1
|
Gupta A, Srivastava CK, Bhushan B, Behera L. A comparative study of EEG microstate dynamics during happy and sad music videos. Front Hum Neurosci 2025; 18:1469468. [PMID: 39980907 PMCID: PMC11841423 DOI: 10.3389/fnhum.2024.1469468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/23/2024] [Indexed: 02/22/2025] Open
Abstract
EEG microstates offer a unique window into the dynamics of emotional experiences. This study delved into the emotional responses of happiness and sadness triggered by music videos, employing microstate analysis and eLoreta source-level investigation in the alpha band. The results of the microstate analysis showed that regardless of gender, participants during happy music video significantly upregulated class D microstate and downregulated class C microstate, leading to a significantly enhanced global explained variance (GEV), coverage, occurrence, duration, and global field power (GFP) for class D. Conversely, sad music video had the opposite effect. The eLoreta study revealed that during the happy state, there was enhanced CSD in the central parietal regions across both genders and diminished functional connectivity in the precuneus for female participants compared to the sad state. Class D and class C microstates are linked to attention and mind-wandering, respectively. The findings suggest that (1) increased class D and CSD activity could explain heightened attentiveness observed during happy music, and (2) increased class C activity and functional connectivity could explain enhanced mind wandering observed during sad music. Additionally, female participants exhibited significantly higher mean occurrence than males, and the sad state showed significantly higher mean occurrence than the happy state.
Collapse
Affiliation(s)
- Ashish Gupta
- Department of Electrical Engineering, Indian Institute of Technology, Kanpur, India
| | | | - Braj Bhushan
- Department of Humanities and Social Sciences, Indian Institute of Technology, Kanpur, India
| | - Laxmidhar Behera
- Department of Electrical Engineering, Indian Institute of Technology, Kanpur, India
- School of Computing and Electrical Engineering, Indian Institute of Technology, Mandi, India
| |
Collapse
|
2
|
Cheung VKM, Harrison PMC, Koelsch S, Pearce MT, Friederici AD, Meyer L. Cognitive and sensory expectations independently shape musical expectancy and pleasure. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220420. [PMID: 38104601 PMCID: PMC10725761 DOI: 10.1098/rstb.2022.0420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/20/2023] [Indexed: 12/19/2023] Open
Abstract
Expectation is crucial for our enjoyment of music, yet the underlying generative mechanisms remain unclear. While sensory models derive predictions based on local acoustic information in the auditory signal, cognitive models assume abstract knowledge of music structure acquired over the long term. To evaluate these two contrasting mechanisms, we compared simulations from four computational models of musical expectancy against subjective expectancy and pleasantness ratings of over 1000 chords sampled from 739 US Billboard pop songs. Bayesian model comparison revealed that listeners' expectancy and pleasantness ratings were predicted by the independent, non-overlapping, contributions of cognitive and sensory expectations. Furthermore, cognitive expectations explained over twice the variance in listeners' perceived surprise compared to sensory expectations, suggesting a larger relative importance of long-term representations of music structure over short-term sensory-acoustic information in musical expectancy. Our results thus emphasize the distinct, albeit complementary, roles of cognitive and sensory expectations in shaping musical pleasure, and suggest that this expectancy-driven mechanism depends on musical information represented at different levels of abstraction along the neural hierarchy. This article is part of the theme issue 'Art, aesthetics and predictive processing: theoretical and empirical perspectives'.
Collapse
Affiliation(s)
- Vincent K. M. Cheung
- Sony Computer Science Laboratories, Inc., Shinagawa-ku, Tokyo 141-0022, Japan
- Department of Neuropsychology, Sony Computer Science Laboratories, Inc., Shinagawa-ku, Tokyo 141-0022, Japan
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Peter M. C. Harrison
- Centre for Music and Science, University of Cambridge, Faculty of Music, 11 West Road, Cambridge, CB3 9DP, UK
- Centre for Digital Music, Queen Mary University of London, E1 4NS, UK
| | - Stefan Koelsch
- Department of Biological and Medical Psychology, University of Bergen, Bergen, 5009, Norway
| | - Marcus T. Pearce
- Centre for Digital Music, Queen Mary University of London, E1 4NS, UK
- Department of Clinical Medicine, Aarhus University, Aarhus N, 8200, Denmark
| | - Angela D. Friederici
- Department of Neuropsychology, Sony Computer Science Laboratories, Inc., Shinagawa-ku, Tokyo 141-0022, Japan
| | - Lars Meyer
- Research Group Language Cycles, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Clinic for Phoniatrics and Pedaudiology, University Hospital Münster, Münster, 48149, Germany
| |
Collapse
|
3
|
Werner LM, Skouras S, Bechtold L, Pallesen S, Koelsch S. Sensorimotor synchronization to music reduces pain. PLoS One 2023; 18:e0289302. [PMID: 37506059 PMCID: PMC10381080 DOI: 10.1371/journal.pone.0289302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Pain-reducing effects of music listening are well-established, but the effects are small and their clinical relevance questionable. Recent theoretical advances, however, have proposed that synchronizing to music, such as clapping, tapping or dancing, has evolutionarily important social effects that are associated with activation of the endogenous opioid system (which supports both analgesia and social bonding). Thus, active sensorimotor synchronization to music could have stronger analgesic effects than simply listening to music. In this study, we show that sensorimotor synchronization to music significantly amplifies the pain-reducing effects of music listening. Using pressure algometry to the fingernails, pain stimuli were delivered to n = 59 healthy adults either during music listening or silence, while either performing an active tapping task or a passive control task. Compared to silence without tapping, music with tapping (but not simply listening to music) reduced pain with a large, clinically significant, effect size (d = 0.93). Simply tapping without music did not elicit such an effect. Our analyses indicate that both attentional and emotional mechanisms drive the pain-reducing effects of sensorimotor synchronization to music, and that tapping to music in addition to merely listening to music may enhance pain-reducing effects in both clinical contexts and everyday life. The study was registered as a clinical trial at ClinicalTrials.gov (registration number NCT05267795), and the trial was first posted on 04/03/2022.
Collapse
Affiliation(s)
- Lucy M Werner
- Department for Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Department of Biological Psychology, Institute for Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - Stavros Skouras
- Department for Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Laura Bechtold
- Department of Biological Psychology, Institute for Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - Ståle Pallesen
- Department of Psychosocial Science, University of Bergen, Bergen, Norway
| | - Stefan Koelsch
- Department for Biological and Medical Psychology, University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Musical tempo affects EEG spectral dynamics during subsequent time estimation. Biol Psychol 2023; 178:108517. [PMID: 36801434 DOI: 10.1016/j.biopsycho.2023.108517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/24/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
The perception of time depends on the rhythmicity of internal and external synchronizers. One external synchronizer that affects time estimation is music. This study aimed to analyze the effects of musical tempi on EEG spectral dynamics during subsequent time estimation. Participants performed a time production task after (i) silence and (ii) listening to music at different tempi -90, 120, and 150 bpm- while EEG activity was recorded. While listening, there was an increase in alpha power at all tempi compared to the resting state and an increase of beta at the fastest tempo. The beta increase persisted during the subsequent time estimations, with higher beta power during the task after listening to music at the fastest tempo than task performance without music. Spectral dynamics in frontal regions showed lower alpha activity in the final stages of time estimations after listening to music at 90- and 120-bpm than in the silence condition and higher beta in the early stages at 150 bpm. Behaviorally, the 120 bpm musical tempo produced slight improvements. Listening to music modified tonic EEG activity that subsequently affected EEG dynamics during time production. Music at a more optimal rate could have benefited temporal expectation and anticipation. The fastest musical tempo may have generated an over-activated state that affected subsequent time estimations. These results emphasize the importance of music as an external stimulus that can affect brain functional organization during time perception even after listening.
