memory task was a standard n-back (2-Back) requiring participants to identify if a current stimulus was identical to the one presented two items before it in the sequence. Network interactions were modeled using Psychophysiological Interactions (PPI), a model of directional functional connectivity. Inter-group analyses indicated a) that the motor control task evoked greater dACC modulation than the working memory task, and b) that the modulatory effect was significantly greater in the OCD group. We also investigated the relationship between OCD symptom dimensions (lifetime obsession and lifetime compulsion measured using the CY-BOCS) and dACC network profiles in OCD. This analysis revealed a dichotomy between Obsessive-Compulsive symptom dimensions and the degree of dACC modulation: primarily increased obsessions predicted increased modulation during the motor control task, but primarily increased compulsions predicted increased modulation during the working memory task. These results re-emphasize the salience of the dACC in OCD, and the primacy of tasks of motor control in evoking dACC pathology in the disorder.
Collapse
Affiliation(s)
- Thomas D. Meram
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, 3901 Chrysler Service Dr Suite 5B, Tolan Park Medical Bldg, Detroit, MI 48201, USA
| | - Asadur Chowdury
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, 3901 Chrysler Service Dr Suite 5B, Tolan Park Medical Bldg, Detroit, MI 48201, USA
| | - Philip Easter
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, 3901 Chrysler Service Dr Suite 5B, Tolan Park Medical Bldg, Detroit, MI 48201, USA
| | - Tyler Attisha
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, 3901 Chrysler Service Dr Suite 5B, Tolan Park Medical Bldg, Detroit, MI 48201, USA
| | - Ellanya Kallabat
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, 3901 Chrysler Service Dr Suite 5B, Tolan Park Medical Bldg, Detroit, MI 48201, USA
| | - Gregory L. Hanna
- Department of Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI 48109, USA
| | - Paul Arnold
- Department of Psychiatry & Medical Genetics, University of Calgary, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6, Canada
| | - David R. Rosenberg
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, 3901 Chrysler Service Dr Suite 5B, Tolan Park Medical Bldg, Detroit, MI 48201, USA
| | - Vaibhav A. Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, 3901 Chrysler Service Dr Suite 5B, Tolan Park Medical Bldg, Detroit, MI 48201, USA
| |
Collapse
|
10
|
ALE meta-analysis, its role in node identification and the effects on estimates of local network organization. Brain Struct Funct 2020; 225:1089-1102. [PMID: 32246244 DOI: 10.1007/s00429-020-02061-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/20/2020] [Indexed: 01/06/2023]
Abstract
Functional connectivity analyses for task-based fMRI data are generally preceded by methods for identification of network nodes. As there is no general canonical approach to identifying network nodes, different identification techniques may exert different effects on inferences drawn regarding functional network properties. Here, we compared the impact of two different node identification techniques on estimates of local node importance (based on Degree Centrality, DC) in two working memory domains: verbal and visual. The two techniques compared were the commonly used Activation Likelihood Estimate (ALE) technique (with node locations based on data aggregation), against a hybrid technique, Experimentally Derived Estimation (EDE). In the latter, ALE was first used to isolate regions of interest; then participant-specific nodes were identified based on individual-participant local maxima. Time series were extracted at each node for each dataset and subsequently used in functional connectivity analysis to: (1) assess the impact of choice of technique on estimates of DC, and (2) assess the difference between the techniques in the ranking of nodes (based on DC) in the networks they produced. In both domains, we found a significant Technique by Node interaction, signifying that the two techniques yielded networks with different DC estimates. Moreover, for the majority of participants, node rankings were uncorrelated between the two techniques (85% for the verbal working memory task and 92% for the visual working memory task). The latter effect is direct evidence that the identification techniques produced different rankings at the level of individual participants. These results indicate that node choice in task-based fMRI data exerts downstream effects that will impact interpretation and reverse inference regarding brain function.
