1
|
Woods D, Pebler P, Johnson DK, Herron T, Hall K, Blank M, Geraci K, Williams G, Chok J, Lwi S, Curran B, Schendel K, Spinelli M, Baldo J. The California Cognitive Assessment Battery (CCAB). Front Hum Neurosci 2024; 17:1305529. [PMID: 38273881 PMCID: PMC10809797 DOI: 10.3389/fnhum.2023.1305529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction We are developing the California Cognitive Assessment Battery (CCAB) to provide neuropsychological assessments to patients who lack test access due to cost, capacity, mobility, and transportation barriers. Methods The CCAB consists of 15 non-verbal and 17 verbal subtests normed for telemedical assessment. The CCAB runs on calibrated tablet computers over cellular or Wi-Fi connections either in a laboratory or in participants' homes. Spoken instructions and verbal stimuli are delivered through headphones using naturalistic text-to-speech voices. Verbal responses are scored in real time and recorded and transcribed offline using consensus automatic speech recognition which combines the transcripts from seven commercial ASR engines to produce timestamped transcripts more accurate than those of any single ASR engine. The CCAB is designed for supervised self-administration using a web-browser application, the Examiner. The Examiner permits examiners to record observations, view subtest performance in real time, initiate video chats, and correct potential error conditions (e.g., training and performance failures, etc.,) for multiple participants concurrently. Results Here we describe (1) CCAB usability with older (ages 50 to 89) participants; (2) CCAB psychometric properties based on normative data from 415 older participants; (3) Comparisons of the results of at-home vs. in-lab CCAB testing; (4) We also present preliminary analyses of the effects of COVID-19 infection on performance. Mean z-scores averaged over CCAB subtests showed impaired performance of COVID+ compared to COVID- participants after factoring out the contributions of Age, Education, and Gender (AEG). However, inter-cohort differences were no longer significant when performance was analyzed with a comprehensive model that factored out the influences of additional pre-existing demographic factors that distinguished COVID+ and COVID- cohorts (e.g., vocabulary, depression, race, etc.,). In contrast, unlike AEG scores, comprehensive scores correlated significantly with the severity of COVID infection. (5) Finally, we found that scoring models influenced the classification of individual participants with Mild Cognitive Impairment (MCI, z-scores < -1.50) where the comprehensive model accounted for more than twice as much variance as the AEG model and reduced racial bias in MCI classification. Discussion The CCAB holds the promise of providing scalable laboratory-quality neurodiagnostic assessments to underserved urban, exurban, and rural populations.
Collapse
Affiliation(s)
- David Woods
- NeuroBehavioral Systems Inc., Berkeley, CA, United States
| | - Peter Pebler
- NeuroBehavioral Systems Inc., Berkeley, CA, United States
| | - David K. Johnson
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Timothy Herron
- NeuroBehavioral Systems Inc., Berkeley, CA, United States
- VA Northern California Health Care System, Martinez, CA, United States
| | - Kat Hall
- NeuroBehavioral Systems Inc., Berkeley, CA, United States
| | - Mike Blank
- NeuroBehavioral Systems Inc., Berkeley, CA, United States
| | - Kristi Geraci
- NeuroBehavioral Systems Inc., Berkeley, CA, United States
| | | | - Jas Chok
- VA Northern California Health Care System, Martinez, CA, United States
| | - Sandy Lwi