Collapse
|
5
|
Gupta A, Bhushan B, Behera L. Neural response to sad autobiographical recall and sad music listening post recall reveals distinct brain activation in alpha and gamma bands. PLoS One 2023; 18:e0279814. [PMID: 36607985 PMCID: PMC9821717 DOI: 10.1371/journal.pone.0279814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Although apparently paradoxical, sad music has been effective in coping with sad life experiences. The underpinning brain neural correlates of this are not well explored. We performed Electroencephalography (EEG) source-level analysis for the brain during a sad autobiographical recall (SAR) and upon exposure to sad music. We specifically investigated the Cingulate cortex complex and Parahippocampus (PHC) regions, areas prominently involved in emotion and memory processing. Results show enhanced alpha band lag phase-synchronization in the brain during sad music listening, especially within and between the Posterior cingulate cortex (PCC) and (PHC) compared to SAR. This enhancement was lateralized for alpha1 and alpha2 bands in the left and right hemispheres, respectively. We also observed a significant increase in alpha2 brain current source density (CSD) during sad music listening compared to SAR and baseline resting state in the region of interest (ROI). Brain during SAR condition had enhanced right hemisphere lateralized functional connectivity and CSD in gamma band compared to sad music listening and baseline resting state. Our findings show that the brain during the SAR state had enhanced gamma-band activity, signifying increased content binding capacity. At the same time, the brain is associated with an enhanced alpha band activity while sad music listening, signifying increased content-specific information processing. Thus, the results suggest that the brain's neural correlates during sad music listening are distinct from the SAR state as well as the baseline resting state and facilitate enhanced content-specific information processing potentially through three-channel neural pathways-(1) by enhancing the network connectivity in the region of interest (ROI), (2) by enhancing local cortical integration of areas in ROI, and (3) by enhancing sustained attention. We argue that enhanced content-specific information processing possibly supports the positive experience during sad music listening post a sad experience in a healthy population. Finally, we propose that sadness has two different characteristics under SAR state and sad music listening.
Collapse
Affiliation(s)
- Ashish Gupta
- Department of Electrical Engineering, Indian Institute of Technology, Kanpur, India
| | - Braj Bhushan
- Department of Humanities and Social Sciences, Indian Institute of Technology, Kanpur, India
| | - Laxmidhar Behera
- Department of Electrical Engineering, Indian Institute of Technology, Kanpur, India
- School of Computing and Electrical Engineering, Indian Institute of Technology, Mandi, India
| |
Collapse
|
6
|
Tichko P, Kim JC, Large E, Loui P. Integrating music-based interventions with Gamma-frequency stimulation: Implications for healthy ageing. Eur J Neurosci 2022; 55:3303-3323. [PMID: 33236353 PMCID: PMC9899516 DOI: 10.1111/ejn.15059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
In recent years, music-based interventions (MBIs) have risen in popularity as a non-invasive, sustainable form of care for treating dementia-related disorders, such as Mild Cognitive Impairment (MCI) and Alzheimer's disease (AD). Despite their clinical potential, evidence regarding the efficacy of MBIs on patient outcomes is mixed. Recently, a line of related research has begun to investigate the clinical impact of non-invasive Gamma-frequency (e.g., 40 Hz) sensory stimulation on dementia. Current work, using non-human-animal models of AD, suggests that non-invasive Gamma-frequency stimulation can remediate multiple pathophysiologies of dementia at the molecular, cellular and neural-systems scales, and, importantly, improve cognitive functioning. These findings suggest that the efficacy of MBIs could, in theory, be enhanced by incorporating Gamma-frequency stimulation into current MBI protocols. In the current review, we propose a novel clinical framework for non-invasively treating dementia-related disorders that combines previous MBIs with current approaches employing Gamma-frequency sensory stimulation. We theorize that combining MBIs with Gamma-frequency stimulation could increase the therapeutic power of MBIs by simultaneously targeting multiple biomarkers of dementia, restoring neural activity that underlies learning and memory (e.g., Gamma-frequency neural activity, Theta-Gamma coupling), and actively engaging auditory and reward networks in the brain to promote behavioural change.
Collapse
Affiliation(s)
- Parker Tichko
- Department of Music, Northeastern University, Boston, MA, USA
| | - Ji Chul Kim
- Perception, Action, Cognition (PAC) Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Edward Large
- Perception, Action, Cognition (PAC) Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA,Center for the Ecological Study of Perception & Action (CESPA), Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA,Department of Physics, University of Connecticut, Storrs, CT, USA
| | - Psyche Loui
- Department of Music, Northeastern University, Boston, MA, USA
| |
Collapse
|
7
|
Zhang Y, Xie M, Wang Y, Qin P. Distinct Effects of Stimulus Repetition on Various Temporal Stages of Subject's Own Name Processing. Brain Sci 2022; 12:brainsci12030411. [PMID: 35326367 PMCID: PMC8946540 DOI: 10.3390/brainsci12030411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/06/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
The self is one of the most important concepts in psychology, which is of great significance for human survival and development. As an important self-related stimulus, the subject’s own name (SON) shows great advantages in cognitive and social processing and is widely used as an oddball stimulus in previous studies. However, it remained unknown whether the multiple repetition of stimulus would have similar influence on the neural response to SON and the other names under equal probability. In this study, adopting EEG and an equal–probability paradigm, we first detected the SON-related ERP components which could differentiate SON from other names, and then investigated how these components are influenced by repeated exposure of the stimulus. Our results showed that SON evoked an earlier SON-related negativity (SRN) at the fronto-central region and a late positive potential (LPP) at the centro-parietal region. More intriguingly, the earlier SRN demonstrated reduction after multiple repetitions, whereas LPP did not exhibit significant changes. In conclusion, these findings revealed that multiple repetitions of the stimulus might influence the various temporal stages in SON-related processing and highlighted the robustness of the late stage in this processing.
Collapse
Affiliation(s)
- Yihui Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou 510631, China; (Y.Z.); (M.X.)
- Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Musi Xie
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou 510631, China; (Y.Z.); (M.X.)
- Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Yuzhi Wang
- Department of Western Medicine Surgery, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Pengmin Qin
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou 510631, China; (Y.Z.); (M.X.)
- Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
- Pazhou Lab, Guangzhou 510335, China
- Correspondence: ; Tel.: +86-18665097531
| |
Collapse
|
8
|
Tervaniemi M, Pousi S, Seppälä M, Tommi M. Brain oscillation recordings of the audience in a live concert-like setting. Cogn Process 2021; 23:329-337. [PMID: 34958421 PMCID: PMC9072464 DOI: 10.1007/s10339-021-01072-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 12/15/2021] [Indexed: 12/04/2022]
Abstract
There are only a few previous EEG studies that were conducted while the audience is listening to live music. However, in laboratory settings using music recordings, EEG frequency bands theta and alpha are connected to music improvisation and creativity. Here, we measured EEG of the audience in a concert-like setting outside the laboratory and compared the theta and alpha power evoked by partly improvised versus regularly performed familiar versus unfamiliar live classical music. To this end, partly improvised and regular versions of pieces by Bach (familiar) and Melartin (unfamiliar) were performed live by a chamber trio. EEG data from left and right frontal and central regions of interest were analysed to define theta and alpha power during each performance. After the performances, the participants rated how improvised and attractive each of the performances were. They also gave their affective ratings before and after each performance. We found that theta power was enhanced during the familiar improvised Bach piece and the unfamiliar improvised Melartin piece when compared with the performance of the same piece performed in a regular manner. Alpha power was not modulated by manner of performance or by familiarity of the piece. Listeners rated partly improvised performances of a familiar Bach and unfamiliar Melartin piece as more improvisatory and innovative than the regular performances. They also indicated more joy and less sadness after listening to the unfamiliar improvised piece of Melartin and less fearful and more enthusiastic after listening to the regular version of Melartin than before listening. Thus, according to our results, it is possible to study listeners’ brain functions with EEG during live music performances outside the laboratory, with theta activity reflecting the presence of improvisation in the performances.
Collapse
Affiliation(s)
- Mari Tervaniemi
- Cicero Learning, Faculty of Educational Sciences, University of Helsinki, POB 9, 00014, University of Helsinki, Finland. .,Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, POB 21, 00014, University of Helsinki, Finland.
| | - Saara Pousi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, POB 21, 00014, University of Helsinki, Finland
| | - Maaria Seppälä
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, POB 21, 00014, University of Helsinki, Finland
| | - Makkonen Tommi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, POB 21, 00014, University of Helsinki, Finland
| |
Collapse
|
9
|
Pousson JE, Voicikas A, Bernhofs V, Pipinis E, Burmistrova L, Lin YP, Griškova-Bulanova I. Spectral Characteristics of EEG during Active Emotional Musical Performance. SENSORS 2021; 21:s21227466. [PMID: 34833541 PMCID: PMC8620396 DOI: 10.3390/s21227466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022]
Abstract
The research on neural correlates of intentional emotion communication by the music performer is still limited. In this study, we attempted to evaluate EEG patterns recorded from musicians who were instructed to perform a simple piano score while manipulating their manner of play to express specific contrasting emotions and self-rate the emotion they reflected on the scales of arousal and valence. In the emotional playing task, participants were instructed to improvise variations in a manner by which the targeted emotion is communicated. In contrast, in the neutral playing task, participants were asked to play the same piece precisely as written to obtain data for control over general patterns of motor and sensory activation during playing. The spectral analysis of the signal was applied as an initial step to be able to connect findings to the wider field of music-emotion research. The experimental contrast of emotional playing vs. neutral playing was employed to probe brain activity patterns differentially involved in distinct emotional states. The tasks of emotional and neutral playing differed considerably with respect to the state of intended-to-transfer emotion arousal and valence levels. The EEG activity differences were observed between distressed/excited and neutral/depressed/relaxed playing.