Collapse
|
11
|
Marzuki AA, Pereira de Souza AMFL, Sahakian BJ, Robbins TW. Are candidate neurocognitive endophenotypes of OCD present in paediatric patients? A systematic review. Neurosci Biobehav Rev 2019; 108:617-645. [PMID: 31821834 DOI: 10.1016/j.neubiorev.2019.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/01/2019] [Accepted: 12/06/2019] [Indexed: 01/03/2023]
Abstract
To-date it has been difficult to ascertain the exact cognitive profile of childhood OCD as studies report variable results. Adult OCD research lately utilises the endophenotype approach; studying cognitive traits that are present in both patients and their unaffected first-degree relatives, and are thought to lie closer to the genotype than the full-blown disorder. By observing whether candidate endopenotypes of adult OCD are present in child patients, we can determine whether the two subtypes show cognitive overlap. We conducted a systematic review of the paediatric OCD literature focussing on proposed neurocognitive endophenotypes of OCD: cognitive flexibility, response inhibition, memory, planning, decision-making, action monitoring, and reversal learning. We found that paediatric patients present robust increases in brain error related negativity associated with abnormal action monitoring, impaired decision-making under uncertainty, planning, and visual working memory, but there is less evidence for deficits in other cognitive domains. This implies that children with OCD show some cognitive similarities with adult patients, but other dysfunctions may only manifest later in the disorder trajectory.
Collapse
Affiliation(s)
- Aleya A Marzuki
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EL, Cambridge, UK; Department of Psychology, Downing Site, University of Cambridge, CB2 3EB, Cambridge, UK.
| | - Ana Maria Frota Lisboa Pereira de Souza
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EL, Cambridge, UK; Department of Psychology, Downing Site, University of Cambridge, CB2 3EB, Cambridge, UK.
| | - Barbara J Sahakian
- Herchel Smith Building, Department of Psychiatry, University of Cambridge, CB2 0SZ, Cambridge, UK.
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EL, Cambridge, UK; Department of Psychology, Downing Site, University of Cambridge, CB2 3EB, Cambridge, UK.
| |
Collapse
|
12
|
Psychiatric disorders in multiple sclerosis. J Neurol 2019; 268:45-60. [PMID: 31197511 DOI: 10.1007/s00415-019-09426-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is characterized by a large spectrum of symptoms, involving all functional systems. Psychiatric symptoms are common in people with MS (pwMS) having an important impact on quality of life and on some features of MS (fatigue, sleep, disability, adherence to disease-modifying drugs). The main psychiatric disturbances in MS are depressive, bipolar, anxiety, schizophrenic and obsessive-compulsive syndromes. METHODS Literature search for original articles and review in the databases, including PubMed and Scopus from 1959 to 2019. RESULTS AND CONCLUSION Studies answering the aim of this review were selected and reported. Epidemiological and clinical aspects of psychiatric syndromes (PS) in MS as well as self-report diagnostic scales and radiological correlates of PS in MS are described. Moreover, some radiological studies about primary psychiatric disorders (PD) are reported to underline how gray matter atrophy, white matter abnormalities and corpus callosum involvement in these diseases, as features in common with MS, may explain the more frequent occurrence of PD in MS than in the general population.
Collapse
|
13
|
Tan B, Liu Q, Wan C, Jin Z, Yang Y, Li L. Altered Functional Connectivity of Alpha Rhythm in Obsessive-Compulsive Disorder During Rest. Clin EEG Neurosci 2019; 50:88-99. [PMID: 30280595 DOI: 10.1177/1550059418804378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a common inheritable psychiatric disorder characteristic of repetitive thinking, imagination (obsession), and stereotyped behaviors (compulsive). To explore whether there is an alteration of brain functional connectivity (BFC) in patients with OCD during rest, electroencephalogram (EEG) data of healthy controls (HCs) and patients with OCD were collected during rest in both eyes-closed and eyes-open states. Synchronization likelihood and graph theory were applied to construct and analyze brain functional networks of patients with OCD and HCs. Patients with OCD showed abnormal graph-theoretic parameters and impaired small world features in the alpha and beta bands. In addition, the topological analysis consistently showed that the long-range BFC of alpha rhythm was significantly reduced in the bilateral posterior areas in patients with OCD in comparison with HCs, while the BFC in the beta rhythm was significantly increased only in the eyes-open state. The findings suggest that the BFC of patients with OCD show abnormal small-world features and altered topological structure during rest, mainly in alpha and beta bands, which may provide a new insight for the diagnosis and treatment of OCD.
