1
|
Kitamura T, Masugi Y, Yamamoto SI, Ogata T, Kawashima N, Nakazawa K. Modulation of corticospinal excitability related to the forearm muscle during robot-assisted stepping in humans. Exp Brain Res 2023; 241:1089-1100. [PMID: 36928923 PMCID: PMC10082104 DOI: 10.1007/s00221-023-06565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/28/2023] [Indexed: 03/18/2023]
Abstract
In recent years, the neural control mechanisms of the arms and legs during human bipedal walking have been clarified. Rhythmic leg stepping leads to suppression of monosynaptic reflex excitability in forearm muscles. However, it is unknown whether and how corticospinal excitability of the forearm muscle is modulated during leg stepping. The purpose of the present study was to investigate the excitability of the corticospinal tract in the forearm muscle during passive and voluntary stepping. To compare the neural effects on corticospinal excitability to those on monosynaptic reflex excitability, the present study also assessed the excitability of the H-reflex in the forearm muscle during both types of stepping. A robotic gait orthosis was used to produce leg stepping movements similar to those of normal walking. Motor evoked potentials (MEPs) and H-reflexes were evoked in the flexor carpi radialis (FCR) muscle during passive and voluntary stepping. The results showed that FCR MEP amplitudes were significantly enhanced during the mid-stance and terminal-swing phases of voluntary stepping, while there was no significant difference between the phases during passive stepping. Conversely, the FCR H-reflex was suppressed during both voluntary and passive stepping, compared to the standing condition. The present results demonstrated that voluntary commands to leg muscles, combined with somatosensory inputs, may facilitate corticospinal excitability in the forearm muscle, and that somatosensory inputs during walking play a major role in monosynaptic reflex suppression in forearm muscle.
Collapse
Affiliation(s)
- Taku Kitamura
- Department of Bio-Science and Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama-shi, Saitama, Japan.,Motor Control Section, Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa-shi, Saitama, Japan.,Robotics Program, Tokyo Metropolitan College of Industrial Technology, Arakawa-ku, Tokyo, Japan
| | - Yohei Masugi
- Motor Control Section, Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa-shi, Saitama, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan.,Department of Physical Therapy, School of Health Sciences, Tokyo International University, Kawagoe-shi, Saitama, Japan
| | - Shin-Ichiroh Yamamoto
- Department of Bio-Science and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama-shi, Saitama, Japan
| | - Toru Ogata
- Motor Control Section, Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa-shi, Saitama, Japan.,Department of Rehabilitation Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Noritaka Kawashima
- Motor Control Section, Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa-shi, Saitama, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
2
|
Nakajima T, Suzuki S, Zehr EP, Komiyama T. Long-lasting changes in muscle activation and step cycle variables induced by repetitive sensory stimulation to discrete areas of the foot sole during walking. J Neurophysiol 2020; 125:331-343. [PMID: 33326346 DOI: 10.1152/jn.00376.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined whether repetitive electrical stimulation to discrete foot sole regions that are phase-locked to the step cycle modulates activity patterns of ankle muscles and induces neuronal adaptation during human walking. Nonnoxious repetitive foot sole stimulation (STIM; 67 pulses at 333 Hz) was given to the medial forefoot (f-M) or heel (HL) regions at 1) the stance-to-swing transition, 2) swing-to-stance transition, or 3) midstance, during every step cycle for 10 min. Stance, but not swing, durations were prolonged with f-M STIM delivered at stance-to-swing transition, and these changes remained for up to 20-30 min after the intervention. Electromyographic (EMG) burst durations and amplitudes in the ankle extensors were also prolonged and persisted for 20 min after the intervention. Interestingly, STIM to HL was ineffective at inducing modulation, suggesting stimulation location-specific adaptation. In contrast, STIM to HL (but not f-M), at the swing-to-stance phase transition, shortened the step cycle by premature termination of swing. Furthermore, the onset of EMG bursts in the ankle extensors appeared earlier than in the control condition. STIM delivered during the midstance phase was ineffective at modulating the step cycle, highlighting phase-dependent adaptation. These effects were absent when STIM was applied while mimicking static postures for each walking phase during standing. Our findings suggest that the combination of walking-related neuronal activity with repetitive sensory inputs from the foot can generate short-term adaptation that is phase-dependent and localized to the site of STIM.NEW & NOTEWORTHY Repetitive (∼10 min) long (200 ms) trains of sensory stimulation to discrete areas of the foot sole produce persistent changes in muscle activity and cycle timing during walking. Interactions between the delivery phase and stimulus location determine the expression of the adaptations. These observations bear striking similarities to those in decerebrate cat experiments and may be usefully translated to improving locomotor function after neurotrauma.