Collapse
Affiliation(s)
- Jachin Edward Pousson
- Jāzeps Vītols Latvian Academy of Music, LV-1050 Riga, Latvia; (J.E.P.); (V.B.); (L.B.)
| | - Aleksandras Voicikas
- Department of Neurobiology and Biophysics, Vilnius University, LT-10257 Vilnius, Lithuania; (A.V.); (E.P.)
| | - Valdis Bernhofs
- Jāzeps Vītols Latvian Academy of Music, LV-1050 Riga, Latvia; (J.E.P.); (V.B.); (L.B.)
| | - Evaldas Pipinis
- Department of Neurobiology and Biophysics, Vilnius University, LT-10257 Vilnius, Lithuania; (A.V.); (E.P.)
| | - Lana Burmistrova
- Jāzeps Vītols Latvian Academy of Music, LV-1050 Riga, Latvia; (J.E.P.); (V.B.); (L.B.)
| | - Yuan-Pin Lin
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Department of Electrical Engineering, National Sun Yat-sen University, Lienhai Road, Kaohsiung 80424, Taiwan
| | - Inga Griškova-Bulanova
- Department of Neurobiology and Biophysics, Vilnius University, LT-10257 Vilnius, Lithuania; (A.V.); (E.P.)
- Correspondence: ; Tel.: +37-067110954
| |
Collapse
|
10
|
Different theta connectivity patterns underlie pleasantness evoked by familiar and unfamiliar music. Sci Rep 2021; 11:18523. [PMID: 34535731 PMCID: PMC8448873 DOI: 10.1038/s41598-021-98033-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/30/2021] [Indexed: 12/05/2022] Open
Abstract
Music-evoked pleasantness has been extensively reported to be modulated by familiarity. Nevertheless, while the brain temporal dynamics underlying the process of giving value to music are beginning to be understood, little is known about how familiarity might modulate the oscillatory activity associated with music-evoked pleasantness. The goal of the present experiment was to study the influence of familiarity in the relation between theta phase synchronization and music-evoked pleasantness. EEG was recorded from 22 healthy participants while they were listening to both familiar and unfamiliar music and rating the experienced degree of evoked pleasantness. By exploring interactions, we found that right fronto-temporal theta synchronization was positively associated with music-evoked pleasantness when listening to unfamiliar music. On the contrary, inter-hemispheric temporo-parietal theta synchronization was positively associated with music-evoked pleasantness when listening to familiar music. These results shed some light on the possible oscillatory mechanisms underlying fronto-temporal and temporo-parietal connectivity and their relationship with music-evoked pleasantness and familiarity.
Collapse
|
11
|
An edge-cloud collaboration architecture for pattern anomaly detection of time series in wireless sensor networks. COMPLEX INTELL SYST 2021. [DOI: 10.1007/s40747-021-00442-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractWith large deployment of wireless sensor networks, anomaly detection for sensor data is becoming increasingly important in various fields. As a vital data form of sensor data, time series has three main types of anomaly: point anomaly, pattern anomaly, and sequence anomaly. In production environments, the analysis of pattern anomaly is the most rewarding one. However, the traditional processing model cloud computing is crippled in front of large amount of widely distributed data. This paper presents an edge-cloud collaboration architecture for pattern anomaly detection of time series. A task migration algorithm is developed to alleviate the problem of backlogged detection tasks at edge node. Besides, the detection tasks related to long-term correlation and short-term correlation in time series are allocated to cloud and edge node, respectively. A multi-dimensional feature representation scheme is devised to conduct efficient dimension reduction. Two key components of the feature representation trend identification and feature point extraction are elaborated. Based on the result of feature representation, pattern anomaly detection is performed with an improved kernel density estimation method. Finally, extensive experiments are conducted with synthetic data sets and real-world data sets.
Collapse
|
12
|
Tanaka S. Mirror Neuron Activity During Audiovisual Appreciation of Opera Performance. Front Psychol 2021; 11:563031. [PMID: 33584402 PMCID: PMC7873040 DOI: 10.3389/fpsyg.2020.563031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 12/14/2020] [Indexed: 02/03/2023] Open
Abstract
Opera is a performing art in which music plays the leading role, and the acting of singers has a synergistic effect with the music. The mirror neuron system represents the neurophysiological mechanism underlying the coupling of perception and action. Mirror neuron activity is modulated by the appropriateness of actions and clarity of intentions, as well as emotional expression and aesthetic values. Therefore, it would be reasonable to assume that an opera performance induces mirror neuron activity in the audience so that the performer effectively shares an embodied performance with the audience. However, it is uncertain which aspect of opera performance induces mirror neuron activity. It is hypothesized that although auditory stimuli could induce mirror neuron activity, audiovisual perception of stage performance is the primary inducer of mirror neuron activity. To test this hypothesis, this study sought to correlate opera performance with brain activity as measured by electroencephalography (EEG) in singers while watching an opera performance with sounds or while listening to an aria without visual stimulus. We detected mirror neuron activity by observing that the EEG power in the alpha frequency band (8-13 Hz) was selectively decreased in the frontal-central-parietal area when watching an opera performance. In the auditory condition, however, the alpha-band power did not change relative to the resting condition. This study illustrates that the audiovisual perception of an opera performance engages the mirror neuron system in its audience.
Collapse
Affiliation(s)
- Shoji Tanaka
- Department of Information and Communication Sciences, Sophia University, Tokyo, Japan
| |
Collapse
|
13
|
Chabin T, Gabriel D, Chansophonkul T, Michelant L, Joucla C, Haffen E, Moulin T, Comte A, Pazart L. Cortical Patterns of Pleasurable Musical Chills Revealed by High-Density EEG. Front Neurosci 2020; 14:565815. [PMID: 33224021 PMCID: PMC7670092 DOI: 10.3389/fnins.2020.565815] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/29/2020] [Indexed: 01/02/2023] Open
Abstract
Music has the capacity to elicit strong positive feelings in humans by activating the brain's reward system. Because group emotional dynamics is a central concern of social neurosciences, the study of emotion in natural/ecological conditions is gaining interest. This study aimed to show that high-density EEG (HD-EEG) is able to reveal patterns of cerebral activities previously identified by fMRI or PET scans when the subject experiences pleasurable musical chills. We used HD-EEG to record participants (11 female, 7 male) while listening to their favorite pleasurable chill-inducing musical excerpts; they reported their subjective emotional state from low pleasure up to chills. HD-EEG results showed an increase of theta activity in the prefrontal cortex when arousal and emotional ratings increased, which are associated with orbitofrontal cortex activation localized using source localization algorithms. In addition, we identified two specific patterns of chills: a decreased theta activity in the right central region, which could reflect supplementary motor area activation during chills and may be related to rhythmic anticipation processing, and a decreased theta activity in the right temporal region, which may be related to musical appreciation and could reflect the right superior temporal gyrus activity. The alpha frontal/prefrontal asymmetry did not reflect the felt emotional pleasure, but the increased frontal beta to alpha ratio (measure of arousal) corresponded to increased emotional ratings. These results suggest that EEG may be a reliable method and a promising tool for the investigation of group musical pleasure through musical reward processing.