Collapse
Affiliation(s)
- Bo Tan
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qingxiao Liu
- Hospital of Chengdu University of TCM, Chengdu, China
| | - Chaoyang Wan
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenlan Jin
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanchun Yang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Ling Li
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
14
|
Chen Y, Meng Z, Zhang Z, Zhu Y, Gao R, Cao X, Tan L, Wang Z, Zhang H, Li Y, Fan Q. The right thalamic glutamate level correlates with functional connectivity with right dorsal anterior cingulate cortex/middle occipital gyrus in unmedicated obsessive-compulsive disorder: A combined fMRI and 1H-MRS study. Aust N Z J Psychiatry 2019; 53:207-218. [PMID: 30354192 DOI: 10.1177/0004867418806370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The imbalance in neurotransmitter and neuronal metabolite concentration within cortico-striato-thalamo-cortical (CSTC) circuit contributes to obsessive-compulsive disorder's (OCD) onset. Previous studies showed that glutamate mediated upregulation of resting-state activity in healthy people. However, there have been few studies investigating the correlational features between functional and neurochemical alterations in OCD. METHODS We utilize a combined resting-state functional magnetic resonance imaging (rs-fMRI) and proton magnetic resonance spectroscopy (1H-MRS) approach to investigate the altered functional connectivity (FC) in association with glutamatergic dysfunction in OCD pathophysiology. Three regions of interest are investigated, i.e., medial prefrontal cortex and bilateral thalamus, for seed-based whole-brain FC analysis as well as MRS data acquisition. There are 23 unmedicated adult OCD patients and 23 healthy controls recruited for brain FC analysis. Among them, 12 OCD and 8 controls are performed MRS data acquisition. RESULTS Besides abnormal FC within CSTC circuit, we also find altered FCs in large-scale networks outside CSTC circuit, including occipital area and limbic and motor systems. The decreased FC between right thalamus and right middle occipital gyrus (MOG) is correlated with glutamatergic signal within right thalamus in OCD patients. Moreover, the FC between right thalamus and right dorsal anterior cingulate cortex (dACC) is associated with glutamate level in right thalamus, specifically in patient's group. Finally, the FC between right thalamus and right MOG is correlated with patient's Yale-Brown Obsessive Compulsive Scale (YBOCS) compulsion and total scores, while the right thalamic glutamatergic signal is associated with YBOCS-compulsion score. CONCLUSION Our findings showed that the coupled intrinsic functional-biochemical alterations existed both within CSTC circuit and from CSTC to occipital lobe in OCD pathophysiology.
Collapse
Affiliation(s)
- Yongjun Chen
- 1 Rehabilitation Department, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 Department of Developmental Behavioral Pediatric and Children Healthcare, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyu Meng
- 3 School of Biomedical Engineering and Institute for Medical Imaging Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Zongfeng Zhang
- 1 Rehabilitation Department, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yajing Zhu
- 3 School of Biomedical Engineering and Institute for Medical Imaging Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Gao
- 1 Rehabilitation Department, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Cao
- 1 Rehabilitation Department, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Tan
- 4 Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Wang
- 1 Rehabilitation Department, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyin Zhang
- 1 Rehabilitation Department, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Li
- 3 School of Biomedical Engineering and Institute for Medical Imaging Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Fan
- 1 Rehabilitation Department, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Ravishankar M, Morris A, Burgess A, Khatib D, Stanley JA, Diwadkar VA. Cortical-hippocampal functional connectivity during covert consolidation sub-serves associative learning: Evidence for an active "rest" state. Brain Cogn 2017; 131:45-55. [PMID: 29054542 DOI: 10.1016/j.bandc.2017.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/22/2017] [Indexed: 01/18/2023]
Abstract
We studied modulation of undirected functional connectivity (uFC) in cortical-hippocampal sub-networks during associative learning. Nineteen healthy individuals were studied (fMRI acquired on a Siemens Verio 3T), and uFC was studied between nodes in a network of regions identified by standard activation models based on bivariate correlational analyses of time series data. The paradigm alternated between Memory Encoding, Rest and Retrieval. "Rest" intervals promoted covert consolidation. Over the task, performance was broadly separable into linear (Early) and asymptomatic (Late) regimes, with late performance reflecting successful memory consolidation. Significant modulation of uFC was observed during periods of covert consolidation. The sub-networks which were modulated constituted connections between frontal regions such as the dorsal prefrontal cortex (dPFC) and dorsal anterior cingulate cortex (dACC), the medial temporal lobe (hippocampus, HPC), the superior parietal cortex (SPC) and the fusiform gyrus (FG). uFC patterns were dynamic in that sub-networks modulated during Early learning (dACC ↔ SPC, dACC ↔ FG, dPFC ↔ HPC) were not identical to those modulated during Late learning (dACC ↔ HPC, dPFC ↔ FG, FG ↔ SPC). Covert consolidation exerts systematic effects, and these results add to emerging evidence for the constructive role of the brain's "resting state" in potentiating action.
