1
|
Koevoets EW, Schagen SB, May AM, Geerlings MI, Witlox L, van der Wall E, Stuiver MM, Sonke GS, Velthuis MJ, Jobsen JJ, van der Palen J, de Ruiter MB, Monninkhof EM. Effect of physical exercise on white matter microstructure in chemotherapy-treated breast cancer patients: a randomized controlled trial (PAM study). Brain Imaging Behav 2025; 19:291-301. [PMID: 39804457 PMCID: PMC11978695 DOI: 10.1007/s11682-024-00965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2024] [Indexed: 04/09/2025]
Abstract
Physical exercise is a promising intervention to improve brain white matter integrity. In the PAM study, exercise intervention effects on white matter integrity were investigated in breast cancer patients. Chemotherapy-treated breast cancer patients with cognitive problems were randomized 2-4 years post-diagnosis to an exercise (n = 91) or control group (n = 90). The 6-month exercise intervention consisted of four hours/week of aerobic and resistance training. White matter integrity was measured at baseline and 6-month follow-up with fractional anisotropy (FA) and mean diffusivity (MD), which were derived from magnetic resonance diffusion tensor imaging (DTI). Both DTI metrics were analyzed whole brain and voxel-wise with a modified tract based spatial statistics (TBSS) procedure. Other measurements included cognition and physical fitness. Exercise effects were analyzed with multiple regression analyses. An explorative analysis was conducted in highly fatigued patients. DTI scans were available for 69 patients of the intervention (age = 52.3 ± 8.9yrs.) and 72 patients of the control group (age = 53.2 ± 8.6yrs.). Whole brain and voxel-wise analyses revealed no significant intervention effects on FA and MD. In highly fatigued patients (exercise: n = 32; control: n = 24), significant clusters of decreased FA post-intervention were observed in the left inferior and superior longitudinal fasciculus. Mean FA in these clusters was not predictive of cognition. A 6-month exercise intervention did not affect white matter integrity in chemotherapy-treated breast cancer patients. However, in highly fatigued breast cancer patients a significant FA decrease was observed post-intervention. The direction of these results is unexpected, and more research is needed to further understand these results.
Collapse
Affiliation(s)
- Emmie W Koevoets
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sanne B Schagen
- Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Brain and Cognition Group, University of Amsterdam, Amsterdam, The Netherlands.
| | - Anne M May
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mirjam I Geerlings
- Department of General Practice, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Aging & Later Life, and Personalized Medicine, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, and Mood, Anxiety, Psychosis, Stress, and Sleep, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Lenja Witlox
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elsken van der Wall
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Martijn M Stuiver
- Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Center for Quality of Life, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gabe S Sonke
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Miranda J Velthuis
- Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, The Netherlands
| | - Jan J Jobsen
- Medical School Twente, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Job van der Palen
- Medical School Twente, Medisch Spectrum Twente, Enschede, The Netherlands
- Section Cognition, Data and Education, Universiteit Twente, Enschede, The Netherlands
| | - Michiel B de Ruiter
- Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Evelyn M Monninkhof
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Chang YK, Erickson KI, Aghjayan SL, Chen FT, Li RH, Shih JR, Chang SH, Huang CM, Chu CH. The multi-domain exercise intervention for memory and brain function in late middle-aged and older adults at risk for Alzheimer's disease: A protocol for Western-Eastern Brain Fitness Integration Training trial. Front Aging Neurosci 2022; 14:929789. [PMID: 36062144 PMCID: PMC9435311 DOI: 10.3389/fnagi.2022.929789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background Aging is associated with cognitive decline, increased risk for dementia, and deterioration of brain function. Modifiable lifestyle factors (e.g., exercise, meditation, and social interaction) have been proposed to benefit memory and brain function. However, previous studies have focused on a single exercise modality or a single lifestyle factor. Consequently, the effect of a more comprehensive exercise program that combines multiple exercise modalities and lifestyle factors, as well as examines potential mediators and moderators, on cognitive function and brain health in late middle-aged and older adults remains understudied. This study's primary aim is to examine the effect of a multi-domain exercise intervention on memory and brain function in cognitively healthy late middle-aged and older adults. In addition, we will examine whether apolipoprotein E (ApoE) genotypes, physical fitness (i.e., cardiovascular fitness, body composition, muscular fitness, flexibility, balance, and power), and brain-derived neurotrophic factor (BDNF) moderate and mediate the exercise intervention effects on memory and brain function. Methods The Western-Eastern Brain Fitness Integration Training (WE-BFit) is a single-blinded, double-arm, 6-month randomized controlled trial. One hundred cognitively healthy adults, aged 45-70 years, with different risks for Alzheimer's disease (i.e., ApoE genotype) will be recruited and randomized into either a multi-domain exercise group or an online educational course control group. The exercise intervention consists of one 90-min on-site and several online sessions up to 60 min per week for 6 months. Working memory, episodic memory, physical fitness, and BDNF will be assessed before and after the 6-month intervention. The effects of the WE-BFit on memory and brain function will be described and analyzed. We will further examine how ApoE genotype and changes in physical fitness and BDNF affect the effects of the intervention. Discussion WE-BFit is designed to improve memory and brain function using a multi-domain exercise intervention. The results will provide insight into the implementation of an exercise intervention with multiple domains to preserve memory and brain function in adults with genetic risk levels for Alzheimer's disease. Clinical trial registration ClinicalTrials.gov, identifier: NCT05068271.