Collapse
Affiliation(s)
- Thibault Chabin
- Laboratoire de Neurosciences Intégratives et Cliniques, EA 481, Université Bourgogne Franche-Comté, Besançon, France
| | - Damien Gabriel
- Laboratoire de Neurosciences Intégratives et Cliniques, EA 481, Université Bourgogne Franche-Comté, Besançon, France
- INSERM CIC 1431, Centre d’Investigation Clinique de Besançon, Centre Hospitalier Universitaire de Besançon, Besançon, France
- Plateforme de Neuroimagerie Fonctionnelle et Neurostimulation – Neuraxess, Centre Hospitalier Universitaire de Besançon, Université Bourgogne Franche-Comté, Besançon, France
| | - Tanawat Chansophonkul
- INSERM CIC 1431, Centre d’Investigation Clinique de Besançon, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Lisa Michelant
- Laboratoire de Neurosciences Intégratives et Cliniques, EA 481, Université Bourgogne Franche-Comté, Besançon, France
| | - Coralie Joucla
- Laboratoire de Neurosciences Intégratives et Cliniques, EA 481, Université Bourgogne Franche-Comté, Besançon, France
| | - Emmanuel Haffen
- Laboratoire de Neurosciences Intégratives et Cliniques, EA 481, Université Bourgogne Franche-Comté, Besançon, France
- INSERM CIC 1431, Centre d’Investigation Clinique de Besançon, Centre Hospitalier Universitaire de Besançon, Besançon, France
- Plateforme de Neuroimagerie Fonctionnelle et Neurostimulation – Neuraxess, Centre Hospitalier Universitaire de Besançon, Université Bourgogne Franche-Comté, Besançon, France
| | - Thierry Moulin
- Laboratoire de Neurosciences Intégratives et Cliniques, EA 481, Université Bourgogne Franche-Comté, Besançon, France
- INSERM CIC 1431, Centre d’Investigation Clinique de Besançon, Centre Hospitalier Universitaire de Besançon, Besançon, France
- Plateforme de Neuroimagerie Fonctionnelle et Neurostimulation – Neuraxess, Centre Hospitalier Universitaire de Besançon, Université Bourgogne Franche-Comté, Besançon, France
| | - Alexandre Comte
- Laboratoire de Neurosciences Intégratives et Cliniques, EA 481, Université Bourgogne Franche-Comté, Besançon, France
- INSERM CIC 1431, Centre d’Investigation Clinique de Besançon, Centre Hospitalier Universitaire de Besançon, Besançon, France
- Plateforme de Neuroimagerie Fonctionnelle et Neurostimulation – Neuraxess, Centre Hospitalier Universitaire de Besançon, Université Bourgogne Franche-Comté, Besançon, France
| | - Lionel Pazart
- Laboratoire de Neurosciences Intégratives et Cliniques, EA 481, Université Bourgogne Franche-Comté, Besançon, France
- INSERM CIC 1431, Centre d’Investigation Clinique de Besançon, Centre Hospitalier Universitaire de Besançon, Besançon, France
- Plateforme de Neuroimagerie Fonctionnelle et Neurostimulation – Neuraxess, Centre Hospitalier Universitaire de Besançon, Université Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
14
|
Sharma S, Sasidharan A, Marigowda V, Vijay M, Sharma S, Mukundan CS, Pandit L, Masthi NRR. Indian classical music with incremental variation in tempo and octave promotes better anxiety reduction and controlled mind wandering-A randomised controlled EEG study. Explore (NY) 2020; 17:115-121. [PMID: 32249198 DOI: 10.1016/j.explore.2020.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/12/2020] [Accepted: 02/20/2020] [Indexed: 11/26/2022]
Abstract
Studies have reported the benefits of music-listening in stress-reduction using musical pieces of specific scale or 'Raaga'. But the influence of lower-level musical properties (like tempo, octave, timbre, etc.) lack research backing. Carnatic music concerts use incremental modulations in tempo and octave (e.g.: 'Ragam-Tanam-Pallavi') to elevate the mood of audiences. Therefore, the current study aimed to examine the anxiolytic effect of this musical property. A randomised controlled cross-over study with 21 male undergraduate medical students was followed. 11 participants listened to 'Varying music' (VM: instrumental music with incremental variations in tempo and octave) and 10 listened to 'Stable music' (SM: instrumental music without such variations), thrice daily for 6 days, both clips recorded in Raaga-Kaapi and silence being the control intervention. Electroencephalography (EEG) and Electrocardiography (for heart rate variability or HRV) were done on all 6 days. Beck's Anxiety inventory and State-trait anxiety scale were administered on Day-1 and Day-6. A significant anxiety score reduction was seen only in VM. VM showed marked decrease in lower frequency EEG power in bilateral temporo-parieto-occipital regions compared to silence, whereas SM showed increase in higher frequencies. Relatively, VM showed more midline power reduction (i.e., lower default mode network or DMN activity) and SM showed greater left-dominant alpha/beta asymmetry (i.e., greater right brain activation). During both music interventions HRV remained stable, unlike silence intervention. We speculate that, gradual transition between lower-slower and higher-faster music portions of VM induces a 'controlled-mind wandering' state involving balanced switching between heightened mind wandering ('attention to self') and reduced mind wandering ('attention to music') states, respectively. Therefore, music-selection has remarkable influence on stress-management and warrants further research.
Collapse
Affiliation(s)
- Sushma Sharma
- Kempegowda Institute of Medical Sciences (KIMS), Bengaluru, Karnataka, India
| | - Arun Sasidharan
- Axxonet Brain Research Laboratory (ABRL), Axxonet System Technologies Pvt. Ltd., Bengaluru, Karnataka, India.
| | - Vrinda Marigowda
- Axxonet Brain Research Laboratory (ABRL), Axxonet System Technologies Pvt. Ltd., Bengaluru, Karnataka, India
| | - Mohini Vijay
- Axxonet Brain Research Laboratory (ABRL), Axxonet System Technologies Pvt. Ltd., Bengaluru, Karnataka, India
| | - Sumit Sharma
- Axxonet Brain Research Laboratory (ABRL), Axxonet System Technologies Pvt. Ltd., Bengaluru, Karnataka, India
| | - Chetan Satyajit Mukundan
- Axxonet Brain Research Laboratory (ABRL), Axxonet System Technologies Pvt. Ltd., Bengaluru, Karnataka, India
| | - Lakshmi Pandit
- Kempegowda Institute of Medical Sciences (KIMS), Bengaluru, Karnataka, India
| | - N R Ramesh Masthi
- Kempegowda Institute of Medical Sciences (KIMS), Bengaluru, Karnataka, India
| |
Collapse
|
15
|
Zhu Y, Zhang C, Poikonen H, Toiviainen P, Huotilainen M, Mathiak K, Ristaniemi T, Cong F. Exploring Frequency-Dependent Brain Networks from Ongoing EEG Using Spatial ICA During Music Listening. Brain Topogr 2020; 33:289-302. [PMID: 32124110 PMCID: PMC7182636 DOI: 10.1007/s10548-020-00758-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/20/2020] [Indexed: 01/15/2023]
Abstract
Recently, exploring brain activity based on functional networks during naturalistic stimuli especially music and video represents an attractive challenge because of the low signal-to-noise ratio in collected brain data. Although most efforts focusing on exploring the listening brain have been made through functional magnetic resonance imaging (fMRI), sensor-level electro- or magnetoencephalography (EEG/MEG) technique, little is known about how neural rhythms are involved in the brain network activity under naturalistic stimuli. This study exploited cortical oscillations through analysis of ongoing EEG and musical feature during freely listening to music. We used a data-driven method that combined music information retrieval with spatial Fourier Independent Components Analysis (spatial Fourier-ICA) to probe the interplay between the spatial profiles and the spectral patterns of the brain network emerging from music listening. Correlation analysis was performed between time courses of brain networks extracted from EEG data and musical feature time series extracted from music stimuli to derive the musical feature related oscillatory patterns in the listening brain. We found brain networks of musical feature processing were frequency-dependent. Musical feature time series, especially fluctuation centroid and key feature, were associated with an increased beta activation in the bilateral superior temporal gyrus. An increased alpha oscillation in the bilateral occipital cortex emerged during music listening, which was consistent with alpha functional suppression hypothesis in task-irrelevant regions. We also observed an increased delta-beta oscillatory activity in the prefrontal cortex associated with musical feature processing. In addition to these findings, the proposed method seems valuable for characterizing the large-scale frequency-dependent brain activity engaged in musical feature processing.
Collapse
Affiliation(s)
- Yongjie Zhu
- School of Biomedical Engineering, Faculty of Electronic and Electrical Engineering, Dalian University of Technology, Dalian, 116024, China.,Faculty of Information Technology, University of Jyväskylä, Jyväskylä, 40014, Finland
| | - Chi Zhang
- School of Biomedical Engineering, Faculty of Electronic and Electrical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Hanna Poikonen
- Institute of Learning Sciences and Higher Education, ETH Zürich, Zürich, Switzerland
| | - Petri Toiviainen
- Department of Music, Art and Culture Studies, University of Jyväskylä, Jyväskylä, 40014, Finland
| | - Minna Huotilainen
- CICERO Learning Network and Cognitive Brain Research Unit, Faculty of Educational Sciences, University of Helsinki, Helsinki, 00014, Finland
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Tapani Ristaniemi
- Faculty of Information Technology, University of Jyväskylä, Jyväskylä, 40014, Finland
| | - Fengyu Cong
- School of Biomedical Engineering, Faculty of Electronic and Electrical Engineering, Dalian University of Technology, Dalian, 116024, China. .,Faculty of Information Technology, University of Jyväskylä, Jyväskylä, 40014, Finland.