Collapse
Affiliation(s)
- Mathura Ravishankar
- Dept of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Alexandra Morris
- Dept of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Ashley Burgess
- Dept of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Dalal Khatib
- Dept of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Jeffrey A Stanley
- Dept of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Vaibhav A Diwadkar
- Dept of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA.
| |
Collapse
|
16
|
Braden BB, Smith CJ, Thompson A, Glaspy TK, Wood E, Vatsa D, Abbott AE, McGee SC, Baxter LC. Executive function and functional and structural brain differences in middle-age adults with autism spectrum disorder. Autism Res 2017; 10:1945-1959. [PMID: 28940848 DOI: 10.1002/aur.1842] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 07/06/2017] [Accepted: 07/12/2017] [Indexed: 11/11/2022]
Abstract
There is a rapidly growing group of aging adults with autism spectrum disorder (ASD) who may have unique needs, yet cognitive and brain function in older adults with ASD is understudied. We combined functional and structural neuroimaging and neuropsychological tests to examine differences between middle-aged men with ASD and matched neurotypical (NT) men. Participants (ASD, n = 16; NT, n = 17) aged 40-64 years were well-matched according to age, IQ (range: 83-131), and education (range: 9-20 years). Middle-age adults with ASD made more errors on an executive function task (Wisconsin Card Sorting Test) but performed similarly to NT adults on tests of delayed verbal memory (Rey Auditory Verbal Learning Test) and local visual search (Embedded Figures Task). Independent component analysis of a functional MRI working memory task (n-back) completed by most participants (ASD = 14, NT = 17) showed decreased engagement of a cortico-striatal-thalamic-cortical neural network in older adults with ASD. Structurally, older adults with ASD had reduced bilateral hippocampal volumes, as measured by FreeSurfer. Findings expand our understanding of ASD as a lifelong condition with persistent cognitive and functional and structural brain differences evident at middle-age. Autism Res 2017, 10: 1945-1959. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY We compared cognitive abilities and brain measures between 16 middle-age men with high-functioning autism spectrum disorder (ASD) and 17 typical middle-age men to better understand how aging affects an older group of adults with ASD. Men with ASD made more errors on a test involving flexible thinking, had less activity in a flexible thinking brain network, and had smaller volume of a brain structure related to memory than typical men. We will follow these older adults over time to determine if aging changes are greater for individuals with ASD.