Collapse
Affiliation(s)
- Yu-Kai Chang
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
- Institute for Research Excellence in Learning Science, National Taiwan Normal University, Taipei, Taiwan
| | - Kirk I. Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- AdventHealth Research Institute, Neuroscience Institute, Orlando, FL, United States
| | - Sarah L. Aghjayan
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Feng-Tzu Chen
- Department of Sport Medicine, China Medical University, Taichung, Taiwan
| | - Ruei-Hong Li
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Jia-Ru Shih
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Shao-Hsi Chang
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chien-Heng Chu
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
3
|
Pani J, Eikenes L, Reitlo LS, Stensvold D, Wisløff U, Håberg AK. Effects of a 5-Year Exercise Intervention on White Matter Microstructural Organization in Older Adults. A Generation 100 Substudy. Front Aging Neurosci 2022; 14:859383. [PMID: 35847676 PMCID: PMC9278017 DOI: 10.3389/fnagi.2022.859383] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022] Open
Abstract
Aerobic fitness and exercise could preserve white matter (WM) integrity in older adults. This study investigated the effect on WM microstructural organization of 5 years of exercise intervention with either supervised moderate-intensity continuous training (MICT), high-intensity interval training (HIIT), or following the national physical activity guidelines. A total of 105 participants (70-77 years at baseline), participating in the randomized controlled trial Generation 100 Study, volunteered to take part in this longitudinal 3T magnetic resonance imaging (MRI) study. The HIIT group (n = 33) exercised for four intervals of 4 min at 90% of peak heart rate two times a week, the MICT group (n = 24) exercised continuously for 50 min at 70% peak heart rate two times a week, and the control group (n = 48) followed the national guidelines of ≥30 min of physical activity almost every day. At baseline and at 1-, 3-, and 5-year follow-ups, diffusion tensor imaging (DTI) scans were performed, cardiorespiratory fitness (CRF) was measured as peak oxygen uptake (VO2peak) with ergospirometry, and information on exercise habits was collected. There was no group*time or group effect on any of the DTI indices at any time point during the intervention. Across all groups, CRF was positively associated with fractional anisotropy (FA) and axial diffusivity (AxD) at the follow-ups, and the effect became smaller with time. Exercise intensity was associated with mean diffusivity (MD)/FA, with the greatest effect at 1-year and no effect at 5-year follow-up. There was an association between exercise duration and FA and radial diffusivity (RD) only after 1 year. Despite the lack of group*time interaction or group effect, both higher CRF and exercise intensity was associated with better WM microstructural organization throughout the intervention, but the effect became attenuated over time. Different aspects of exercising affected the WM metrics and WM tracts differently with the greatest and most overlapping effects in the corpus callosum. The current study indicates not only that high CRF and exercise intensity are associated with WM microstructural organization in aging but also that exercise's positive effects on WM may decline with increasing age.
Collapse
Affiliation(s)
- Jasmine Pani
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St Olav’s University Hospital, Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Line S. Reitlo
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Dorthe Stensvold
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ulrik Wisløff
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- School of Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Asta Kristine Håberg
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St Olav’s University Hospital, Trondheim, Norway
| |
Collapse
|
4
|
Sugimoto H, Otake-Matsuura M. Tract-Based Spatial Statistics Analysis of Diffusion Tensor Imaging in Older Adults After the PICMOR Intervention Program: A Pilot Study. Front Aging Neurosci 2022; 14:867417. [PMID: 35721023 PMCID: PMC9204185 DOI: 10.3389/fnagi.2022.867417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Diffusion tensor imaging (DTI) enables the investigation of white matter properties in vivo by applying a tensor model to the diffusion of water molecules in the brain. Using DTI metrics including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD), an attempt has been made to detect age-related alterations in the white matter microstructure in aging research. However, the use of comprehensive DTI measures to examine the effects of cognitive intervention/training on white matter fiber health in older adults remains limited. Recently, we developed a cognitive intervention program called Photo-Integrated Conversation Moderated by Robots (PICMOR), which utilizes one of the most intellectual activities of daily life, conversations. To examine the effects of PICMOR on cognitive function in older adults, we conducted a randomized controlled trial and found that verbal fluency task scores were improved by this intervention. Based on these behavioral findings, we collected in this pilot study diffusion-weighted images from the participants to identify candidate structures for white matter microstructural changes induced by this intervention. The results from tract-based spatial statistics analyses showed that the intervention group, who participated in PICMOR-based conversations, had significantly higher FA values or lower MD, AD, or RD values across various fiber tracts, including the left anterior corona radiata, external capsule, and anterior limb of the internal capsule, compared to the control group, who participated in unstructured free conversations. Furthermore, a larger improvement in verbal fluency task scores throughout the intervention was associated with smaller AD values in clusters, including the left side of these frontal regions. The present findings suggest that left frontal white matter structures are candidates for the neural underpinnings responsible for the enhancement of verbal fluency. Although our findings are limited by the lack of comparable data at baseline, we successfully confirmed the hypothesized pattern of group differences in DTI indices after the intervention, which fits well with the results of other cognitive intervention studies. To confirm whether this pattern reflects intervention-induced white matter alterations, longitudinal data acquisition is needed in future research.
