1
|
Lippincott MF, Xu W, Smith AA, Miao X, Lafont A, Shennib O, Farley GJ, Sabbagh R, Delaney A, Stamou M, Plummer L, Salnikov K, Georgopoulos NA, Mericq V, Quinton R, Mau-Them FT, Nambot S, Hamad A, Brittain H, Tooze RS, Calpena E, Wilkie AOM, Willems M, Crowley WF, Balasubramanian R, Lamarche-Vane N, Davis EE, Seminara SB. The p190 RhoGAPs, ARHGAP35, and ARHGAP5 are implicated in GnRH neuronal development: Evidence from patients with idiopathic hypogonadotropic hypogonadism, zebrafish, and in vitro GAP activity assay. Genet Med 2022; 24:2501-2515. [PMID: 36178483 PMCID: PMC9730938 DOI: 10.1016/j.gim.2022.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The study aimed to identify novel genes for idiopathic hypogonadotropic hypogonadism (IHH). METHODS A cohort of 1387 probands with IHH underwent exome sequencing and de novo, familial, and cohort-wide investigations. Functional studies were performed on 2 p190 Rho GTPase-activating proteins (p190 RhoGAP), ARHGAP35 and ARHGAP5, which involved in vivo modeling in larval zebrafish and an in vitro p190A-GAP activity assay. RESULTS Rare protein-truncating variants (PTVs; n = 5) and missense variants in the RhoGAP domain (n = 7) in ARHGAP35 were identified in IHH cases (rare variant enrichment: PTV [unadjusted P = 3.1E-06] and missense [adjusted P = 4.9E-03] vs controls). Zebrafish modeling using gnrh3:egfp phenotype assessment showed that mutant larvae with deficient arhgap35a, the predominant ARHGAP35 paralog in the zebrafish brain, display decreased GnRH3-GFP+ neuronal area, a readout for IHH. In vitro GAP activity studies showed that 1 rare missense variant [ARHGAP35 p.(Arg1284Trp)] had decreased GAP activity. Rare PTVs (n = 2) also were discovered in ARHGAP5, a paralog of ARHGAP35; however, arhgap5 zebrafish mutants did not display significant GnRH3-GFP+ abnormalities. CONCLUSION This study identified ARHGAP35 as a new autosomal dominant genetic driver for IHH and ARHGAP5 as a candidate gene for IHH. These observations suggest a novel role for the p190 RhoGAP proteins in GnRH neuronal development and integrity.
Collapse
Affiliation(s)
| | - Wanxue Xu
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA
| | - Abigail A Smith
- Department of Pediatrics and Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL; Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Xinyu Miao
- Cancer Research Program, Research Institute of the McGill University Health Centre, Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada
| | - Agathe Lafont
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC
| | - Omar Shennib
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Gordon J Farley
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA
| | - Riwa Sabbagh
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA
| | - Angela Delaney
- Intramural Research Program, National Institutes of Health, Bethesda, MD
| | - Maria Stamou
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA
| | - Lacey Plummer
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA
| | - Kathryn Salnikov
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA
| | - Neoklis A Georgopoulos
- Division of Endocrinology-Department of Internal Medicine, University of Patras School of Health Sciences, Rio-Patras, Greece
| | - Veronica Mericq
- Instituto de Investigaciones Materno Infantil (IDIMI), University of Chile, Santiago, Chile
| | - Richard Quinton
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Frederic Tran Mau-Them
- Functional Unit 6254 Innovation in Genomic Diagnosis of Rare Diseases, CHU Dijon Bourgogne, Dijon, France
| | - Sophie Nambot
- Centre de Référence Maladies Rares « Anomalies du Développement Et Syndrome Malformatifs » de L'Est, Hôpital D'Enfants, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Asma Hamad
- Department of Clinical Genetics, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Helen Brittain
- Department of Clinical Genetics, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Rebecca S Tooze
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Eduardo Calpena
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew O M Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Marjolaine Willems
- Medical Genetic Department for Rare Diseases and Personalized Medicine, Reference Center AD SOOR, AnDDI-RARE, Groupe DI, Inserm U1298, INM, Montpellier University, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | | | | | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the McGill University Health Centre, Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada
