1
|
Humphries JB, Mattos DJS, Rutlin J, Daniel AGS, Rybczynski K, Notestine T, Shimony JS, Burton H, Carter A, Leuthardt EC. Motor Network Reorganization Induced in Chronic Stroke Patients with the Use of a Contralesionally-Controlled Brain Computer Interface. BRAIN-COMPUTER INTERFACES 2022. [DOI: 10.1080/2326263x.2022.2057757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Joseph B. Humphries
- Departments of Neurosurgery, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Jerrel Rutlin
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Andy G. S. Daniel
- Departments of Neurosurgery, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Theresa Notestine
- Neurosurgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Joshua S. Shimony
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Harold Burton
- Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Alexandre Carter
- Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Eric C. Leuthardt
- Departments of Neurosurgery, Washington University in St. Louis, St. Louis, MO, USA
- Neurosurgery, Washington University in St. Louis, St. Louis, MO, USA
- Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
- Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
2
|
Kielar A, Shah-Basak PP, Patterson DK, Jokel R, Meltzer JA. Electrophysiological abnormalities as indicators of early-stage pathology in Primary Progressive Aphasia (PPA): A case study in semantic variant PPA. Neurocase 2022; 28:110-122. [PMID: 35230912 DOI: 10.1080/13554794.2022.2039207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Language induced and spontaneous oscillatory activity was measured using MEG in a patient with the semantic variant of Primary Progressive Aphasia (svPPA) and 15 healthy controls.The patient showed oscillatory slowing in the left anterior temporal lobe (ATL) that extended into non-atrophied brain tissue in left and right frontal areas. The white matter connections were reduced to the left and right ATL and left frontal regions, exhibiting electrophysiological abnormalities. Altered diffusion metrics in all four language tracts, indicted compromised white matter integrity. Task-related and spontaneous oscillatory abnormalities can indicate early neurodegeneration in svPPA, providing promising targets for intervention.
Collapse
Affiliation(s)
- Aneta Kielar
- Department of Speech, Language and Hearing Sciences University of Arizona, Tucson, AZ, USA.,BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | | | - Dianne K Patterson
- Department of Speech, Language and Hearing Sciences University of Arizona, Tucson, AZ, USA.,BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Regina Jokel
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Jed A Meltzer
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Quon RJ, Camp EJ, Meisenhelter S, Song Y, Steimel SA, Testorf ME, Andrew AS, Gross RE, Lega BC, Sperling MR, Kahana MJ, Jobst BC. Features of intracranial interictal epileptiform discharges associated with memory encoding. Epilepsia 2021; 62:2615-2626. [PMID: 34486107 DOI: 10.1111/epi.17060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Interictal epileptiform discharges (IEDs) were shown to be associated with cognitive impairment in persons with epilepsy. Previous studies indicated that IED rate, location, timing, and spatial relation to the seizure onset zone could predict an IED's impact on memory encoding and retrieval if they occurred in lateral temporal, mesial temporal, or parietal regions. In this study, we explore the influence that other IED properties (e.g., amplitude, duration, white matter classification) have on memory performance. We were specifically interested in investigating the influence that lateral temporal IEDs have on memory encoding. METHODS Two hundred sixty-one subjects with medication-refractory epilepsy undergoing intracranial electroencephalographic monitoring performed multiple sessions of a delayed free-recall task (n = 671). Generalized linear mixed models were utilized to examine the relationship between IED properties and memory performance. RESULTS We found that increased IED rate, IEDs propagating in white matter, and IEDs localized to the left middle temporal region were associated with poorer memory performance. For lateral temporal IEDs, we observed a significant interaction between IED white matter categorization and amplitude, where IEDs with an increased amplitude and white matter propagation were associated with reduced memory performance. Additionally, changes in alpha power after an IED showed a significant positive correlation with memory performance. SIGNIFICANCE Our results suggest that IED properties may be useful for predicting the impact an IED has on memory encoding. We provide an essential step toward understanding pathological versus potentially beneficial interictal epileptiform activity.