Collapse
|
5
|
Won J, Callow DD, Pena GS, Gogniat MA, Kommula Y, Arnold-Nedimala NA, Jordan LS, Smith JC. Evidence for exercise-related plasticity in functional and structural neural network connectivity. Neurosci Biobehav Rev 2021; 131:923-940. [PMID: 34655658 PMCID: PMC8642315 DOI: 10.1016/j.neubiorev.2021.10.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/10/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023]
Abstract
The number of studies investigating exercise and cardiorespiratory fitness (CRF)-related changes in the functional and structural organization of brain networks continues to rise. Functional and structural connectivity are critical biomarkers for brain health and many exercise-related benefits on the brain are better represented by network dynamics. Here, we reviewed the neuroimaging literature to better understand how exercise or CRF may facilitate and maintain the efficiency and integrity of functional and structural aspects of brain networks in both younger and older adults. Converging evidence suggests that increased exercise performance and CRF modulate functional connectivity of the brain in a way that corresponds to behavioral changes such as cognitive and motor performance improvements. Similarly, greater physical activity levels and CRF are associated with better cognitive and motor function, which may be brought about by enhanced structural network integrity. This review will provide a comprehensive understanding of trends in exercise-network studies as well as future directions based on the gaps in knowledge that are currently present in the literature.
Collapse
Affiliation(s)
- Junyeon Won
- Department of Kinesiology, University of Maryland, College Park, MD, United States
| | - Daniel D Callow
- Department of Kinesiology, University of Maryland, College Park, MD, United States; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, United States
| | - Gabriel S Pena
- Department of Kinesiology, University of Maryland, College Park, MD, United States
| | - Marissa A Gogniat
- Department of Psychology, University of Georgia, Athens, GA, United States
| | - Yash Kommula
- Department of Kinesiology, University of Maryland, College Park, MD, United States; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, United States
| | | | - Leslie S Jordan
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, United States
| | - J Carson Smith
- Department of Kinesiology, University of Maryland, College Park, MD, United States; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, United States.
| |
Collapse
|
6
|
Vriend C, van Balkom TD, Berendse HW, van der Werf YD, van den Heuvel OA. Cognitive Training in Parkinson's Disease Induces Local, Not Global, Changes in White Matter Microstructure. Neurotherapeutics 2021; 18:2518-2528. [PMID: 34409569 PMCID: PMC8804148 DOI: 10.1007/s13311-021-01103-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Previous studies showed that cognitive training can improve cognitive performance in various neurodegenerative diseases but little is known about the effects of cognitive training on the brain. Here, we investigated the effects of our cognitive training paradigm, COGTIPS, on regional white matter microstructure and structural network topology. We previously showed that COGTIPS has small, positive effects on processing speed. A subsample of 79 PD patients (N = 40 cognitive training group, N = 39 active control group) underwent multi-shell diffusion-weighted imaging pre- and post-intervention. Our pre-registered analysis plan (osf.io/cht6g) entailed investigating white matter microstructural integrity (e.g., fractional anisotropy) in five tracts of interest, including the anterior thalamic radiation (ATR), whole-brain tract-based spatial statistics (TBSS), and the topology of the structural network. Relative to the active control condition, cognitive training had no effect on topology of the structural network or whole-brain TBSS. Cognitive training did lead to a reduction in fractional anisotropy in the ATR (B [SE]: - 0.32 [0.12], P = 0.01). This reduction was associated with faster responses on the Tower of London task (r = 0.42, P = 0.007), but this just fell short of our statistical threshold (P < 0.006). Post hoc "fixel-based" analyses showed that this was not due to changes in fiber density and cross section. This suggests that the observed effect in the ATR is due to training-induced alterations in neighboring fibers running through the same voxels, such as intra-striatal and thalamo-striatal fibers. These results indicate that 8 weeks of cognitive training does not alter network topology, but has subtle local effects on structural connectivity.
Collapse
Affiliation(s)
- Chris Vriend
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands.
- Amsterdam UMC, Vrije Universiteit Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands.
| | - Tim D van Balkom
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands
| | - Henk W Berendse
- Amsterdam UMC, Vrije Universiteit Amsterdam, Neurology, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands
| | - Ysbrand D van der Werf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands
| |
Collapse
|
7
|
Chen Q, Baran TM, Turnbull A, Zhang Z, Rebok GW, Lin FV. Increased segregation of structural brain networks underpins enhanced broad cognitive abilities of cognitive training. Hum Brain Mapp 2021; 42:3202-3215. [PMID: 33955088 PMCID: PMC8193523 DOI: 10.1002/hbm.25428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
A major challenge in the cognitive training field is inducing broad, far-transfer training effects. Thus far, little is known about the neural mechanisms underlying broad training effects. Here, we tested a set of competitive hypotheses regarding the role of brain integration versus segregation underlying the broad training effect. We retrospectively analyzed data from a randomized controlled trial comparing neurocognitive effects of vision-based speed of processing training (VSOP) and an active control consisting of mental leisure activities (MLA) in older adults with MCI. We classified a subset of participants in the VSOP as learners, who showed improvement in executive function and episodic memory. The other participants in the VSOP (i.e., VSOP non-learners) and a subset of participants in the MLA (i.e., MLA non-learners) served as controls. Structural brain networks were constructed from diffusion tensor imaging. Clustering coefficients (CCs) and characteristic path lengths were computed as measures of segregation and integration, respectively. Learners showed significantly greater global CCs after intervention than controls. Nodal CCs were selectively enhanced in cingulate cortex, parietal regions, striatum, and thalamus. Among VSOP learners, those with more severe baseline neurodegeneration had greater improvement in segregation after training. Our findings suggest broad training effects are related to enhanced segregation in selective brain networks, providing insight into cognitive training related neuroplasticity.