Collapse
Affiliation(s)
- B Blair Braden
- Department of Speech and Hearing Science, Arizona State University, Tempe, Arizona
| | | | - Amiee Thompson
- Department of Neuroimaging Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Tyler K Glaspy
- Department of Neuroimaging Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Emily Wood
- Department of Neuroimaging Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Divya Vatsa
- Department of Neuroimaging Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Angela E Abbott
- Department of Neuroimaging Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Samuel C McGee
- Department of Neuroimaging Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Leslie C Baxter
- Department of Neuroimaging Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| |
Collapse
|
17
|
Diwadkar VA, Re M, Cecchetto F, Garzitto M, Piccin S, Bonivento C, Maieron M, D'Agostini S, Balestrieri M, Brambilla P. Attempts at memory control induce dysfunctional brain activation profiles in Generalized Anxiety Disorder: An exploratory fMRI study. Psychiatry Res Neuroimaging 2017; 266:42-52. [PMID: 28599173 DOI: 10.1016/j.pscychresns.2017.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/04/2017] [Accepted: 05/21/2017] [Indexed: 02/08/2023]
Abstract
Suppression of aversive memories through memory control has historically been proposed as a central psychological defense mechanism. Inability to suppress memories is considered a central psychological trait in several psychiatric disorders, including Generalized Anxiety Disorder (GAD). Yet, few studies have attempted the focused identification of dysfunctional brain activation profiles when patients with Generalized Anxiety Disorders attempt memory control. Using a well-characterized behavioral paradigm we studied brain activation profiles in a group of adult GAD patients and well-matched healthy controls (HC). Participants learned word-association pairs before imaging. During fMRI when presented with one word of the pair, they were instructed to either suppress memory of, or retrieve the paired word. Subsequent behavioral testing indicated both GAD and HC were able to engage in the task, but attempts at memory control (suppression or retrieval) during fMRI revealed vastly different activation profiles. GAD were characterized by substantive hypo-activation signatures during both types of memory control, with effects particularly strong during suppression in brain regions including the dorsal anterior cingulate and the ventral prefrontal cortex. Attempts at memory control in GAD fail to engage brain regions to the same extent HC, providing a putative neuronal signature for a well-established psychological characteristic of the illness.
Collapse
Affiliation(s)
- Vaibhav A Diwadkar
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University, Tolan Park Medical Building, Suite 5B, 3901 Chrysler Service Drive, Detroit, MI 48301, USA
| | - Marta Re
- DISM, University of Udine, Udine 33100, Italy
| | | | - Marco Garzitto
- Scientific Institute IRCCS "Eugenio Medea", San Vito al Tagliamento, Pordenone, Italy
| | - Sara Piccin
- Scientific Institute IRCCS "Eugenio Medea", San Vito al Tagliamento, Pordenone, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Gonçalves ÓF, Batistuzzo MC, Sato JR. Real-time functional magnetic resonance imaging in obsessive-compulsive disorder. Neuropsychiatr Dis Treat 2017; 13:1825-1834. [PMID: 28744133 PMCID: PMC5513821 DOI: 10.2147/ndt.s121139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The current literature provides substantial evidence of brain alterations associated with obsessive-compulsive disorder (OCD) symptoms (eg, checking, cleaning/decontamination, counting compulsions; harm or sexual, symmetry/exactness obsessions), and emotional problems (eg, defensive/appetitive emotional imbalance, disgust, guilt, shame, and fear learning/extinction) and cognitive impairments associated with this disorder (eg, inhibitory control, working memory, cognitive flexibility). Building on this evidence, new clinical trials can now target specific brain regions/networks. Real-time functional magnetic resonance imaging (rtfMRI) was introduced as a new therapeutic tool for the self-regulation of brain-mind. In this review, we describe initial trials testing the use of rtfMRI to target brain regions associated with specific OCD symptoms (eg, contamination), and other mind-brain processes (eg, cognitive - working memory, inhibitory control, emotional - defensive, appetitive systems, fear reduction through counter-conditioning) found impaired in OCD patients. While this is a novel topic of research, initial evidence shows the promise of using rtfMRI in training the self-regulation of brain regions and mental processes associated with OCD. Additionally, studies with healthy populations have shown that individuals can regulate brain regions associated with cognitive and emotional processes found impaired in OCD. After the initial "proof-of-concept" stage, there is a need to follow up with controlled clinical trials that could test rtfMRI innovative treatments targeting brain regions and networks associated with different OCD symptoms and cognitive-emotional impairments.