| | - Erica E Davis
- Department of Pediatrics and Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL; Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | | |
Collapse
|
2
|
Pacella V, Moro V. Motor awareness: a model based on neurological syndromes. Brain Struct Funct 2022; 227:3145-3160. [PMID: 36064864 DOI: 10.1007/s00429-022-02558-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 08/24/2022] [Indexed: 12/20/2022]
Abstract
Motor awareness is a complex, multifaceted construct involving the awareness of both (i) one's motor state while executing a movement or remaining still and (ii) one's motor abilities. The analysis of neurological syndromes associated with motor disorders suggests the existence of various different components which are, however, integrated into a model of motor awareness. These components are: (i) motor intention, namely, a conscious desire to perform an action; (ii) motor monitoring and error recognition, that is, the capacity to check the execution of the action and identify motor errors; and (iii) a general awareness of one's own motor abilities and deficits, that is, the capacity to recognize the general state of one's motor abilities about the performance of specific actions and the potential consequences of motor impairment. Neuroanatomical correlates involving the parietal and insular cortices, the medial and lateral frontal regions, and subcortical structures (basal ganglia and limbic system) support this multi-component model. Specific damage (or disconnections) to these structures results in a number of different disorders in motor awareness, such as anosognosia for hemiplegia and apraxia, and a number of symptoms which are specific to motor intention disorders (e.g., the Anarchic Hand Syndrome and Tourette's Syndrome) or motor monitoring (e.g., Parkinson's and Huntington's diseases). All of these clinical conditions are discussed in the light of a motor awareness model.
Collapse
Affiliation(s)
- Valentina Pacella
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, 33076, Bordeaux, CS, France. .,Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France.
| | - Valentina Moro
- NPSY.Lab-VR, Department of Human Sciences, University of Verona, Lungadige Porta Vittoria 17, 37129, Verona, Italy.
| |
Collapse
|
3
|
Xing XX, Ma ZZ, Wu JJ, Ma J, Duan YJ, Hua XY, Zheng MX, Xu JG. Dysfunction in the Interaction of Information Between and Within the Bilateral Primary Sensory Cortex. Front Aging Neurosci 2022; 14:862107. [PMID: 35462694 PMCID: PMC9029819 DOI: 10.3389/fnagi.2022.862107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
Background Interhemispheric and intrahemispheric long-range synchronization and information communication are crucial features of functional integration between the bilateral hemispheres. Previous studies have demonstrated that disrupted functional connectivity (FC) exists in the bilateral hemispheres of patients with carpal tunnel syndrome (CTS), but they did not clearly clarify the phenomenon of central dysfunctional connectivity. This study aimed to further investigate the potential mechanism of the weakened connectivity of primary somatosensory cortex (S1) based on a precise template. Methods Patients with CTS (n = 53) and healthy control subjects (HCs) (n = 23) participated and underwent resting-state functional magnetic resonance imaging (rs-fMRI) scanning. We used FC to investigate the statistical dependency of the whole brain, effective connectivity (EC) to analyze time-dependent effects, and voxel-mirrored homotopic connectivity (VMHC) to examine the coordination of FC, all of which were adopted to explore the change in interhemispheric and intrahemispheric S1. Results Compared to the healthy controls, we significantly found a decreased strength of the two connectivities in the interhemispheric S1hand, and the results of EC and VMHC were basically consistent with FC in the CTS. The EC revealed that the information output from the dominant hemisphere to the contralateral hemisphere was weakened. Conclusion This study found that maladjusted connections between and within the bilateral S1 revealed by these methods are present in patients with CTS. The dominant hemisphere with deafferentation weakens its effect on the contralateral hemisphere. The disturbance in the bilateral S1 provides reliable evidence to understand the neuropathophysiological mechanisms of decreased functional integration in the brains of patients with CTS.