Collapse
Affiliation(s)
- Quanjing Chen
- Elaine C. Hubbard Center for Nursing Research on Aging, School of NursingUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Department of Psychiatry, School of Medicine and DentistryUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Timothy M. Baran
- Department of Biomedical EngineeringUniversity of RochesterRochesterNew YorkUSA
- Department of Imaging SciencesUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Adam Turnbull
- Elaine C. Hubbard Center for Nursing Research on Aging, School of NursingUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Department of Imaging SciencesUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Zhengwu Zhang
- Department of Biostatistics and Computational BiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - George W. Rebok
- Department of Mental HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Feng Vankee Lin
- Elaine C. Hubbard Center for Nursing Research on Aging, School of NursingUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Department of Psychiatry, School of Medicine and DentistryUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Department of Brain and Cognitive SciencesUniversity of RochesterRochesterNew YorkUSA
- Department of Neuroscience, School of Medicine and DentistryUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Department of Neurology, School of Medicine and DentistryUniversity of Rochester Medical CenterRochesterNew YorkUSA
| |
Collapse
|
8
|
Mendez Colmenares A, Voss MW, Fanning J, Salerno EA, Gothe NP, Thomas ML, McAuley E, Kramer AF, Burzynska AZ. White matter plasticity in healthy older adults: The effects of aerobic exercise. Neuroimage 2021; 239:118305. [PMID: 34174392 DOI: 10.1016/j.neuroimage.2021.118305] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022] Open
Abstract
White matter deterioration is associated with cognitive impairment in healthy aging and Alzheimer's disease. It is critical to identify interventions that can slow down white matter deterioration. So far, clinical trials have failed to demonstrate the benefits of aerobic exercise on the adult white matter using diffusion Magnetic Resonance Imaging. Here, we report the effects of a 6-month aerobic walking and dance interventions (clinical trial NCT01472744) on white matter integrity in healthy older adults (n = 180, 60-79 years) measured by changes in the ratio of calibrated T1- to T2-weighted images (T1w/T2w). Specifically, the aerobic walking and social dance interventions resulted in positive changes in the T1w/T2w signal in late-myelinating regions, as compared to widespread decreases in the T1w/T2w signal in the active control. Notably, in the aerobic walking group, positive change in the T1w/T2w signal correlated with improved episodic memory performance. Lastly, intervention-induced increases in cardiorespiratory fitness did not correlate with change in the T1w/T2w signal. Together, our findings suggest that white matter regions that are vulnerable to aging retain some degree of plasticity that can be induced by aerobic exercise training. In addition, we provided evidence that the T1w/T2w signal may be a useful and broadly accessible measure for studying short-term within-person plasticity and deterioration in the adult human white matter.
Collapse
Affiliation(s)
- Andrea Mendez Colmenares
- Department of Human Development and Family Studies/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, 80523, United States; Department of Psychology/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, 80523, United States
| | - Michelle W Voss
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, United States
| | - Jason Fanning
- Department of Health and Exercise Sciences, Wake Forest University, Winston-Salem, NC, 27109, United States
| | - Elizabeth A Salerno
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, 63130, United States
| | - Neha P Gothe
- Department of Kinesiology and Community Health, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Michael L Thomas
- Department of Psychology/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, 80523, United States
| | - Edward McAuley
- Department of Kinesiology and Community Health, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Arthur F Kramer
- Department of Kinesiology and Community Health, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Psychology, Northeastern University, Boston, MA, 02115, United States
| | - Agnieszka Z Burzynska
- Department of Psychology, Northeastern University, Boston, MA, 02115, United States.
| |
Collapse
|
9
|
Lawlor-Savage L, Kusi M, Clark CM, Goghari VM. No evidence for an effect of a working memory training program on white matter microstructure. INTELLIGENCE 2021. [DOI: 10.1016/j.intell.2021.101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
d'Arbeloff T, Elliott ML, Knodt AR, Sison M, Melzer TR, Ireland D, Ramrakha S, Poulton R, Caspi A, Moffitt TE, Hariri AR. Midlife Cardiovascular Fitness Is Reflected in the Brain's White Matter. Front Aging Neurosci 2021; 13:652575. [PMID: 33889085 PMCID: PMC8055854 DOI: 10.3389/fnagi.2021.652575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/05/2021] [Indexed: 12/18/2022] Open
Abstract
Disappointing results from clinical trials designed to delay structural brain decline and the accompanying increase in risk for dementia in older adults have precipitated a shift in testing promising interventions from late in life toward midlife before irreversible damage has accumulated. This shift, however, requires targeting midlife biomarkers that are associated with clinical changes manifesting only in late life. Here we explored possible links between one putative biomarker, distributed integrity of brain white matter, and two intervention targets, cardiovascular fitness and healthy lifestyle behaviors, in midlife. At age 45, fractional anisotropy (FA) derived from diffusion weighted MRI was used to estimate the microstructural integrity of distributed white matter tracts in a population-representative birth cohort. Age-45 cardiovascular fitness (VO2Max; N = 801) was estimated from heart rates obtained during submaximal exercise tests; age-45 healthy lifestyle behaviors were estimated using the Nyberg Health Index (N = 854). Ten-fold cross-validated elastic net predictive modeling revealed that estimated VO2Max was modestly associated with distributed FA. In contrast, there was no significant association between Nyberg Health Index scores and FA. Our findings suggest that cardiovascular fitness levels, but not healthy lifestyle behaviors, are associated with the distributed integrity of white matter in the brain in midlife. These patterns could help inform future clinical intervention research targeting ADRDs.