| |
Collapse
|
16
|
Yamashita K, Kibe T, Aoyama K, Ohno S, Kohjitani A, Sugimura M. The State Anxiety Inventory Is Useful for Predicting the Autonomic Nervous System State of Patients Before the Extraction of an Impacted Mandibular Third Molar. J Oral Maxillofac Surg 2019; 78:538-544. [PMID: 31884076 DOI: 10.1016/j.joms.2019.11.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Dental anxiety about extraction of impacted mandibular third molars changes the activity of the autonomic nervous system. Thus, to provide safe dental treatment, it is important that a surgeon be aware of a patient's pretreatment anxiety and autonomic nervous system state. Therefore, we analyzed how a scheduled treatment to extract mandibular third molars affects the pretreatment electroencephalogram (EEG), autonomic nervous system, and psychological state of patients. We compared their findings with those of volunteers not scheduled to undergo dental treatment. PATIENTS AND METHODS The study enrolled 30 patients who were scheduled to undergo impacted mandibular third molar extraction (ie, pretreatment group) and 30 volunteers who were not (ie, control group). Heart rate variability and an EEG were recorded during the experiment. The State Anxiety Inventory-State Anxiety scale (STAI-S) scores were recorded before the procedure. For the statistical analysis, P < .05 was deemed statistically significant. RESULTS High-frequency (HF) variability was significantly decreased and the STAI-S score was significantly increased in the pretreatment group compared with the control group (P < .01 for both). The low frequency (LF)/HF ratio and alpha-wave activity showed a significant negative correlation on both sides in the control group (P < .01); however, no correlation existed in the pretreatment group. The LF/HF ratio and STAI-S score showed a significant positive correlation in the pretreatment group (P < .05); however, no correlation existed in the control group. CONCLUSIONS Predicting a patient's autonomic nervous system state before dental treatment based on the EEG was difficult. The STAI-S psychological test was a useful method.
Collapse
Affiliation(s)
- Kaoru Yamashita
- Assistant Professor, Department of Dental Anesthesiology, Field of Oral Maxillofacial Rehabilitation, Developmental Therapeutics Course, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Toshiro Kibe
- Assistant Professor, Department of Oral and Maxillofacial Surgery, Field of Oral and Maxillofacial Surgery, Developmental Therapeutics Course, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Kanae Aoyama
- PhD Student, Department of Dental Anesthesiology, Field of Oral Maxillofacial Rehabilitation, Developmental Therapeutics Course, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Sachi Ohno
- Assistant Professor, Department of Dental Anesthesiology, Field of Oral Maxillofacial Rehabilitation, Developmental Therapeutics Course, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Atsushi Kohjitani
- Associate Professor, Department of Dental Anesthesiology, Field of Oral Maxillofacial Rehabilitation, Developmental Therapeutics Course, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Mitsutaka Sugimura
- Professor, Department of Dental Anesthesiology, Field of Oral Maxillofacial Rehabilitation, Developmental Therapeutics Course, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
17
|
Fachner JC, Maidhof C, Grocke D, Nygaard Pedersen I, Trondalen G, Tucek G, Bonde LO. "Telling me not to worry…" Hyperscanning and Neural Dynamics of Emotion Processing During Guided Imagery and Music. Front Psychol 2019; 10:1561. [PMID: 31402880 PMCID: PMC6673756 DOI: 10.3389/fpsyg.2019.01561] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022] Open
Abstract
To analyze how emotions and imagery are shared, processed and recognized in Guided Imagery and Music, we measured the brain activity of an experienced therapist (“Guide”) and client (“Traveler”) with dual-EEG in a real therapy session about potential death of family members. Synchronously with the EEG, the session was video-taped and then micro-analyzed. Four raters identified therapeutically important moments of interest (MOI) and no-interest (MONI) which were transcribed and annotated. Several indices of emotion- and imagery-related processing were analyzed: frontal and parietal alpha asymmetry, frontal midline theta, and occipital alpha activity. Session ratings showed overlaps across all raters, confirming the importance of these MOIs, which showed different cortical activity in visual areas compared to resting-state. MOI 1 was a pivotal moment including an important imagery with a message of hope from a close family member, while in the second MOI the Traveler sent a message to an unborn baby. Generally, results seemed to indicate that the emotions of Traveler and Guide during important moments were not positive, pleasurably or relaxed when compared to resting-state, confirming both were dealing with negative emotions and anxiety that had to be contained in the interpersonal process. However, the temporal dynamics of emotion-related markers suggested shifts in emotional valence and intensity during these important, personally meaningful moments; for example, during receiving the message of hope, an increase of frontal alpha asymmetry was observed, reflecting increased positive emotional processing. EEG source localization during the message suggested a peak activation in left middle temporal gyrus. Interestingly, peaks in emotional markers in the Guide partly paralleled the Traveler's peaks; for example, during the Guide's strong feeling of mutuality in MOI 2, the time series of frontal alpha asymmetries showed a significant cross-correlation, indicating similar emotional processing in Traveler and Guide. Investigating the moment-to-moment interaction in music therapy showed how asymmetry peaks align with the situated cognition of Traveler and Guide along the emotional contour of the music, representing the highs and lows during the therapy process. Combining dual-EEG with detailed audiovisual and qualitative data seems to be a promising approach for further research into music therapy.
Collapse
Affiliation(s)
- Jörg C Fachner
- Cambridge Institute for Music Therapy Research, Anglia Ruskin University, Cambridge, United Kingdom.,Josef Ressel Centre for Personalised Music Therapy, IMC University of Applied Sciences Krems, Krems an der Donau, Austria
| | - Clemens Maidhof
- Cambridge Institute for Music Therapy Research, Anglia Ruskin University, Cambridge, United Kingdom.,Josef Ressel Centre for Personalised Music Therapy, IMC University of Applied Sciences Krems, Krems an der Donau, Austria
| | - Denise Grocke
- Melbourne Conservatorium of Music, University of Melbourne, Melbourne, VIC, Australia
| | - Inge Nygaard Pedersen
- Department of Communication and Psychology, The Faculty of Humanities, Aalborg University, Aalborg, Denmark
| | - Gro Trondalen
- Centre for Research in Music and Health, Norwegian Academy of Music, Oslo, Norway
| | - Gerhard Tucek
- Josef Ressel Centre for Personalised Music Therapy, IMC University of Applied Sciences Krems, Krems an der Donau, Austria
| | - Lars O Bonde
- Department of Communication and Psychology, The Faculty of Humanities, Aalborg University, Aalborg, Denmark.,Centre for Research in Music and Health, Norwegian Academy of Music, Oslo, Norway
| |
Collapse
|
18
|
Abstract
Most studies examining the neural underpinnings of music listening have no specific instruction on how to process the presented musical pieces. In this study, we explicitly manipulated the participants' focus of attention while they listened to the musical pieces. We used an ecologically valid experimental setting by presenting the musical stimuli simultaneously with naturalistic film sequences. In one condition, the participants were instructed to focus their attention on the musical piece (attentive listening), whereas in the second condition, the participants directed their attention to the film sequence (passive listening). We used two instrumental musical pieces: an electronic pop song, which was a major hit at the time of testing, and a classical musical piece. During music presentation, we measured electroencephalographic oscillations and responses from the autonomic nervous system (heart rate and high-frequency heart rate variability). During passive listening to the pop song, we found strong event-related synchronizations in all analyzed frequency bands (theta, lower alpha, upper alpha, lower beta, and upper beta). The neurophysiological responses during attentive listening to the pop song were similar to those of the classical musical piece during both listening conditions. Thus, the focus of attention had a strong influence on the neurophysiological responses to the pop song, but not on the responses to the classical musical piece. The electroencephalographic responses during passive listening to the pop song are interpreted as a neurophysiological and psychological state typically observed when the participants are 'drawn into the music'.
Collapse
|
19
|
Nemati S, Akrami H, Salehi S, Esteky H, Moghimi S. Lost in music: Neural signature of pleasure and its role in modulating attentional resources. Brain Res 2019; 1711:7-15. [PMID: 30629944 DOI: 10.1016/j.brainres.2019.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/23/2018] [Accepted: 01/06/2019] [Indexed: 01/04/2023]
Abstract
We investigated the neural correlates of pleasure induced by listening to highly pleasant and neutral musical excerpts using electroencephalography (EEG). Power spectrum analysis of EEG data showed a distinct gradual change in the power of low-frequency oscillations in response to highly pleasant, but not neutral, musical excerpts. Specifically, listening to highly pleasant music was associated with (i) relatively higher oscillatory activity in the theta band over the frontocentral (FC) area and in the alpha band over the parieto-occipital area, and (ii) a gradual increase in the oscillatory power over time. Correlation analysis between behavioral and electrophysiological data revealed that theta power over the FC electrodes was correlated with subjective assessment of pleasantness while listening to music. To study the link between attention and positive valence in our experiments, volunteers performed a delayed match-to-sample memory task while listening to the musical excerpts. The subjects' performances were significantly lower under highly pleasant conditions compared to neutral conditions. Listening to pleasant music requires higher degrees of attention, leading to the observed decline in memory performance. Gradual development of low-frequency oscillations in the frontal and posterior areas may be at least partly due to gradual recruitment of higher levels of attention over time in response to pleasurable music.