Collapse
Affiliation(s)
- Óscar F Gonçalves
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal
- Spaulding Neuromodulation Center, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Social and Cognitive Neuroscience Laboratory, Center for Health and Biological Sciences, Mackenzie Presbyterian University
| | - Marcelo C Batistuzzo
- Department and Institute of Psychiatry, University of São Paulo Medical School (FMUSP)
| | - João R Sato
- Mathematics, Computing, and Cognition Center, Universidade Federal do ABC – UFABC, São Paulo, Brazil
| |
Collapse
|
19
|
Diwadkar VA, Asemi A, Burgess A, Chowdury A, Bressler SL. Potentiation of motor sub-networks for motor control but not working memory: Interaction of dACC and SMA revealed by resting-state directed functional connectivity. PLoS One 2017; 12:e0172531. [PMID: 28278267 PMCID: PMC5344349 DOI: 10.1371/journal.pone.0172531] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/06/2017] [Indexed: 12/20/2022] Open
Abstract
The dorsal Anterior Cingulate Cortex (dACC) and the Supplementary Motor Area (SMA) are known to interact during motor coordination behavior. We previously discovered that the directional influences underlying this interaction in a visuo-motor coordination task are asymmetric, with the dACC→SMA influence being significantly greater than that in the reverse direction. To assess the specificity of this effect, here we undertook an analysis of the interaction between dACC and SMA in two distinct contexts. In addition to the motor coordination task, we also assessed these effects during a (n-back) working memory task. We applied directed functional connectivity analysis to these two task paradigms, and also to the rest condition of each paradigm, in which rest blocks were interspersed with task blocks. We report here that the previously known asymmetric interaction between dACC and SMA, with dACC→SMA dominating, was significantly larger in the motor coordination task than the memory task. Moreover the asymmetry between dACC and SMA was reversed during the rest condition of the motor coordination task, but not of the working memory task. In sum, the dACC→SMA influence was significantly greater in the motor task than the memory task condition, and the SMA→dACC influence was significantly greater in the motor rest than the memory rest condition. We interpret these results as suggesting that the potentiation of motor sub-networks during the motor rest condition supports the motor control of SMA by dACC during the active motor task condition.
Collapse
Affiliation(s)
- Vaibhav A. Diwadkar
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| | - Avisa Asemi
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida, United States of America
| | - Ashley Burgess
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Asadur Chowdury
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Steven L. Bressler
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida, United States of America
- Department of Psychology, Florida Atlantic University, Boca Raton, Florida, United States of America
| |
Collapse
|
20
|
Friedman AL, Burgess A, Ramaseshan K, Easter P, Khatib D, Chowdury A, Arnold PD, Hanna GL, Rosenberg DR, Diwadkar VA. Brain network dysfunction in youth with obsessive-compulsive disorder induced by simple uni-manual behavior: The role of the dorsal anterior cingulate cortex. Psychiatry Res 2017; 260:6-15. [PMID: 27992792 PMCID: PMC5302006 DOI: 10.1016/j.pscychresns.2016.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 10/20/2022]
Abstract
In an effort to elucidate differences in functioning brain networks between youth with obsessive-compulsive disorder and controls, we used fMRI signals to analyze brain network interactions of the dorsal anterior cingulate cortex (dACC) during visually coordinated motor responses. Subjects made a uni-manual response to briefly presented probes, at periodic (allowing participants to maintain a "motor set") or random intervals (demanding reactive responses). Network interactions were assessed using psycho-physiological interaction (PPI), a basic model of functional connectivity evaluating modulatory effects of the dACC in the context of each task condition. Across conditions, OCD were characterized by hyper-modulation by the dACC, with loci alternatively observed as both condition-general and condition-specific. Thus, dynamically driven task demands during simple uni-manual motor control induce compensatory network interactions in cortical-thalamic regions in OCD. These findings support previous research in OCD showing compensatory network interactions during complex memory tasks, but establish that these network effects are observed during basic sensorimotor processing. Thus, these patterns of network dysfunction may in fact be independent of the complexity of tasks used to induce brain network activity. Hypothesis-driven approaches coupled with sophisticated network analyses are a highly valuable approach in using fMRI to uncover mechanisms in disorders like OCD.