- VA Northern California Health Care System, Martinez, CA, United States
| | - Brian Curran
- VA Northern California Health Care System, Martinez, CA, United States
| | - Krista Schendel
- VA Northern California Health Care System, Martinez, CA, United States
| | - Maria Spinelli
- VA Northern California Health Care System, Martinez, CA, United States
| | - Juliana Baldo
- VA Northern California Health Care System, Martinez, CA, United States
| |
Collapse
|
3
|
Woods DL, Wyma JM, Herron TJ, Yund EW, Reed B. The Dyad-Adaptive Paced Auditory Serial Addition Test (DA-PASAT): Normative data and the effects of repeated testing, simulated malingering, and traumatic brain injury. PLoS One 2018; 13:e0178148. [PMID: 29677192 PMCID: PMC5909896 DOI: 10.1371/journal.pone.0178148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 11/24/2017] [Indexed: 11/25/2022] Open
Abstract
The Paced Auditory Serial Addition Test (PASAT) is widely used to evaluate processing speed and executive function in patients with multiple sclerosis, traumatic brain injury, and other neurological disorders. In the PASAT, subjects listen to sequences of digits while continuously reporting the sum of the last two digits presented. Four different stimulus onset asynchronies (SOAs) are usually tested, with difficulty increasing as SOAs are reduced. Ceiling effects are common at long SOAs, while the digit delivery rate often exceeds the subject’s processing capacity at short SOAs, causing some subjects to stop performing altogether. In addition, subjects may adopt an “alternate answer” strategy at short SOAs, which reduces the test’s demands on working-memory and processing speed. Consequently, studies have shown that the number of dyads (consecutive correct answers) is a more sensitive measure of PASAT performance than the overall number of correct sums. Here, we describe a 2.5-minute computerized test, the Dyad-Adaptive PASAT (DA-PASAT), where SOAs are adjusted with a 2:1 staircase, decreasing after each pair of correct responses and increasing after misses. Processing capacity is reflected in the minimum SOA (minSOA) achieved in 54 trials. Experiment 1 gathered normative data in two large populations: 1617 subjects in New Zealand ranging in age from 18 to 65 years, and 214 Californians ranging in age from 18 to 82 years. Minimum SOAs were influenced by age, education, and daily hours of computer-use. Minimum SOA z-scores, calculated after factoring out the influence of these factors, were virtually identical in the two control groups, as were response times (RTs) and dyad ratios (the proportion of hits occurring in dyads). Experiment 2 measured the test-retest reliability of the DA-PASAT in 44 young subjects who underwent three test sessions at weekly intervals. High intraclass correlation coefficients (ICCs) were found for minSOAs (0.87), response times (0.76), and dyad ratios (0.87). Performance improved across test sessions for all measures. Experiment 3 investigated the effects of simulated malingering in 50 subjects: 42% of simulated malingerers produced abnormal (p< 0.05) minSOA z-scores. Simulated malingerers with abnormal scores were distinguished with 87% sensitivity and 69% specificity from control subjects with abnormal scores by excessive differences between training performance and the actual test. Experiment 4 investigated patients with traumatic brain injury (TBI): patients with mild TBI performed within the normal range while patients with severe TBI showed deficits. The DA-PASAT reduces the time and stress of PASAT assessment while gathering sensitive measures of dyad processing that reveal the effects of aging, malingering, and traumatic brain injury on performance.