Collapse
Affiliation(s)
- Samaneh Nemati
- Electrical Engineering Department, Ferdowsi University of Mashhad, Mashhad Postal Code: 9177948974, Iran.
| | - Haleh Akrami
- Electrical Engineering Department, Ferdowsi University of Mashhad, Mashhad Postal Code: 9177948974, Iran.
| | - Sina Salehi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz Postal Code: 7194815644, Iran.
| | - Hossein Esteky
- Research Center for Brain and Cognitive Sciences, Shahid Beheshti University of Medical Sciences, Tehran Postal Code: 1983969411, Iran; Physiology Department, Shahid Beheshti University of Medical Sciences, Tehran Postal Code: 1983969411, Iran.
| | - Sahar Moghimi
- Electrical Engineering Department, Ferdowsi University of Mashhad, Mashhad Postal Code: 9177948974, Iran; Rayan Center for Neuroscience and Behavior, Ferdowsi University of Mashhad, Mashhad Postal Code: 9177948974, Iran.
| |
Collapse
|
20
|
Burkhard A, Elmer S, Kara D, Brauchli C, Jäncke L. The Effect of Background Music on Inhibitory Functions: An ERP Study. Front Hum Neurosci 2018; 12:293. [PMID: 30083099 PMCID: PMC6064730 DOI: 10.3389/fnhum.2018.00293] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/03/2018] [Indexed: 12/02/2022] Open
Abstract
The influence of background music on cognitive functions is still a matter of debate. In this study, we investigated the influence of background music on executive functions (particularly on inhibitory functions). Participants completed a standardized cued Go/NoGo task during three different conditions while an EEG was recorded (1: with no background music, 2: with relaxing, or 3: with exciting background music). In addition, we collected reaction times, omissions, and commissions in response to the Go and NoGo stimuli. From the EEG data, event-related potentials (ERPs) were calculated for the Go and NoGo trials. From these ERPs, the N2 and P3 components were specifically analyzed since previous studies have shown that these components (and particularly the Go-NoGo difference waves) are strongly associated with inhibitory functions. The N2 and P3 components of the difference waves (N2d and P3d) were used for statistical analyses. The statistical analyses revealed no differences between the three conditions in terms of amplitudes and latencies of the N2d and P3d components. In addition, reaction times, omissions, and commissions were comparable across all conditions. Our results suggest that in the context of this paradigm, music as background acoustic stimulation has no detrimental effects on the performance of a Go/NoGo task and neural underpinnings.
Collapse
Affiliation(s)
- Anja Burkhard
- Department of Neuropsychology, Psychological Institute, University of Zurich, Zurich, Switzerland
| | - Stefan Elmer
- Department of Neuropsychology, Psychological Institute, University of Zurich, Zurich, Switzerland
| | - Denis Kara
- Department of Neuropsychology, Psychological Institute, University of Zurich, Zurich, Switzerland
| | - Christian Brauchli
- Department of Neuropsychology, Psychological Institute, University of Zurich, Zurich, Switzerland
| | - Lutz Jäncke
- Department of Neuropsychology, Psychological Institute, University of Zurich, Zurich, Switzerland.,Dynamics of Healthy Aging, University Research Priority Program (URPP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Saari P, Burunat I, Brattico E, Toiviainen P. Decoding Musical Training from Dynamic Processing of Musical Features in the Brain. Sci Rep 2018; 8:708. [PMID: 29335643 PMCID: PMC5768727 DOI: 10.1038/s41598-018-19177-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/22/2017] [Indexed: 11/15/2022] Open
Abstract
Pattern recognition on neural activations from naturalistic music listening has been successful at predicting neural responses of listeners from musical features, and vice versa. Inter-subject differences in the decoding accuracies have arisen partly from musical training that has widely recognized structural and functional effects on the brain. We propose and evaluate a decoding approach aimed at predicting the musicianship class of an individual listener from dynamic neural processing of musical features. Whole brain functional magnetic resonance imaging (fMRI) data was acquired from musicians and nonmusicians during listening of three musical pieces from different genres. Six musical features, representing low-level (timbre) and high-level (rhythm and tonality) aspects of music perception, were computed from the acoustic signals, and classification into musicians and nonmusicians was performed on the musical feature and parcellated fMRI time series. Cross-validated classification accuracy reached 77% with nine regions, comprising frontal and temporal cortical regions, caudate nucleus, and cingulate gyrus. The processing of high-level musical features at right superior temporal gyrus was most influenced by listeners’ musical training. The study demonstrates the feasibility to decode musicianship from how individual brains listen to music, attaining accuracy comparable to current results from automated clinical diagnosis of neurological and psychological disorders.
Collapse
Affiliation(s)
- Pasi Saari
- Department of Music, Art, and Culture Studies, University of Jyväskylä, Jyväskylä, PL 35(M), FI-40014, Finland.
| | - Iballa Burunat
- Department of Music, Art, and Culture Studies, University of Jyväskylä, Jyväskylä, PL 35(M), FI-40014, Finland
| | - Elvira Brattico
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University, Aarhus, DK-8000, Denmark
| | - Petri Toiviainen
- Department of Music, Art, and Culture Studies, University of Jyväskylä, Jyväskylä, PL 35(M), FI-40014, Finland
| |
Collapse
|
22
|
Markovic A, Kühnis J, Jäncke L. Task Context Influences Brain Activation during Music Listening. Front Hum Neurosci 2017; 11:342. [PMID: 28706480 PMCID: PMC5489556 DOI: 10.3389/fnhum.2017.00342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 06/13/2017] [Indexed: 11/14/2022] Open
Abstract
In this paper, we examined brain activation in subjects during two music listening conditions: listening while simultaneously rating the musical piece being played [Listening and Rating (LR)] and listening to the musical pieces unconstrained [Listening (L)]. Using these two conditions, we tested whether the sequence in which the two conditions were fulfilled influenced the brain activation observable during the L condition (LR → L or L → LR). We recorded high-density EEG during the playing of four well-known positively experienced soundtracks in two subject groups. One group started with the L condition and continued with the LR condition (L → LR); the second group performed this experiment in reversed order (LR → L). We computed from the recorded EEG the power for different frequency bands (theta, lower alpha, upper alpha, lower beta, and upper beta). Statistical analysis revealed that the power in all examined frequency bands increased during the L condition but only when the subjects had not had previous experience with the LR condition (i.e., L → LR). For the subjects who began with the LR condition, there were no power increases during the L condition. Thus, the previous experience with the LR condition prevented subjects from developing the particular mental state associated with the typical power increase in all frequency bands. The subjects without previous experience of the LR condition listened to the musical pieces in an unconstrained and undisturbed manner and showed a general power increase in all frequency bands. We interpret the fact that unconstrained music listening was associated with increased power in all examined frequency bands as a neural indicator of a mental state that can best be described as a mind-wandering state during which the subjects are “drawn into” the music.
Collapse
Affiliation(s)
- Andjela Markovic
- Division Neuropsychology, Institute of Psychology, University of ZurichZurich, Switzerland
| | - Jürg Kühnis
- Division Neuropsychology, Institute of Psychology, University of ZurichZurich, Switzerland
| | - Lutz Jäncke
- Division Neuropsychology, Institute of Psychology, University of ZurichZurich, Switzerland.,International Normal Aging and Plasticity Imaging Center, University of ZurichZurich, Switzerland.,University Research Priority Program, Dynamic of Healthy Aging, University of ZurichZurich, Switzerland
| |
Collapse
|
23
|
Madison G, Schiölde G. Repeated Listening Increases the Liking for Music Regardless of Its Complexity: Implications for the Appreciation and Aesthetics of Music. Front Neurosci 2017; 11:147. [PMID: 28408864 PMCID: PMC5374342 DOI: 10.3389/fnins.2017.00147] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/09/2017] [Indexed: 01/08/2023] Open
Abstract
Psychological and aesthetic theories predict that music is appreciated at optimal, peak levels of familiarity and complexity, and that appreciation of music exhibits an inverted U-shaped relationship with familiarity as well as complexity. Because increased familiarity conceivably leads to improved processing and less perceived complexity, we test whether there is an interaction between familiarity and complexity. Specifically, increased familiarity should render the music subjectively less complex, and therefore move the apex of the U curve toward greater complexity. A naturalistic listening experiment was conducted, featuring 40 music examples (ME) divided by experts into 4 levels of complexity prior to the main experiment. The MEs were presented 28 times each across a period of approximately 4 weeks, and individual ratings were assessed throughout the experiment. Ratings of liking increased monotonically with repeated listening at all levels of complexity; both the simplest and the most complex MEs were liked more as a function of listening time, without any indication of a U-shaped relation. Although the MEs were previously unknown to the participants, the strongest predictor of liking was familiarity in terms of having listened to similar music before, i.e., familiarity with musical style. We conclude that familiarity is the single most important variable for explaining differences in liking among music, regardless of the complexity of the music.