Collapse
Affiliation(s)
- Tracy d'Arbeloff
- Department of Psychology & Neuroscience, Duke University, Durham, NC, United States
| | - Maxwell L Elliott
- Department of Psychology & Neuroscience, Duke University, Durham, NC, United States
| | - Annchen R Knodt
- Department of Psychology & Neuroscience, Duke University, Durham, NC, United States
| | - Maria Sison
- Department of Psychology & Neuroscience, Duke University, Durham, NC, United States
| | - Tracy R Melzer
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand
| | - David Ireland
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Sandhya Ramrakha
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Richie Poulton
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Avshalom Caspi
- Department of Psychology & Neuroscience, Duke University, Durham, NC, United States.,Social, Genetic, & Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, United Kingdom.,Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States.,Center for Genomic and Computational Biology, Duke University, Durham, NC, United States
| | - Terrie E Moffitt
- Department of Psychology & Neuroscience, Duke University, Durham, NC, United States.,Social, Genetic, & Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, United Kingdom.,Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States.,Center for Genomic and Computational Biology, Duke University, Durham, NC, United States
| | - Ahmad R Hariri
- Department of Psychology & Neuroscience, Duke University, Durham, NC, United States
| |
Collapse
|
11
|
Galvin JE, Tolea MI, Chrisphonte S. The Cognitive & Leisure Activity Scale (CLAS): A new measure to quantify cognitive activities in older adults with and without cognitive impairment. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12134. [PMID: 33816759 PMCID: PMC8012243 DOI: 10.1002/trc2.12134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Potentially modifiable dementia risk factors include diet and physical and cognitive activity. However, there is a paucity of scales to quantify cognitive activities. To address this, we developed the Cognitive & Leisure Activity Scale (CLAS). METHODS The CLAS was validated in 318 consecutive individuals with and without cognitive impairment. Psychometric properties were compared with sample characteristics, disease stage, and etiology. RESULTS The CLAS has very good data quality (Cronbach alpha: 0.731; 95% confidence interval: 0.67-0.78). CLAS scores correlated with gold standard measures of cognition, function, physical functionality, behavior, and caregiver burden. CLAS scores were positively correlated with other resilience factors (eg, diet, physical activity) and negatively correlated with vulnerability factors (eg, older age, frailty). DISCUSSION The CLAS is a brief inventory to estimate dosage of participation in cognitive activities. The CLAS could be used in clinical care to enhance cognitive activity or in research to estimate dosage of activities prior to an intervention.
Collapse
Affiliation(s)
- James E. Galvin
- Comprehensive Center for Brain HealthDepartment of NeurologyUniversity of Miami Miller School of Medicine
| | - Magdalena I. Tolea
- Comprehensive Center for Brain HealthDepartment of NeurologyUniversity of Miami Miller School of Medicine
| | - Stephanie Chrisphonte
- Comprehensive Center for Brain HealthDepartment of NeurologyUniversity of Miami Miller School of Medicine
| |
Collapse
|
12
|
Laptinskaya D, Küster OC, Fissler P, Thurm F, Von Arnim CAF, Kolassa IT. No Evidence That Cognitive and Physical Activities Are Related to Changes in EEG Markers of Cognition in Older Adults at Risk of Dementia. Front Aging Neurosci 2021; 13:610839. [PMID: 33815087 PMCID: PMC8017171 DOI: 10.3389/fnagi.2021.610839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/27/2021] [Indexed: 11/13/2022] Open
Abstract
An active lifestyle as well as cognitive and physical training (PT) may benefit cognition by increasing cognitive reserve, but the underlying neurobiological mechanisms of this reserve capacity are not well understood. To investigate these mechanisms of cognitive reserve, we focused on electrophysiological correlates of cognitive performance, namely on an event-related measure of auditory memory and on a measure of global coherence. Both measures have shown to be sensitive markers for cognition and might therefore be suitable to investigate potential training- and lifestyle-related changes. Here, we report on the results of an electrophysiological sub-study that correspond to previously published behavioral findings. Altogether, 65 older adults with subjective or objective cognitive impairment and aged 60-88 years were assigned to a 10-week cognitive (n = 19) or a 10-week PT (n = 21) or to a passive control group (n = 25). In addition, self-reported lifestyle was assessed at baseline. We did not find an effect of both training groups on electroencephalography (EEG) measures of auditory memory decay or global coherence (ps ≥ 0.29) and a more active lifestyle was not associated with improved global coherence (p = 0.38). Results suggest that a 10-week unimodal cognitive or PT and an active lifestyle in older adults at risk for dementia are not strongly related to improvements in electrophysiological correlates of cognition.