Collapse
Affiliation(s)
- Xiang-Xin Xing
- Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Zhen-Zhen Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rehabilitation Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Jie Ma
- Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Jie Duan
- Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Xu-Yun Hua,
| | - Mou-Xiong Zheng
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Mou-Xiong Zheng,
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- *Correspondence: Jian-Guang Xu,
| |
Collapse
|
4
|
Di Pietro M, Russo M, Dono F, Carrarini C, Thomas A, Di Stefano V, Telese R, Bonanni L, Sensi SL, Onofrj M, Franciotti R. A Critical Review of Alien Limb-Related Phenomena and Implications for Functional Magnetic Resonance Imaging Studies. Front Neurol 2021; 12:661130. [PMID: 34566830 PMCID: PMC8458742 DOI: 10.3389/fneur.2021.661130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/06/2021] [Indexed: 11/27/2022] Open
Abstract
Consensus criteria on corticobasal degeneration (CBD) include alien limb (AL) phenomena. However, the gist of the behavioral features of AL is still “a matter of debate.” CBD-related AL has so far included the description of involuntary movements, frontal release phenomena (frontal AL), or asomatognosia (posterior or “real” AL). In this context, the most frequent symptoms are language and praxis deficits and cortical sensory misperception. However, asomatognosia requires, by definition, intact perception and cognition. Thus, to make a proper diagnosis of AL in the context of CBD, cognitive and language dysfunctions must be carefully verified and objectively assessed. We reviewed the current literature on AL in CBD and now propose that the generic use of the term AL should be avoided. This catchall AL term should instead be deconstructed. We propose that the term AL is appropriate to describe clinical features associated with specific brain lesions. More discrete sets of regionally bound clinical signs that depend on dysfunctions of specific brain areas need to be assessed and presented when posing the diagnosis. Thus, in our opinion, the AL term should be employed in association with precise descriptions of the accompanying involuntary movements, sensory misperceptions, agnosia-asomatognosia contents, and the presence of utilization behavior. The review also offers an overview of functional magnetic resonance imaging-based studies evaluating AL-related phenomena. In addition, we provide a complementary set of video clips depicting CBD-related involuntary movements that should not mistakenly be interpreted as signs of AL.
Collapse
Affiliation(s)
- Martina Di Pietro
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy
| | - Mirella Russo
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy
| | - Fedele Dono
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy
| | - Claudia Carrarini
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy
| | - Astrid Thomas
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy
| | - Vincenzo Di Stefano
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnostic (BiND), University of Palermo, Palermo, Italy
| | - Roberta Telese
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,IRCCS C. Mondino Foundation, Pavia, Italy
| | - Laura Bonanni
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy.,YDA Foundation, Institute of Immune Therapy and Advanced Biological Treatment, Pescara, Italy
| | - Raffaella Franciotti
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
5
|
Interlimb Transfer of Reach Adaptation Does Not Require an Intact Corpus Callosum: Evidence from Patients with Callosal Lesions and Agenesis. eNeuro 2021; 8:ENEURO.0190-20.2021. [PMID: 33632816 PMCID: PMC8318344 DOI: 10.1523/eneuro.0190-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/14/2020] [Accepted: 01/11/2021] [Indexed: 11/26/2022] Open
Abstract
Generalization of sensorimotor adaptation across limbs, known as interlimb transfer, is a well-demonstrated phenomenon in humans, yet the underlying neural mechanisms remain unclear. Theoretical models suggest that interlimb transfer is mediated by interhemispheric transfer of information via the corpus callosum. We thus hypothesized that lesions of the corpus callosum, especially to its midbody connecting motor, supplementary motor, and premotor areas of the two cerebral hemispheres, would impair interlimb transfer of sensorimotor adaptation. To test this hypothesis, we recruited three patients: two rare stroke patients with recent, extensive callosal lesions including the midbody and one patient with complete agenesis. A prismatic adaptation paradigm involving unconstrained arm reaching movements was designed to assess interlimb transfer from the prism-exposed dominant arm (DA) to the unexposed non-dominant arm (NDA) for each participant. Baseline results showed that spatial performance of each patient did not significantly differ from controls, for both limbs. Further, each patient adapted to the prismatic perturbation, with no significant difference in error reduction compared with controls. Crucially, interlimb transfer was found in each patient. The absolute magnitude of each patient’s transfer did not significantly differ from controls. These findings show that sensorimotor adaptation can transfer across limbs despite extensive lesions or complete absence of the corpus callosum. Therefore, callosal pathways connecting homologous motor, premotor, and supplementary motor areas are not necessary for interlimb transfer of prismatic reach adaptation. Such interlimb transfer could be mediated by transcallosal splenium pathways (connecting parietal, temporal and visual areas), ipsilateral cortico-spinal pathways or subcortical structures such as the cerebellum.