Collapse
Affiliation(s)
- Guy Madison
- Department of Psychology, Umeå UniversityUmeå, Sweden
| | | |
Collapse
|
24
|
Kuribayashi R, Nittono H. High-Resolution Audio with Inaudible High-Frequency Components Induces a Relaxed Attentional State without Conscious Awareness. Front Psychol 2017; 8:93. [PMID: 28203213 PMCID: PMC5285336 DOI: 10.3389/fpsyg.2017.00093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/13/2017] [Indexed: 12/17/2022] Open
Abstract
High-resolution audio has a higher sampling frequency and a greater bit depth than conventional low-resolution audio such as compact disks. The higher sampling frequency enables inaudible sound components (above 20 kHz) that are cut off in low-resolution audio to be reproduced. Previous studies of high-resolution audio have mainly focused on the effect of such high-frequency components. It is known that alpha-band power in a human electroencephalogram (EEG) is larger when the inaudible high-frequency components are present than when they are absent. Traditionally, alpha-band EEG activity has been associated with arousal level. However, no previous studies have explored whether sound sources with high-frequency components affect the arousal level of listeners. The present study examined this possibility by having 22 participants listen to two types of a 400-s musical excerpt of French Suite No. 5 by J. S. Bach (on cembalo, 24-bit quantization, 192 kHz A/D sampling), with or without inaudible high-frequency components, while performing a visual vigilance task. High-alpha (10.5-13 Hz) and low-beta (13-20 Hz) EEG powers were larger for the excerpt with high-frequency components than for the excerpt without them. Reaction times and error rates did not change during the task and were not different between the excerpts. The amplitude of the P3 component elicited by target stimuli in the vigilance task increased in the second half of the listening period for the excerpt with high-frequency components, whereas no such P3 amplitude change was observed for the other excerpt without them. The participants did not distinguish between these excerpts in terms of sound quality. Only a subjective rating of inactive pleasantness after listening was higher for the excerpt with high-frequency components than for the other excerpt. The present study shows that high-resolution audio that retains high-frequency components has an advantage over similar and indistinguishable digital sound sources in which such components are artificially cut off, suggesting that high-resolution audio with inaudible high-frequency components induces a relaxed attentional state without conscious awareness.
Collapse
Affiliation(s)
| | - Hiroshi Nittono
- Graduate School of Human Sciences, Osaka UniversityOsaka, Japan
| |
Collapse
|
25
|
Blankertz B, Acqualagna L, Dähne S, Haufe S, Schultze-Kraft M, Sturm I, Ušćumlic M, Wenzel MA, Curio G, Müller KR. The Berlin Brain-Computer Interface: Progress Beyond Communication and Control. Front Neurosci 2016; 10:530. [PMID: 27917107 PMCID: PMC5116473 DOI: 10.3389/fnins.2016.00530] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022] Open
Abstract
The combined effect of fundamental results about neurocognitive processes and advancements in decoding mental states from ongoing brain signals has brought forth a whole range of potential neurotechnological applications. In this article, we review our developments in this area and put them into perspective. These examples cover a wide range of maturity levels with respect to their applicability. While we assume we are still a long way away from integrating Brain-Computer Interface (BCI) technology in general interaction with computers, or from implementing neurotechnological measures in safety-critical workplaces, results have already now been obtained involving a BCI as research tool. In this article, we discuss the reasons why, in some of the prospective application domains, considerable effort is still required to make the systems ready to deal with the full complexity of the real world.
Collapse
Affiliation(s)
- Benjamin Blankertz
- Neurotechnology Group, Technische Universität BerlinBerlin, Germany
- Bernstein Focus: NeurotechnologyBerlin, Germany
| | - Laura Acqualagna
- Neurotechnology Group, Technische Universität BerlinBerlin, Germany
| | - Sven Dähne
- Machine Learning Group, Technische Universität BerlinBerlin, Germany
| | - Stefan Haufe
- Bernstein Focus: NeurotechnologyBerlin, Germany
- Machine Learning Group, Technische Universität BerlinBerlin, Germany
| | - Matthias Schultze-Kraft
- Neurotechnology Group, Technische Universität BerlinBerlin, Germany
- Bernstein Focus: NeurotechnologyBerlin, Germany
| | - Irene Sturm
- Neurotechnology Group, Technische Universität BerlinBerlin, Germany
| | - Marija Ušćumlic
- Neurotechnology Group, Technische Universität BerlinBerlin, Germany
| | - Markus A. Wenzel
- Neurotechnology Group, Technische Universität BerlinBerlin, Germany
| | - Gabriel Curio
- Bernstein Focus: NeurotechnologyBerlin, Germany
- Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Charité - University Medicine BerlinBerlin, Germany
| | - Klaus-Robert Müller
- Bernstein Focus: NeurotechnologyBerlin, Germany
- Machine Learning Group, Technische Universität BerlinBerlin, Germany
- Department of Brain and Cognitive Engineering, Korea UniversitySeoul, South Korea
| |
Collapse
|
26
|
Alahmadi N, Evdokimov SA, Kropotov YJ, Müller AM, Jäncke L. Different Resting State EEG Features in Children from Switzerland and Saudi Arabia. Front Hum Neurosci 2016; 10:559. [PMID: 27853430 PMCID: PMC5089970 DOI: 10.3389/fnhum.2016.00559] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 10/21/2016] [Indexed: 11/20/2022] Open
Abstract
Background: Cultural neuroscience is an emerging research field concerned with studying the influences of different cultures on brain anatomy and function. In this study, we examined whether different cultural or genetic influences might influence the resting state electroencephalogram (EEG) in young children (mean age 10 years) from Switzerland and Saudi Arabia. Methods: Resting state EEG recordings were obtained from relatively large groups of healthy children (95 healthy Swiss children and 102 Saudi Arabian children). These EEG data were analyzed using group independent components analyses (gICA) and conventional analyses of spectral data, together with estimations of the underlying intracortical sources, using LORETA software. Results: We identified many similarities, but also some substantial differences with respect to the resting state EEG data. For Swiss children, we found stronger delta band power values in mesial frontal areas and stronger power values in three out of four frequency bands in occipital areas. For Saudi Arabian children, we uncovered stronger alpha band power over the sensorimotor cortex. The additionally measured theta/beta ratio (TBR) was similar for Swiss and Saudi Arabian children. Conclusions: The different EEG resting state features identified, are discussed in the context of different cultural experiences and possible genetic influences. In addition, we emphasize the importance of using appropriate EEG databases when comparing resting state EEG features between groups.
Collapse
Affiliation(s)
- Nsreen Alahmadi
- Department of Special Education, Institute of Higher Education Studies, King Abdulaziz University Jeddah, Saudi Arabia
| | - Sergey A Evdokimov
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences St. Petersburg, Russia
| | - Yury Juri Kropotov
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences St. Petersburg, Russia
| | | | - Lutz Jäncke
- Department of Special Education, Institute of Higher Education Studies, King Abdulaziz UniversityJeddah, Saudi Arabia; Department of Neuropsychology, Psychological Institute, University of ZurichZurich, Switzerland
| |
Collapse
|
27
|
Rogenmoser L, Zollinger N, Elmer S, Jäncke L. Independent component processes underlying emotions during natural music listening. Soc Cogn Affect Neurosci 2016; 11:1428-39. [PMID: 27217116 DOI: 10.1093/scan/nsw048] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/31/2016] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to investigate the brain processes underlying emotions during natural music listening. To address this, we recorded high-density electroencephalography (EEG) from 22 subjects while presenting a set of individually matched whole musical excerpts varying in valence and arousal. Independent component analysis was applied to decompose the EEG data into functionally distinct brain processes. A k-means cluster analysis calculated on the basis of a combination of spatial (scalp topography and dipole location mapped onto the Montreal Neurological Institute brain template) and functional (spectra) characteristics revealed 10 clusters referring to brain areas typically involved in music and emotion processing, namely in the proximity of thalamic-limbic and orbitofrontal regions as well as at frontal, fronto-parietal, parietal, parieto-occipital, temporo-occipital and occipital areas. This analysis revealed that arousal was associated with a suppression of power in the alpha frequency range. On the other hand, valence was associated with an increase in theta frequency power in response to excerpts inducing happiness compared to sadness. These findings are partly compatible with the model proposed by Heller, arguing that the frontal lobe is involved in modulating valenced experiences (the left frontal hemisphere for positive emotions) whereas the right parieto-temporal region contributes to the emotional arousal.