Collapse
Affiliation(s)
- Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka, Japan
| | - Shinya Suzuki
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka, Japan.,Department of Physical Therapy, School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Ishikari, Japan
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, School of Exercise Science, University of Victoria, Victoria, British Columbia, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada
| | - Tomoyoshi Komiyama
- Division of Health and Sports Education, The United Graduate School of Education, Tokyo Gakugei University, Koganei, Japan.,Division of Health and Sports Scieces, Faculty of Education, Chiba University, Chiba, Japan
| |
Collapse
|
3
|
Koo KI, Hwang CH. Five-day rehabilitation of patients undergoing total knee arthroplasty using an end-effector gait robot as a neuromodulation blending tool for deafferentation, weight offloading and stereotyped movement: Interim analysis. PLoS One 2020; 15:e0241117. [PMID: 33326434 PMCID: PMC7743990 DOI: 10.1371/journal.pone.0241117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/07/2020] [Indexed: 11/18/2022] Open
Abstract
Deafferentation and weight offloading can increase brain and spinal motor neuron excitability, respectively. End-effector gait robots (EEGRs) can blend these effects with stereotyped movement-induced neuroplasticity. The authors aimed to evaluate the usefulness of EEGRs as a postoperative neuro-muscular rehabilitation tool. This prospective randomized controlled trial included patients who had undergone unilateral total knee arthroplasty (TKA). Patients were randomly allocated into two groups: one using a 200-step rehabilitation program in an EEGR or the other using a walker on a floor (WF) three times a day for five weekdays. The two groups were compared by electrophysiological and biomechanical methods. Since there were no more enrollments due to funding issues, interim analysis was performed. Twelve patients were assigned to the EEGR group and eight patients were assigned to the WF group. Although the muscle volume of the quadriceps and hamstring did not differ between the two groups, the normalized peak torque of the operated knee flexors (11.28 ± 16.04 Nm/kg) was improved in the EEGR group compared to that of the operated knee flexors in the WF group (4.25 ± 14.26 Nm/kg) (p = 0.04). The normalized compound motor action potentials of the vastus medialis (VM) and biceps femoris (BF) were improved in the EEGR group (p < 0.05). However, the normalized real-time peak amplitude and total, mean area under the curve of VM were decreased during rehabilitation in the EEGR group (p < 0.05). No significant differences were found between operated and non-operated knees in the EEGR group. Five-day EEGR-assisted rehabilitation induced strengthening in the knee flexors and the muscular reactivation of the BF and VM after TKA, while reducing the real-time use of the VM. This observation may suggest the feasibility of this technique: EEGR modulated the neuronal system of the patients rather than training their muscles. However, because the study was underpowered, all of the findings should be interpreted with the utmost caution.