Collapse
Affiliation(s)
- Amy L Friedman
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Ashley Burgess
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Karthik Ramaseshan
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Phil Easter
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Dalal Khatib
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Asadur Chowdury
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Paul D Arnold
- Dept. of Psychiatry and Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, Alberta, Canada
| | - Gregory L Hanna
- Dept. of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - David R Rosenberg
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Vaibhav A Diwadkar
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
21
|
Tao J, Chen X, Egorova N, Liu J, Xue X, Wang Q, Zheng G, Li M, Hong W, Sun S, Chen L, Kong J. Tai Chi Chuan and Baduanjin practice modulates functional connectivity of the cognitive control network in older adults. Sci Rep 2017; 7:41581. [PMID: 28169310 PMCID: PMC5294576 DOI: 10.1038/srep41581] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 12/12/2016] [Indexed: 01/02/2023] Open
Abstract
Cognitive impairment is one of the most common problem saffecting older adults. In this study, we investigated whether Tai Chi Chuan and Baduanjin practice can modulate mental control functionand the resting state functional connectivity (rsFC) of the cognitive control network in older adults. Participants in the two exercise groups practiced either Tai Chi Chuan or Baduanjin for 12 weeks, and those in the control group received basic health education. Memory tests and fMRI scans were conducted at baseline and at the end of the study. Seed-based (bilateral dorsolateral prefrontal cortex, DLPFC) rsFC analysis was performed. We found that compared to the controls, 1) both Tai Chi Chuan and Baduanjin groups demonstrated significant improvements in mental control function; 2) the Tai Chi Chuan group showed a significant decrease in rsFC between the DLPFC and the left superior frontal gyrus (SFG) and anterior cingulate cortex; and 3) the Baduanjin group showed a significant decrease in rsFC between the DLPFC and the left putamen and insula. Mental control improvement was negatively associated with rsFC DLPFC-putamen changes across all subjects. These findings demonstrate the potential of Tai Chi Chuan and Baduanjin exercises in preventing cognitive decline.
Collapse
Affiliation(s)
- Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R., China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, 350003, China.,Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Xiangli Chen
- The School of Social and Political Science, University of Edinburgh, Edinburgh, EH8,9LD, UK
| | - Natalia Egorova
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jiao Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R., China
| | - Xiehua Xue
- Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350003, China
| | - Qin Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R., China
| | - Guohua Zheng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R., China
| | - Moyi Li
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R., China
| | - Wenjun Hong
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R., China
| | - Sharon Sun
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R., China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, 350003, China
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| |
Collapse
|
22
|
Abstract
Purpose of review This review examines emerging neuroimaging research in pediatric obsessive compulsive disorder (OCD) and explores the possibility that developmentally sensitive mechanisms may underlie OCD across the lifespan. Recent findings Diffusion tensor imaging (DTI) studies of pediatric OCD reveal abnormal structural connectivity within frontal-striato-thalamic circuity (FSTC). Resting-state functional magnetic resonance imaging (fMRI) studies further support atypical FSTC connectivity in young patients, but also suggest altered connectivity within cortical networks for task-control. Task-based fMRI studies show that hyper- and hypo-activation of task control networks may depend on task difficulty in pediatric patients similar to recent findings in adults. Summary This review suggests that atypical neurodevelopmental trajectories may underlie the emergence and early course of OCD. Abnormalities of structural and functional connectivity may vary with age, while functional engagement during task may vary with age and task complexity. Future research should combine DTI, resting-state fMRI and task-based fMRI methods and incorporate longitudinal designs to reveal developmentally sensitive targets for intervention.
Collapse
|
23
|
Gonçalves ÓF, Carvalho S, Leite J, Fernandes-Gonçalves A, Carracedo A, Sampaio A. Cognitive and emotional impairments in obsessive-compulsive disorder: Evidence from functional brain alterations. Porto Biomed J 2016; 1:92-105. [PMID: 32258557 DOI: 10.1016/j.pbj.2016.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
There is a common agreement on the existence of dysfunctional cortico-striatal-thalamus-cortical pathways in OCD. Despite this consensus, recent studies showed that brain regions other than the CSTC loops are needed to understand the complexity and diversity of cognitive and emotional deficits in OCD. This review presents examples of research using functional neuroimaging, reporting abnormal brain processes in OCD that may underlie specific cognitive/executive (inhibitory control, cognitive flexibility, working memory), and emotional impairments (fear/defensive, disgust, guilt, shame). Studies during resting state conditions show that OCD patients have alterations in connectivity not only within the CSTC pathways but also in more extended resting state networks, particularly the default mode network and the fronto-parietal network. Additionally, abnormalities in brain functioning have been found in several cognitive and emotionally task conditions, namely: inhibitory control (e.g., CSTC loops, fronto-parietal networks, anterior cingulate); cognitive flexibility (e.g., CSTC loops, extended temporal, parietal, and occipital regions); working memory (e.g., CSTC loops, frontal parietal networks, dorsal anterior cingulate); fear/defensive (e.g., amygdala, additional brain regions associated with perceptual - parietal, occipital - and higher level cognitive processing - prefrontal, temporal); disgust (e.g., insula); shame (e.g., decrease activity in middle frontal gyrus and increase in frontal, limbic, temporal regions); and guilt (e.g., decrease activity anterior cingulate and increase in frontal, limbic, temporal regions). These findings may contribute to the understanding of OCD as both an emotional (i.e., anxiety) and cognitive (i.e., executive control) disorder.