Collapse
Affiliation(s)
- Robert J Quon
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Edward J Camp
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Stephen Meisenhelter
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Yinchen Song
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.,Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Sarah A Steimel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Markus E Testorf
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA.,Thayer School of Engineering at Dartmouth College, Hanover, New Hampshire, USA
| | - Angeline S Andrew
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA.,Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | - Bradley C Lega
- Department of Neurosurgery, University of Texas Southwestern, Dallas, Texas, USA
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Barbara C Jobst
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.,Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| |
Collapse
|
4
|
Crocker B, Ostrowski L, Williams ZM, Dougherty DD, Eskandar EN, Widge AS, Chu CJ, Cash SS, Paulk AC. Local and distant responses to single pulse electrical stimulation reflect different forms of connectivity. Neuroimage 2021; 237:118094. [PMID: 33940142 DOI: 10.1016/j.neuroimage.2021.118094] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/13/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Measuring connectivity in the human brain involves innumerable approaches using both noninvasive (fMRI, EEG) and invasive (intracranial EEG or iEEG) recording modalities, including the use of external probing stimuli, such as direct electrical stimulation. To examine how different measures of connectivity correlate with one another, we compared 'passive' measures of connectivity during resting state conditions to the more 'active' probing measures of connectivity with single pulse electrical stimulation (SPES). We measured the network engagement and spread of the cortico-cortico evoked potential (CCEP) induced by SPES at 53 out of 104 total sites across the brain, including cortical and subcortical regions, in patients with intractable epilepsy (N=11) who were undergoing intracranial recordings as a part of their clinical care for identifying seizure onset zones. We compared the CCEP network to functional, effective, and structural measures of connectivity during a resting state in each patient. Functional and effective connectivity measures included correlation or Granger causality measures applied to stereoEEG (sEEGs) recordings. Structural connectivity was derived from diffusion tensor imaging (DTI) acquired before intracranial electrode implant and monitoring (N=8). The CCEP network was most similar to the resting state voltage correlation network in channels near to the stimulation location. In contrast, the distant CCEP network was most similar to the DTI network. Other connectivity measures were not as similar to the CCEP network. These results demonstrate that different connectivity measures, including those derived from active stimulation-based probing, measure different, complementary aspects of regional interrelationships in the brain.
Collapse
Affiliation(s)
- Britni Crocker
- Harvard-MIT Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139; Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lauren Ostrowski
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ziv M Williams
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129
| | - Emad N Eskandar
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Neurosurgery, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10467
| | - Alik S Widge
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129; Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA 02124; Department of Psychiatry, University of Minnesota, Minneapolis, MN 55455
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
5
|
Sacks DD, Schwenn PE, McLoughlin LT, Lagopoulos J, Hermens DF. Phase-Amplitude Coupling, Mental Health and Cognition: Implications for Adolescence. Front Hum Neurosci 2021; 15:622313. [PMID: 33841115 PMCID: PMC8032979 DOI: 10.3389/fnhum.2021.622313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/02/2021] [Indexed: 01/01/2023] Open
Abstract
Identifying biomarkers of developing mental disorder is crucial to improving early identification and treatment-a key strategy for reducing the burden of mental disorders. Cross-frequency coupling between two different frequencies of neural oscillations is one such promising measure, believed to reflect synchronization between local and global networks in the brain. Specifically, in adults phase-amplitude coupling (PAC) has been shown to be involved in a range of cognitive processes, including working and long-term memory, attention, language, and fluid intelligence. Evidence suggests that increased PAC mediates both temporary and lasting improvements in working memory elicited by transcranial direct-current stimulation and reductions in depressive symptoms after transcranial magnetic stimulation. Moreover, research has shown that abnormal patterns of PAC are associated with depression and schizophrenia in adults. PAC is believed to be closely related to cortico-cortico white matter (WM) microstructure, which is well established in the literature as a structural mechanism underlying mental health. Some cognitive findings have been replicated in adolescents and abnormal patterns of PAC have also been linked to ADHD in young people. However, currently most research has focused on cross-sectional adult samples. Whereas initial hypotheses suggested that PAC was a state-based measure due to an early focus on cognitive, task-based research, current evidence suggests that PAC has both state-based and stable components. Future longitudinal research focusing on PAC throughout adolescent development could further our understanding of the relationship between mental health and cognition and facilitate the development of new methods for the identification and treatment of youth mental health.