Collapse
|
6
|
Wang W, Liu Y, Yu H, Liu Q, Wang S, Liu X, Cai L, Wu X. Three cases of paroxysmal alien limb phenomena due to epileptic seizures and review of literatures. ACTA EPILEPTOLOGICA 2021. [DOI: 10.1186/s42494-021-00041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The alien hand phenomenon (AHP) is a rare disorder of involuntary limb movement together with a loss of sense of limb ownership. AHP occurs as a consequence of frontal, callosal, or posterior cerebral lesions. To characterize the phenomenon of AHP, three patients with paroxysmal AHP were described and proved to be focal seizures by using video-EEG monitoring.
Method
Clinical history of 3 epileptic patients with AHP was collected. EEG and MRI were performed in each patient. One patient completed EEG monitoring and postoperative pathological examination. We also review the recent literatures and summarize the characteristics, types and hypothetic mechanisms of epileptic AHP.
Results
Case 1 had AHP of the left arm followed by the left arm convulsion or AHP only. MRI imaging showed a lesion in the posterior parietal lobe. After complete resection of the lesion, he remained seizure free for 1.5 years. Cases 2 and 3 had AHP and convulsion. The three cases did not have auto-motor signs, so they were identified to be the posterior type of APH.
Conclusions
The mechanism underlying AHP remains poorly .understood. Currently, little is known for the epileptic paroxysmal AHP, a quite rare form of AHP. AHP can be represented before or immediately after convulsion, or be represented by the paroxysmal symptom only.
Collapse
|
7
|
Yuan J, Song X, Kuan E, Wang S, Zuo L, Ongur D, Hu W, Du F. The structural basis for interhemispheric functional connectivity: Evidence from individuals with agenesis of the corpus callosum. NEUROIMAGE-CLINICAL 2020; 28:102425. [PMID: 32979843 PMCID: PMC7519397 DOI: 10.1016/j.nicl.2020.102425] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 11/21/2022]
Abstract
AgCC showed impaired global structural, but intact functional network properties. AgCC showed increased intrahemispheric structural connectivity. AgCC showed markedly reduced interhemispheric homotopic FC. The VMHC was correlated with the number and quality of fibers crossing the CC. Brain areas with more fiber connections tended to build higher FC with each other.
Agenesis of the corpus callosum (AgCC) is a rare congenital malformation characterized by partial or complete absence of the corpus callosum (CC). The effects of AgCC on cerebral structural and functional networks are not clear. We aimed to utilize AgCC as a model to characterize the relationship between brain structure and function. Diffusion tensor imaging and resting-state fMRI data were collected from nine AgCC and ten healthy subjects. The interhemispheric functional connectivity (FC) was quantified using a voxel-mirrored-homotopic-connectivity (VMHC) method, and its correlation with the number (FN) and fractional anisotropy (FA) of the fibers crossing the CC was calculated. Graph-based network analyses of structural and functional topologic properties were performed. AgCC subjects showed markedly reduced VMHC compared to controls. VMHC was significantly correlated with the FN and FA of the fibers crossing the CC. Structural network analyses revealed impaired global properties, but intact local properties in AgCC compared to controls. Functional network analyses showed no significant difference in network properties between the groups. Finally, in both groups, brain areas with more fiber connections were more likely to build a positive FC with each other, while areas with decreased white matter connections were more likely to result in negative FC. Our observations demonstrate that interhemispheric FC is highly dependent on CC structure. Increased alternative intrahemispheric SC might be a compensatory mechanism in AgCC that helps to maintain normal global brain function. Our study provides insights into the underlying neurological pathophysiology of brain malformations, thereby helping to elucidate the structure–function relationship of normal human brain.