Collapse
Affiliation(s)
- Daria Laptinskaya
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
- Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Olivia Caroline Küster
- Department of Neurology, Ulm University, Ulm, Germany
- Clinic for Neurogeriatrics and Neurological Rehabilitation, University- and Rehabilitation Hospital Ulm, Ulm, Germany
| | - Patrick Fissler
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
- Department of Neurology, Ulm University, Ulm, Germany
- Psychiatric Services of Thurgovia, Academic Teaching Hospital of Paracelsus Medical University Salzburg, Muensterlingen, Switzerland
| | - Franka Thurm
- Department of Psychology, University of Konstanz, Konstanz, Germany
- Faculty of Psychology, TU Dresden, Dresden, Germany
| | - Christine A. F. Von Arnim
- Department of Neurology, Ulm University, Ulm, Germany
- Division of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| | - Iris-Tatjana Kolassa
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
- Department of Psychology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
13
|
Loprinzi PD, Harper J, Ikuta T. The effects of aerobic exercise on corpus callosum integrity: systematic review. PHYSICIAN SPORTSMED 2020; 48:400-406. [PMID: 32315243 DOI: 10.1080/00913847.2020.1758545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Objective: To evaluate the influence of exercise on the body and genu of the corpus callosum (CC), which is a critical brain structure involved in facilitating interhemispheric communication. Methods: Studies were identified using electronic databases, including PubMed, PsychInfo, Sports Discus and Google Scholar. The search terms, including their combinations, included exercise, physical activity, cardiorespiratory fitness, interhemispheric, and corpus callosum. To be eligible for inclusion in this review, studies had to be published in English; employ a cross-sectional, prospective or experimental design; include a measure of exercise as the independent variable; and the outcome variable had to include an integrity, volumetric or functional measure of the CC. Extraction parameters include study design, study population, exercise protocol, CC assessment, main findings regarding the relationship between exercise and the CC, and the evaluated or speculated mechanisms of this relationship. Results: 20 articles met the study inclusion criteria. Among these, 5 were conducted in animals and 15 were conducted in humans. Among the 5 animal studies, all provided suggestive evidence associating aerobic exercise with increased white matter integrity. Among the 15 human studies, 6 studies employed tract-based special statistics (TBSS), 4 utilized regions of interest (ROI) approach and 5 executed whole brain voxel wise analysis. Changes in the body was detected by 5 out of 6 TBSS studies and the genu by 3. Out of 4 ROI studies, three detected changes in the genu, but only one did in the body (out of 3 studies). One whole brain voxelwise study detected changes in the CC body of old adults and two found changes in the genu. Conclusion: This review provides evidence to suggest that aerobic exercise, and in turn, enhanced cardiorespiratory fitness, are associated with structural and functional outcomes increasing CC integrity.
Collapse
Affiliation(s)
- Paul D Loprinzi
- Exercise & Memory Laboratory Department of Health, Exercise Science and Recreation Management, The University of Mississippi , University, MS, USA
| | - Jacob Harper
- Exercise & Memory Laboratory Department of Health, Exercise Science and Recreation Management, The University of Mississippi , University, MS, USA
| | - Toshikazu Ikuta
- Digital Neuroscience Laboratory Department of Communication Sciences and Disorders, The University of Mississippi , University, MS, USA
| |
Collapse
|
14
|
Matsuhashi T, Segalowitz SJ, Murphy TI, Nagano Y, Hirao T, Masaki H. Medial frontal negativities predict performance improvements during motor sequence but not motor adaptation learning. Psychophysiology 2020; 58:e13708. [PMID: 33111987 PMCID: PMC7816271 DOI: 10.1111/psyp.13708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/25/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022]
Abstract
Alterations in our environment require us to learn or alter motor skills to remain efficient. Also, damage or injury may require the relearning of motor skills. Two types have been identified: movement adaptation and motor sequence learning. Doyonet al. (2003, Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia, 41(3), 252-262) proposed a model to explain the neural mechanisms related to adaptation (cortico-cerebellar) and motor sequence learning (cortico-striatum) tasks. We hypothesized that medial frontal negativities (MFNs), event-related electrocortical responses including the error-related negativity (ERN) and correct-response-related negativity (CRN), would be trait biomarkers for skill in motor sequence learning due to their relationship with striatal neural generators in a network involving the anterior cingulate and possibly the supplementary motor area. We examined 36 participants' improvement in a motor adaptation and a motor sequence learning task and measured MFNs elicited in a separate Spatial Stroop (conflict) task. We found both ERN and CRN strongly predicted performance improvement in the sequential motor task but not in the adaptation task, supporting this aspect of the Doyon model. Interestingly, the CRN accounted for additional unique variance over the variance shared with the ERN suggesting an expansion of the model.
Collapse
Affiliation(s)
- Takuto Matsuhashi
- Graduate School of Sport Sciences, Waseda University, Tokorozawa, Japan
| | | | - Timothy I Murphy
- Department of Psychology, Brock University, St. Catharines, ON, Canada
| | - Yuichiro Nagano
- Faculty of Human Studies, Bunkyo Gakuin University, Fujimino, Japan
| | - Takahiro Hirao
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Hiroaki Masaki
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| |
Collapse
|
15
|
Abstract
AbstractThe prospect of improving or maintaining cognitive functioning has provoked a steadily increasing number of cognitive training interventions over the last years, especially for clinical and elderly populations. However, there are discrepancies between the findings of the studies. One of the reasons behind these heterogeneous findings is that there are vast inter-individual differences in how people benefit from the training and in the extent that training-related gains are transferred to other untrained tasks and domains. In this paper, we address the value of incorporating neural measures to cognitive training studies in order to fully understand the mechanisms leading to inter-individual differences in training gains and their generalizability to other tasks. Our perspective is that it is necessary to collect multimodal neural measures in the pre- and post-training phase, which can enable us to understand the factors contributing to successful training outcomes. More importantly, this understanding can enable us to predict who will benefit from different types of interventions, thereby allowing the development of individually tailored intervention programs.