Collapse
Affiliation(s)
- Dashiell D Sacks
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Paul E Schwenn
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Larisa T McLoughlin
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| |
Collapse
|
6
|
Usami K, Milsap GW, Korzeniewska A, Collard MJ, Wang Y, Lesser RP, Anderson WS, Crone NE. Cortical Responses to Input From Distant Areas are Modulated by Local Spontaneous Alpha/Beta Oscillations. Cereb Cortex 2020; 29:777-787. [PMID: 29373641 DOI: 10.1093/cercor/bhx361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Indexed: 01/13/2023] Open
Abstract
Any given area in human cortex may receive input from multiple, functionally heterogeneous areas, potentially representing different processing threads. Alpha (8-13 Hz) and beta oscillations (13-20 Hz) have been hypothesized by other investigators to gate local cortical processing, but their influence on cortical responses to input from other cortical areas is unknown. To study this, we measured the effect of local oscillatory power and phase on cortical responses elicited by single-pulse electrical stimulation (SPES) at distant cortical sites, in awake human subjects implanted with intracranial electrodes for epilepsy surgery. In 4 out of 5 subjects, the amplitudes of corticocortical evoked potentials (CCEPs) elicited by distant SPES were reproducibly modulated by the power, but not the phase, of local oscillations in alpha and beta frequencies. Specifically, CCEP amplitudes were higher when average oscillatory power just before distant SPES (-110 to -10 ms) was high. This effect was observed in only a subset (0-33%) of sites with CCEPs and, like the CCEPs themselves, varied with stimulation at different distant sites. Our results suggest that although alpha and beta oscillations may gate local processing, they may also enhance the responsiveness of cortex to input from distant cortical sites.
Collapse
Affiliation(s)
- Kiyohide Usami
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Griffin W Milsap
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Anna Korzeniewska
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maxwell J Collard
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yujing Wang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Ronald P Lesser
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William S Anderson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Usami K, Kinoshita M. Mental activation to overcome electrically induced cortical hyperexcitability. Clin Neurophysiol 2019; 130:2164-2165. [PMID: 31537450 DOI: 10.1016/j.clinph.2019.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Kiyohide Usami
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Masako Kinoshita
- Department of Neurology, National Hospital Organization Utano National Hospital, 8 Ondoyama-cho, Narutaki, Ukyo-ku, Kyoto 616-8255, Japan.
| |
Collapse
|
8
|
Hawasli AH, Rutlin J, Roland JL, Murphy RKJ, Song SK, Leuthardt EC, Shimony JS, Ray WZ. Spinal Cord Injury Disrupts Resting-State Networks in the Human Brain. J Neurotrauma 2018; 35:864-873. [PMID: 29179629 DOI: 10.1089/neu.2017.5212] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Despite 253,000 spinal cord injury (SCI) patients in the United States, little is known about how SCI affects brain networks. Spinal MRI provides only structural information with no insight into functional connectivity. Resting-state functional MRI (RS-fMRI) quantifies network connectivity through the identification of resting-state networks (RSNs) and allows detection of functionally relevant changes during disease. Given the robust network of spinal cord afferents to the brain, we hypothesized that SCI produces meaningful changes in brain RSNs. RS-fMRIs and functional assessments were performed on 10 SCI subjects. Blood oxygen-dependent RS-fMRI sequences were acquired. Seed-based correlation mapping was performed using five RSNs: default-mode (DMN), dorsal-attention (DAN), salience (SAL), control (CON), and somatomotor (SMN). RSNs were compared with normal control subjects using false-discovery rate-corrected two way t tests. SCI reduced brain network connectivity within the SAL, SMN, and DMN and disrupted anti-correlated connectivity between CON and SMN. When divided into separate cohorts, complete but not incomplete SCI disrupted connectivity within SAL, DAN, SMN and DMN and between CON and SMN. Finally, connectivity changed over time after SCI: the primary motor cortex decreased connectivity with the primary somatosensory cortex, the visual cortex decreased connectivity with the primary motor cortex, and the visual cortex decreased connectivity with the sensory parietal cortex. These unique findings demonstrate the functional network plasticity that occurs in the brain as a result of injury to the spinal cord. Connectivity changes after SCI may serve as biomarkers to predict functional recovery following an SCI and guide future therapy.