Collapse
Affiliation(s)
- David L. Woods
- Human Cognitive Neurophysiology Laboratory, VANCHCS, Martinez, California, United States of America
- UC Davis Department of Neurology, Sacramento, California, United States of America
- Center for Neurosciences, UC Davis, Davis, California, United States of America
- UC Davis Center for Mind and Brain, Davis, California, United States of America
- NeuroBehavioral Systems, Inc., Berkeley, California, United States of America
- * E-mail:
| | - John M. Wyma
- Human Cognitive Neurophysiology Laboratory, VANCHCS, Martinez, California, United States of America
| | - Timothy J. Herron
- Human Cognitive Neurophysiology Laboratory, VANCHCS, Martinez, California, United States of America
| | - E. William Yund
- Human Cognitive Neurophysiology Laboratory, VANCHCS, Martinez, California, United States of America
| | - Bruce Reed
- UC Davis Department of Neurology, Sacramento, California, United States of America
- Alzheimer’s Disease Center, Davis, California, United States of America
| |
Collapse
|
4
|
Woods DL, Wyma JM, Herron TJ, Yund EW. Computerized Analysis of Verbal Fluency: Normative Data and the Effects of Repeated Testing, Simulated Malingering, and Traumatic Brain Injury. PLoS One 2016; 11:e0166439. [PMID: 27936001 PMCID: PMC5147824 DOI: 10.1371/journal.pone.0166439] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 10/29/2016] [Indexed: 12/15/2022] Open
Abstract
In verbal fluency (VF) tests, subjects articulate words in a specified category during a short test period (typically 60 s). Verbal fluency tests are widely used to study language development and to evaluate memory retrieval in neuropsychiatric disorders. Performance is usually measured as the total number of correct words retrieved. Here, we describe the properties of a computerized VF (C-VF) test that tallies correct words and repetitions while providing additional lexical measures of word frequency, syllable count, and typicality. In addition, the C-VF permits (1) the analysis of the rate of responding over time, and (2) the analysis of the semantic relationships between words using a new method, Explicit Semantic Analysis (ESA), as well as the established semantic clustering and switching measures developed by Troyer et al. (1997). In Experiment 1, we gathered normative data from 180 subjects ranging in age from 18 to 82 years in semantic ("animals") and phonemic (letter "F") conditions. The number of words retrieved in 90 s correlated with education and daily hours of computer-use. The rate of word production declined sharply over time during both tests. In semantic conditions, correct-word scores correlated strongly with the number of ESA and Troyer-defined semantic switches as well as with an ESA-defined semantic organization index (SOI). In phonemic conditions, ESA revealed significant semantic influences in the sequence of words retrieved. In Experiment 2, we examined the test-retest reliability of different measures across three weekly tests in 40 young subjects. Different categories were used for each semantic ("animals", "parts of the body", and "foods") and phonemic (letters "F", "A", and "S") condition. After regressing out the influences of education and computer-use, we found that correct-word z-scores in the first session did not differ from those of the subjects in Experiment 1. Word production was uniformly greater in semantic than phonemic conditions. Intraclass correlation coefficients (ICCs) of correct-word z-scores were higher for phonemic (0.91) than semantic (0.77) tests. In semantic conditions, good reliability was also seen for the SOI (ICC = 0.68) and ESA-defined switches in semantic categories (ICC = 0.62). In Experiment 3, we examined the performance of subjects from Experiment 2 when instructed to malinger: 38% showed abnormal (p< 0.05) performance in semantic conditions. Simulated malingerers with abnormal scores could be distinguished with 80% sensitivity and 89% specificity from subjects with abnormal scores in Experiment 1 using lexical, temporal, and semantic measures. In Experiment 4, we tested patients with mild and severe traumatic brain injury (mTBI and sTBI). Patients with mTBI performed within the normal range, while patients with sTBI showed significant impairments in correct-word z-scores and category shifts. The lexical, temporal, and semantic measures of the C-VF provide an automated and comprehensive description of verbal fluency performance.
Collapse
Affiliation(s)
- David L. Woods
- Human Cognitive Neurophysiology Laboratory, VANCHCS, Martinez, CA, United States of America
- UC Davis Department of Neurology, Sacramento, CA. United States of America
- Center for Neurosciences, UC Davis, Davis, CA United States of America
- UC Davis Center for Mind and Brain, Davis, CA United States of America
- NeuroBehavioral Systems, Inc., Berkeley, CA United States of America
| | - John M. Wyma
- Human Cognitive Neurophysiology Laboratory, VANCHCS, Martinez, CA, United States of America
- NeuroBehavioral Systems, Inc., Berkeley, CA United States of America
| | - Timothy J. Herron
- Human Cognitive Neurophysiology Laboratory, VANCHCS, Martinez, CA, United States of America
| | - E. William Yund
- Human Cognitive Neurophysiology Laboratory, VANCHCS, Martinez, CA, United States of America
| |
Collapse
|