Collapse
Affiliation(s)
- Junliang Yuan
- McLean Imaging Center, McLean Hospital, 02478, United States; Harvard Medical School, Boston, MA 02115, United States; Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Xiaopeng Song
- McLean Imaging Center, McLean Hospital, 02478, United States; Psychotic Disorders Division, McLean Hospital, 02478, United States; Harvard Medical School, Boston, MA 02115, United States
| | - Elliot Kuan
- Psychotic Disorders Division, McLean Hospital, 02478, United States; Harvard Medical School, Boston, MA 02115, United States
| | - Shuangkun Wang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Long Zuo
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Dost Ongur
- Psychotic Disorders Division, McLean Hospital, 02478, United States; Harvard Medical School, Boston, MA 02115, United States
| | - Wenli Hu
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| | - Fei Du
- McLean Imaging Center, McLean Hospital, 02478, United States; Psychotic Disorders Division, McLean Hospital, 02478, United States; Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
8
|
Mancuso L, Uddin LQ, Nani A, Costa T, Cauda F. Brain functional connectivity in individuals with callosotomy and agenesis of the corpus callosum: A systematic review. Neurosci Biobehav Rev 2019; 105:231-248. [DOI: 10.1016/j.neubiorev.2019.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 06/30/2019] [Accepted: 07/04/2019] [Indexed: 02/05/2023]
|
9
|
Aberrant functional connectivity in depression as an index of state and trait rumination. Sci Rep 2017; 7:2174. [PMID: 28526867 PMCID: PMC5438394 DOI: 10.1038/s41598-017-02277-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/10/2017] [Indexed: 12/13/2022] Open
Abstract
Depression has been shown to be related to a variety of aberrant brain functions and structures. Particularly the investigation of alterations in functional connectivity (FC) in major depressive disorder (MDD) has been a promising endeavor, since a better understanding of pathological brain networks may foster our understanding of the disease. However, the underling mechanisms of aberrant FC in MDD are largely unclear. Using functional near-infrared spectroscopy (fNIRS) we investigated FC in the cortical parts of the default mode network (DMN) during resting-state in patients with current MDD. Additionally, we used qualitative and quantitative measures of psychological processes (e.g., state/trait rumination, mind-wandering) to investigate their contribution to differences in FC between depressed and non-depressed subjects. Our results indicate that 40% of the patients report spontaneous rumination during resting-state. Depressed subjects showed reduced FC in parts of the DMN compared to healthy controls. This finding was linked to the process of state/trait rumination. While rumination was negatively correlated with FC in the cortical parts of the DMN, mind-wandering showed positive associations.
Collapse
|
10
|
Gomes D, Fonseca M, Garrotes M, Lima MR, Mendonça M, Pereira M, Lourenço M, Oliveira E, Lavrador JP. Corpus Callosum and Neglect Syndrome: Clinical Findings After Meningioma Removal and Anatomical Review. J Neurosci Rural Pract 2017; 8:101-106. [PMID: 28149091 PMCID: PMC5225689 DOI: 10.4103/0976-3147.193549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Two types of neglect are described: hemispatial and motivational neglect syndromes. Neglect syndrome is a neurophysiologic condition characterized by a malfunction in one hemisphere of the brain, resulting in contralateral hemispatial neglect in the absence of sensory loss and the right parietal lobe lesion being the most common anatomical site leading to it. In motivational neglect, the less emotional input is considered from the neglected side where anterior cingulate cortex harbors the most frequent lesions. Nevertheless, there are reports of injuries in the corpus callosum (CC) causing hemispatial neglect syndrome, particularly located in the splenium. It is essential for a neurosurgeon to recognize this clinical syndrome as it can be either a primary manifestation of neurosurgical pathology (tumor, vascular lesion) or as a postoperative iatrogenic clinical finding. The authors report a postoperative hemispatial neglect syndrome after a falcotentorial meningioma removal that recovered 10 months after surgery and performs a clinical, anatomical, and histological review centered in CC as key agent in neglect syndrome.
Collapse
Affiliation(s)
- David Gomes
- Department of Anatomy, Lisbon Medical School, Lisboa, Portugal
| | | | - Maria Garrotes
- Department of Anatomy, Lisbon Medical School, Lisboa, Portugal
| | - Maria Rita Lima
- Department of Anatomy, Lisbon Medical School, Lisboa, Portugal
| | - Marta Mendonça
- Department of Anatomy, Lisbon Medical School, Lisboa, Portugal
| | - Mariana Pereira
- Department of Anatomy, Lisbon Medical School, Lisboa, Portugal
| | - Miguel Lourenço
- Department of Anatomy, Lisbon Medical School, Lisboa, Portugal
| | - Edson Oliveira
- Department of Anatomy, Lisbon Medical School, Lisboa, Portugal; Department of Neurosurgical, Hospital Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | - José Pedro Lavrador
- Department of Anatomy, Lisbon Medical School, Lisboa, Portugal; Department of Neurosurgical, Hospital Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal; Department of Paediatric and Adult Neurosurgery, King's College Hospital NHS Foundation Trust, Denmark Hill, London
| |
Collapse
|