Collapse
|
16
|
Sexton CE, Betts JF, Dennis A, Doherty A, Leeson P, Holloway C, Dall'Armellina E, Winkler AM, Demnitz N, Wassenaar T, Dawes H, Johansen-Berg H. The effects of an aerobic training intervention on cognition, grey matter volumes and white matter microstructure. Physiol Behav 2020; 223:112923. [PMID: 32474233 PMCID: PMC7378567 DOI: 10.1016/j.physbeh.2020.112923] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 01/17/2023]
Abstract
While there is strong evidence from observational studies that physical activity is associated with reduced risk of cognitive decline and dementia, the extent to which aerobic training interventions impact on cognitive health and brain structure remains subject to debate. In a pilot study of 46 healthy older adults (66.6 years ± 5.2 years, 63% female), we compared the effects of a twelve-week aerobic training programme to a waitlist control condition on cardiorespiratory fitness, cognition and magnetic resonance imaging (MRI) outcomes. Cardiorespiratory fitness was assessed by VO2 max testing. Cognitive assessments spanned executive function, memory and processing speed. Structural MRI analysis included examination of hippocampal volume, and voxel-wise assessment of grey matter volumes using voxel-based morphometry. Diffusion tensor imaging analysis of fractional anisotropy, axial diffusivity and radial diffusivity was performed using tract-based spatial statistics. While the intervention successfully increased cardiorespiratory fitness, there was no evidence that the aerobic training programme led to changes in cognitive functioning or measures of brain structure in older adults. Interventions that are longer lasting, multi-factorial, or targeted at specific high-risk populations, may yield more encouraging results.
Collapse
Affiliation(s)
- Claire E Sexton
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK, OX3 9DU; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, UK.
| | - Jill F Betts
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK, OX3 9DU
| | - Andrea Dennis
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK, OX3 9DU
| | - Aiden Doherty
- Nuffield Department of Population Health, University of Oxford, Oxford, UK, OX3 7LF.
| | - Paul Leeson
- Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK, OX3 9DU.
| | - Cameron Holloway
- University of Oxford Centre for Clinical Magnetic Resonance, University of Oxford, Oxford, UK, OX3 9DU.
| | - Erica Dall'Armellina
- University of Oxford Centre for Clinical Magnetic Resonance, University of Oxford, Oxford, UK, OX3 9DU.
| | - Anderson M Winkler
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK, OX3 9DU
| | - Naiara Demnitz
- Department of Psychiatry, University of Oxford, Oxford, UK, OX3 7JX.
| | - Thomas Wassenaar
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK, OX3 9DU.
| | - Helen Dawes
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK, OX3 0BP.
| | - Heidi Johansen-Berg
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK, OX3 9DU.
| |
Collapse
|
17
|
Non-verbal IQ Gains from Relational Operant Training Explain Variance in Educational Attainment: An Active-Controlled Feasibility Study. JOURNAL OF COGNITIVE ENHANCEMENT 2020. [DOI: 10.1007/s41465-020-00187-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractResearch suggests that training relational operant patterns of behavior can lead to increases in general cognitive ability and educational outcomes. Most studies to date have been under-powered and included proxy measures of educational attainment. We attempted to extend previous findings with increased experimental control in younger children (aged 6.9–10.1 years). Participants (N = 49) were assigned to either a relational training or chess control group. Over 5 months, teachers assigned class time to complete either relational training or play chess. Those who were assigned relational training gained 8.9 non-verbal IQ (NVIQ) points, while those in the control condition recorded no gains (dppc2 = .99). Regression analyses revealed that post-training NVIQ predicted reading test scores (conducted approximately 1 month later) over and above baseline NVIQ in the experimental condition only, consistent with what we might expect in a full test of far transfer towards educational outcomes.
Collapse
|
18
|
Laptinskaya D, Fissler P, Küster OC, Wischniowski J, Thurm F, Elbert T, von Arnim CAF, Kolassa IT. Global EEG coherence as a marker for cognition in older adults at risk for dementia. Psychophysiology 2019; 57:e13515. [PMID: 31840287 DOI: 10.1111/psyp.13515] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 11/30/2022]
Abstract
Quantitative electroencephalography (EEG) provides useful information about neurophysiological health of the aging brain. Current studies investigating EEG coherence and power for specific brain areas and frequency bands have yielded inconsistent results. This study assessed EEG coherence and power indices at rest measured over the whole skull and for a wide frequency range as global EEG markers for cognition in a sample at risk for dementia. Since global markers are more reliable and less error-prone than region- and frequency-specific indices they might help to overcome previous inconsistencies. Global EEG coherence (1-30 Hz) and an EEG slowing score were assessed. The EEG slowing score was calculated by low-frequency power (1-8 Hz) divided by high-frequency power (9-30 Hz). In addition, the prognostic value of the two EEG indices for cognition and cognitive decline was assessed in a 5-year follow-up pilot study. Baseline global coherence correlated positively with cognition at baseline, but not with cognitive decline or with cognition at the 5-year follow-up. The EEG slowing ratio showed no significant association, neither with cognition at baseline or follow-up, nor with cognitive decline over a period of 5 years. The results indicate that the resting state global EEG coherence might be a useful and easy to assess electrophysiological correlate for neurocognitive health in older adults at risk for dementia. Because of the small statistical power for the follow-up analyses, the prognostic value of global coherence could not be determined in the present study. Future studies should assess its prognostic value with larger sample sizes.