Collapse
Affiliation(s)
- Óscar F Gonçalves
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal.,Spaulding Center of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Applied Psychology, Bouvé College of Health Sciences, Northeastern University, Boston, USA
| | - Sandra Carvalho
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal.,Spaulding Center of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jorge Leite
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal.,Spaulding Center of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Angel Carracedo
- Forensic Genetics Unit, Institute of Legal Medicine, Faculty of Medicine, University of Santiago de Compostela, Galicia, Spain
| | - Adriana Sampaio
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal
| |
Collapse
|
24
|
Woodcock EA, Wadehra S, Diwadkar VA. Network Profiles of the Dorsal Anterior Cingulate and Dorsal Prefrontal Cortex in Schizophrenia During Hippocampal-Based Associative Memory. Front Syst Neurosci 2016; 10:32. [PMID: 27092063 PMCID: PMC4823313 DOI: 10.3389/fnsys.2016.00032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/23/2016] [Indexed: 01/04/2023] Open
Abstract
Schizophrenia is a disorder characterized by brain network dysfunction, particularly during behavioral tasks that depend on frontal and hippocampal mechanisms. Here, we investigated network profiles of the regions of the frontal cortex during memory encoding and retrieval, phases of processing essential to associative memory. Schizophrenia patients (n = 12) and healthy control (HC) subjects (n = 10) participated in an established object-location associative memory paradigm that drives frontal-hippocampal interactions. Network profiles were modeled of both the dorsal prefrontal (dPFC) and the dorsal anterior cingulate cortex (dACC) as seeds using psychophysiological interaction analyses, a robust framework for investigating seed-based connectivity in specific task contexts. The choice of seeds was motivated by previous evidence of involvement of these regions during associative memory. Differences between patients and controls were evaluated using second-level analyses of variance (ANOVA) with seed (dPFC vs. dACC), group (patients vs. controls), and memory process (encoding and retrieval) as factors. Patients showed a pattern of exaggerated modulation by each of the dACC and the dPFC during memory encoding and retrieval. Furthermore, group by memory process interactions were observed within regions of the hippocampus. In schizophrenia patients, relatively diminished modulation during encoding was associated with increased modulation during retrieval. These results suggest a pattern of complex dysfunctional network signatures of critical forebrain regions in schizophrenia. Evidence of dysfunctional frontal-medial temporal lobe network signatures in schizophrenia is consistent with the illness' characterization as a disconnection syndrome.
Collapse
Affiliation(s)
- Eric A Woodcock
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of MedicineDetroit, MI, USA; Translational Neuroscience Program, Wayne State University School of MedicineDetroit, MI, USA
| | - Sunali Wadehra
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine Detroit, MI, USA
| | - Vaibhav A Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of MedicineDetroit, MI, USA; Translational Neuroscience Program, Wayne State University School of MedicineDetroit, MI, USA
| |
Collapse
|
25
|
Li B, Mody M. Cortico-Striato-Thalamo-Cortical Circuitry, Working Memory, and Obsessive-Compulsive Disorder. Front Psychiatry 2016; 7:78. [PMID: 27199785 PMCID: PMC4854867 DOI: 10.3389/fpsyt.2016.00078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 04/18/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Baojuan Li
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; School of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Maria Mody
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School , Charlestown, MA , USA
| |
Collapse
|