Collapse
Affiliation(s)
- Ammar H Hawasli
- 1 Department of Neurological Surgery, Washington University School of Medicine , Saint Louis, Missouri.,2 Department of Biomedical Engineering, Washington University School of Medicine , Saint Louis, Missouri.,3 Department of Orthopedic Surgery, Washington University School of Medicine , Saint Louis, Missouri
| | - Jerrel Rutlin
- 4 Department of Mallinckrodt Institute of Radiology, Washington University School of Medicine , Saint Louis, Missouri
| | - Jarod L Roland
- 1 Department of Neurological Surgery, Washington University School of Medicine , Saint Louis, Missouri
| | - Rory K J Murphy
- 5 Department of Neurosurgery, University of California San Francisco , California
| | - Sheng-Kwei Song
- 4 Department of Mallinckrodt Institute of Radiology, Washington University School of Medicine , Saint Louis, Missouri
| | - Eric C Leuthardt
- 1 Department of Neurological Surgery, Washington University School of Medicine , Saint Louis, Missouri.,2 Department of Biomedical Engineering, Washington University School of Medicine , Saint Louis, Missouri
| | - Joshua S Shimony
- 4 Department of Mallinckrodt Institute of Radiology, Washington University School of Medicine , Saint Louis, Missouri
| | - Wilson Z Ray
- 1 Department of Neurological Surgery, Washington University School of Medicine , Saint Louis, Missouri.,2 Department of Biomedical Engineering, Washington University School of Medicine , Saint Louis, Missouri
| |
Collapse
|
9
|
Hawasli AH, Chacko R, Szrama NP, Bundy DT, Pahwa M, Yarbrough CK, Dlouhy BJ, Limbrick DD, Barbour DL, Smyth MD, Leuthardt EC. Electrophysiological Sequelae of Hemispherotomy in Ipsilateral Human Cortex. Front Hum Neurosci 2017; 11:149. [PMID: 28424599 PMCID: PMC5371676 DOI: 10.3389/fnhum.2017.00149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/13/2017] [Indexed: 12/02/2022] Open
Abstract
Objectives: Hemispheric disconnection has been used as a treatment of medically refractory epilepsy and evolved from anatomic hemispherectomy to functional hemispherectomies to hemispherotomies. The hemispherotomy procedure involves disconnection of an entire hemisphere with limited tissue resection and is reserved for medically-refractory epilepsy due to diffuse hemispheric disease. Although it is thought to be effective by preventing seizures from spreading to the contralateral hemisphere, the electrophysiological effects of a hemispherotomy on the ipsilateral hemisphere remain poorly defined. The objective of this study was to evaluate the effects of hemispherotomy on the electrophysiologic dynamics in peri-stroke and dysplastic cortex. Methods: Intraoperative electrocorticography (ECoG) was recorded from ipsilateral cortex in 5 human subjects with refractory epilepsy before and after hemispherotomy. Power spectral density, mutual information, and phase-amplitude coupling were measured from the ECoG signals. Results: Epilepsy was a result of remote perinatal stroke in three of the subjects. In two of the subjects, seizures were a consequence of dysplastic tissue: one with hemimegalencephaly and the second with Rasmussen's encephalitis. Hemispherotomy reduced broad-band power spectral density in peri-stroke cortex. Meanwhile, hemispherotomy increased power in the low and high frequency bands for dysplastic cortex. Functional connectivity was increased in lower frequency bands in peri-stroke tissue but not affected in dysplastic tissue after hemispherotomy. Finally, hemispherotomy reduced band-specific phase-amplitude coupling in peristroke cortex but not dysplastic cortex. Significance: Disconnecting deep subcortical connections to peri-stroke cortex via a hemispherotomy attenuates power of oscillations and impairs the transfer of information from large-scale distributed brain networks to the local cortex. Hence, hemispherotomy reduces heterogeneity between neighboring cortex while impairing phase-amplitude coupling. In contrast, dysfunctional networks in dysplastic cortex lack the normal connectivity with distant networks. Therefore hemispherotomy does not produce the same effects.
Collapse
Affiliation(s)
- Ammar H Hawasli
- Department of Neurological Surgery, Washington University School of MedicineSaint Louis, MO, USA
| | - Ravi Chacko
- Department of Biomedical Engineering, Washington University School of MedicineSaint Louis, MO, USA
| | - Nicholas P Szrama
- Department of Biomedical Engineering, Washington University School of MedicineSaint Louis, MO, USA
| | - David T Bundy
- Department of Biomedical Engineering, Washington University School of MedicineSaint Louis, MO, USA
| | - Mrinal Pahwa
- Department of Biomedical Engineering, Washington University School of MedicineSaint Louis, MO, USA
| | - Chester K Yarbrough
- Department of Neurological Surgery, Washington University School of MedicineSaint Louis, MO, USA
| | - Brian J Dlouhy
- Department of Neurosurgery, University of Iowa Hospitals and ClinicsIowa City, IA, USA
| | - David D Limbrick
- Department of Neurological Surgery, Washington University School of MedicineSaint Louis, MO, USA
| | - Dennis L Barbour
- Department of Biomedical Engineering, Washington University School of MedicineSaint Louis, MO, USA
| | - Matthew D Smyth
- Department of Neurological Surgery, Washington University School of MedicineSaint Louis, MO, USA
| | - Eric C Leuthardt
- Department of Neurological Surgery, Washington University School of MedicineSaint Louis, MO, USA.,Department of Biomedical Engineering, Washington University School of MedicineSaint Louis, MO, USA
| |
Collapse
|