Collapse
Affiliation(s)
- Lars Rogenmoser
- Division of Neuropsychology, Institute of Psychology, University of Zurich, 8050, Zurich, Switzerland Neuroimaging and Stroke Recovery Laboratory, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, 02215, Boston, MA, USA Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8050, Zurich, Switzerland
| | - Nina Zollinger
- Division of Neuropsychology, Institute of Psychology, University of Zurich, 8050, Zurich, Switzerland
| | - Stefan Elmer
- Division of Neuropsychology, Institute of Psychology, University of Zurich, 8050, Zurich, Switzerland
| | - Lutz Jäncke
- Division of Neuropsychology, Institute of Psychology, University of Zurich, 8050, Zurich, Switzerland Center for Integrative Human Physiology (ZIHP), University of Zurich, 8050, Zurich, Switzerland International Normal Aging and Plasticity Imaging Center (INAPIC), University of Zurich, 8050, Zurich, Switzerland University Research Priority Program (URPP) "Dynamic of Healthy Aging," University of Zurich, 8050, Zurich, Switzerland Department of Special Education, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| |
Collapse
|
28
|
Brattico E, Bogert B, Alluri V, Tervaniemi M, Eerola T, Jacobsen T. It's Sad but I Like It: The Neural Dissociation Between Musical Emotions and Liking in Experts and Laypersons. Front Hum Neurosci 2016; 9:676. [PMID: 26778996 PMCID: PMC4701928 DOI: 10.3389/fnhum.2015.00676] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/30/2015] [Indexed: 01/23/2023] Open
Abstract
Emotion-related areas of the brain, such as the medial frontal cortices, amygdala, and striatum, are activated during listening to sad or happy music as well as during listening to pleasurable music. Indeed, in music, like in other arts, sad and happy emotions might co-exist and be distinct from emotions of pleasure or enjoyment. Here we aimed at discerning the neural correlates of sadness or happiness in music as opposed those related to musical enjoyment. We further investigated whether musical expertise modulates the neural activity during affective listening of music. To these aims, 13 musicians and 16 non-musicians brought to the lab their most liked and disliked musical pieces with a happy and sad connotation. Based on a listening test, we selected the most representative 18 sec excerpts of the emotions of interest for each individual participant. Functional magnetic resonance imaging (fMRI) recordings were obtained while subjects listened to and rated the excerpts. The cortico-thalamo-striatal reward circuit and motor areas were more active during liked than disliked music, whereas only the auditory cortex and the right amygdala were more active for disliked over liked music. These results discern the brain structures responsible for the perception of sad and happy emotions in music from those related to musical enjoyment. We also obtained novel evidence for functional differences in the limbic system associated with musical expertise, by showing enhanced liking-related activity in fronto-insular and cingulate areas in musicians.
Collapse
Affiliation(s)
- Elvira Brattico
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University and Royal Academy of Music Aarhus/Aalborg (RAMA)Aarhus, Denmark; Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of HelsinkiHelsinki, Finland; Advanced Magnetic Imaging Centre, Aalto UniversityEspoo, Finland
| | - Brigitte Bogert
- Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of Helsinki Helsinki, Finland
| | - Vinoo Alluri
- Department of Music, University of JyväskyläJyväskylä, Finland; Neuroscience of Emotion and Affective Dynamics Lab, University of GeneveGeneve, Switzerland
| | - Mari Tervaniemi
- Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of HelsinkiHelsinki, Finland; Cicero Learning, University of HelsinkiHelsinki, Finland
| | | | - Thomas Jacobsen
- Experimental Psychology Unit, Helmut Schmidt University/University of the Federal Armed Forces Hamburg Hamburg, Germany
| |
Collapse
|
29
|
Sturm I, Dähne S, Blankertz B, Curio G. Multi-Variate EEG Analysis as a Novel Tool to Examine Brain Responses to Naturalistic Music Stimuli. PLoS One 2015; 10:e0141281. [PMID: 26510120 PMCID: PMC4624980 DOI: 10.1371/journal.pone.0141281] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/05/2015] [Indexed: 11/18/2022] Open
Abstract
Note onsets in music are acoustic landmarks providing auditory cues that underlie the perception of more complex phenomena such as beat, rhythm, and meter. For naturalistic ongoing sounds a detailed view on the neural representation of onset structure is hard to obtain, since, typically, stimulus-related EEG signatures are derived by averaging a high number of identical stimulus presentations. Here, we propose a novel multivariate regression-based method extracting onset-related brain responses from the ongoing EEG. We analyse EEG recordings of nine subjects who passively listened to stimuli from various sound categories encompassing simple tone sequences, full-length romantic piano pieces and natural (non-music) soundscapes. The regression approach reduces the 61-channel EEG to one time course optimally reflecting note onsets. The neural signatures derived by this procedure indeed resemble canonical onset-related ERPs, such as the N1-P2 complex. This EEG projection was then utilized to determine the Cortico-Acoustic Correlation (CACor), a measure of synchronization between EEG signal and stimulus. We demonstrate that a significant CACor (i) can be detected in an individual listener's EEG of a single presentation of a full-length complex naturalistic music stimulus, and (ii) it co-varies with the stimuli's average magnitudes of sharpness, spectral centroid, and rhythmic complexity. In particular, the subset of stimuli eliciting a strong CACor also produces strongly coordinated tension ratings obtained from an independent listener group in a separate behavioral experiment. Thus musical features that lead to a marked physiological reflection of tone onsets also contribute to perceived tension in music.
Collapse
Affiliation(s)
- Irene Sturm
- Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Berlin, Germany
- Neurotechnology Group, Technische Universität Berlin, Berlin, Germany
- Neurophysics Group, Department of Neurology, Charité University Medicine, Berlin, Germany
| | - Sven Dähne
- Neurotechnology Group, Technische Universität Berlin, Berlin, Germany
| | - Benjamin Blankertz
- Neurotechnology Group, Technische Universität Berlin, Berlin, Germany
- Bernstein Focus Neurotechnology, Berlin, Germany
| | - Gabriel Curio
- Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Berlin, Germany
- Neurophysics Group, Department of Neurology, Charité University Medicine, Berlin, Germany
- Bernstein Focus Neurotechnology, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
30
|
Abstract
Music can powerfully evoke and modulate emotions and moods, along with changes in heart activity, blood pressure (BP), and breathing. Although there is great heterogeneity in methods and quality among previous studies on effects of music on the heart, the following findings emerge from the literature: Heart rate (HR) and respiratory rate (RR) are higher in response to exciting music compared with tranquilizing music. During musical frissons (involving shivers and piloerection), both HR and RR increase. Moreover, HR and RR tend to increase in response to music compared with silence, and HR appears to decrease in response to unpleasant music compared with pleasant music. We found no studies that would provide evidence for entrainment of HR to musical beats. Corresponding to the increase in HR, listening to exciting music (compared with tranquilizing music) is associated with a reduction of heart rate variability (HRV), including reductions of both low-frequency and high-frequency power of the HRV. Recent findings also suggest effects of music-evoked emotions on regional activity of the heart, as reflected in electrocardiogram amplitude patterns. In patients with heart disease (similar to other patient groups), music can reduce pain and anxiety, associated with lower HR and lower BP. In general, effects of music on the heart are small, and there is great inhomogeneity among studies with regard to methods, findings, and quality. Therefore, there is urgent need for systematic high-quality research on the effects of music on the heart, and on the beneficial effects of music in clinical settings.
Collapse
Affiliation(s)
- Stefan Koelsch
- Department of Psychology, Lancaster University, Lancaster LA1 4YF, UK
| | - Lutz Jäncke
- Division Neuropsychology, Institute of Psychology, University of Zurich, Binzmuehlestrasse 14, PO Box 25, Zürich CH-8050, Switzerland International Normal Aging and Plasticity Imaging Center (INAPIC), University of Zurich, Zürich, Switzerland University Research Priority Program (URPP), Dynamic of Healthy Aging, University of Zurich, Zürich, Switzerland
| |
Collapse
|