Collapse
Affiliation(s)
- Kyo-In Koo
- Department of Biomedical Engineering, School of Electrical Engineering, University of Ulsan, Ulsan, Republic of Korea
| | - Chang Ho Hwang
- Department of Physical and Rehabilitation Medicine, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, Sejong, Republic of Korea
| |
Collapse
|
4
|
Hwang CH. Immediate muscle strengthening by an end-effector type gait robot with reduced real-time use of leg muscles: A case series and review of literature. World J Clin Cases 2019; 7:2976-2985. [PMID: 31624745 PMCID: PMC6795730 DOI: 10.12998/wjcc.v7.i19.2976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/27/2019] [Accepted: 09/12/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND De-afferentation or non-weight bearing induces rapid cortical and spinal α-motor neuron excitability. Author supposed that an end-effector type gait robot (EEGR) could provide patients with a training condition that was specific enough to activate rapid cortical/spinal neuroplasticity, leading to immediate muscle strengthening. The electromyographic and biomechanical comparisons were conducted.
AIM To compare the electromyographic activities of the thigh and shank muscles and isometric peak torque (PT) before and after walking training on a floor or in the end-effector gait robot.
METHODS Twelve outpatients without ambulatory dysfunction were recruited. Order of two interventions (5-min training on a floor at a comfortable pace or training in an EEGR with non-weight bearing on their feet and 100% guidance force at 2.1 km/h) were randomly chosen. Isometric PT, maximal ratio of torque development, amplitude of compound motor action potential (CMAP), and area under the curve (AUC) were evaluated before and 10 min after both interventions.
RESULTS The degree of PT improvement of the dominant knee flexors was larger in the EEGR than on the floor (9.6 ± 22.4 Nm/BW, P < 0.01). The EEGR-trained patients had greater PT improvement of the dominant knee extensors than those who trained on the floor (4.5 ± 28.1 Nm/BW, P < 0.01). However, all electromyographic activities of the thigh and shank muscles (peak CMAP, mean and peak AUC) were significantly lower for the use of the EEGR than walking on the floor.
CONCLUSION Immediate strengthening of the knee flexors and extensors was induced after the 5-min EEGR training, despite reduced muscular use.
Collapse
Affiliation(s)
- Chang Ho Hwang
- Department of Physical Medicine and Rehabilitation, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, South Korea
- Department of Biomedical Engineering, School of Electrical Engineering, University of Ulsan, Ulsan 44610, South Korea
| |
Collapse
|
5
|
Exploiting cervicolumbar connections enhances short-term spinal cord plasticity induced by rhythmic movement. Exp Brain Res 2019; 237:2319-2329. [PMID: 31286172 DOI: 10.1007/s00221-019-05598-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/04/2019] [Indexed: 01/08/2023]
Abstract
Arm cycling causes suppression of soleus (SOL) Hoffmann (H-) reflex that outlasts the activity period. Arm cycling presumably activates propriospinal networks that modulate Ia presynaptic inhibition. Interlimb pathways are thought to relate to the control of quadrupedal locomotion, allowing for smooth, coordinated movement of the arms and legs. We examined whether the number of active limb pairs affects the amount and duration of activity-dependent plasticity of the SOL H-reflex. On separate days, 14 participants completed 4 randomly ordered 30 min experimental sessions: (1) quiet sitting (CTRL); (2) arm cycling (ARM); (3) leg cycling (LEG); and (4) arm and leg cycling (A&L) on an ergometer. SOL H-reflex and M-wave were evoked via electrical stimulation of the tibial nerve. M-wave and H-reflex recruitment curves were recorded, while the participants sat quietly prior to, 10 and 20 min into, immediately after, and at 2.5, 5, 7.5, 10, 15, 20, 25, and 30 min after each experimental session. Normalized maximal H-reflexes were unchanged in CTRL, but were suppressed by > 30% during the ARM, LEG, and A&L. H-reflex suppression outlasted activity duration for ARM (≤ 2.5 mins), LEG (≤ 5 mins), and A&L (≤ 30 mins). The duration of reflex suppression after A&L was greater than the algebraic summation of ARM and LEG. This non-linear summation suggests that using the arms and legs simultaneously-as in typical locomotor synergies-amplifies networks responsible for the short-term plasticity of lumbar spinal cord excitability. Enhanced activity of spinal networks may have important implications for the implementation of locomotor training for targeted rehabilitation.
Collapse
|