Collapse
Affiliation(s)
- Daria Laptinskaya
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany.,Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Patrick Fissler
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany.,Department of Neurology, Ulm University, Ulm, Germany
| | - Olivia Caroline Küster
- Department of Neurology, Ulm University, Ulm, Germany.,Department of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| | - Jakob Wischniowski
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Franka Thurm
- Department of Psychology, University of Konstanz, Konstanz, Germany.,Faculty of Psychology, TU Dresden, Dresden, Germany
| | - Thomas Elbert
- Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Christine A F von Arnim
- Department of Neurology, Ulm University, Ulm, Germany.,Department of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| | - Iris-Tatjana Kolassa
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany.,Department of Psychology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
19
|
Wassenaar TM, Yaffe K, van der Werf YD, Sexton CE. Associations between modifiable risk factors and white matter of the aging brain: insights from diffusion tensor imaging studies. Neurobiol Aging 2019; 80:56-70. [PMID: 31103633 PMCID: PMC6683729 DOI: 10.1016/j.neurobiolaging.2019.04.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/26/2019] [Accepted: 04/05/2019] [Indexed: 01/13/2023]
Abstract
There is increasing interest in factors that may modulate white matter (WM) breakdown and, consequentially, age-related cognitive and behavioral deficits. Recent diffusion tensor imaging studies have examined the relationship of such factors with WM microstructure. This review summarizes the evidence regarding the relationship between WM microstructure and recognized modifiable factors, including hearing loss, hypertension, diabetes, obesity, smoking, depressive symptoms, physical (in) activity, and social isolation, as well as sleep disturbances, diet, cognitive training, and meditation. Current cross-sectional evidence suggests a clear link between loss of WM integrity (lower fractional anisotropy and higher mean diffusivity) and hypertension, obesity, diabetes, and smoking; a relationship that seems to hold for hearing loss, social isolation, depressive symptoms, and sleep disturbances. Physical activity, cognitive training, diet, and meditation, on the other hand, may protect WM with aging. Preliminary evidence from cross-sectional studies of treated risk factors suggests that modification of factors could slow down negative effects on WM microstructure. Careful intervention studies are needed for this literature to contribute to public health initiatives going forward.
Collapse
Affiliation(s)
- Thomas M Wassenaar
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroscience, FMRIB Centre, University of Oxford, John Radcliffe Hospital, UK
| | - Kristine Yaffe
- Departments of Psychiatry, Neurology, and Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Ysbrand D van der Werf
- Department of Anatomy and Neurosciences, VU University Medical Center, MC, Amsterdam, the Netherlands
| | - Claire E Sexton
- Department of Neurology, Global Brain Health Institute, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA; Department of Psychiatry, Wellcome Centre for Integrative Neuroscience, Oxford Centre for Human Brain Activity, University of Oxford, John Radcliffe Hospital, UK.
| |
Collapse
|
20
|
Laptinskaya D, Thurm F, Küster OC, Fissler P, Schlee W, Kolassa S, von Arnim CAF, Kolassa IT. Auditory Memory Decay as Reflected by a New Mismatch Negativity Score Is Associated with Episodic Memory in Older Adults at Risk of Dementia. Front Aging Neurosci 2018; 10:5. [PMID: 29456500 PMCID: PMC5801314 DOI: 10.3389/fnagi.2018.00005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022] Open
Abstract
The auditory mismatch negativity (MMN) is an event-related potential (ERP) peaking about 100–250 ms after the onset of a deviant tone in a sequence of identical (standard) tones. Depending on the interstimulus interval (ISI) between standard and deviant tones, the MMN is suitable to investigate the pre-attentive auditory discrimination ability (short ISIs, ≤ 2 s) as well as the pre-attentive auditory memory trace (long ISIs, >2 s). However, current results regarding the MMN as an index for mild cognitive impairment (MCI) and dementia are mixed, especially after short ISIs: while the majority of studies report positive associations between the MMN and cognition, others fail to find such relationships. To elucidate these so far inconsistent results, we investigated the validity of the MMN as an index for cognitive impairment exploring the associations between different MMN indices and cognitive performance, more specifically with episodic memory performance which is among the most affected cognitive domains in the course of Alzheimer’s dementia (AD), at baseline and at a 5-year-follow-up. We assessed the amplitude of the MMN for short ISI (stimulus onset asynchrony, SOA = 0.05 s) and for long ISI (3 s) in a neuropsychologically well-characterized cohort of older adults at risk of dementia (subjective memory impairment, amnestic and non-amnestic MCI; n = 57). Furthermore, we created a novel difference score (ΔMMN), defined as the difference between MMNs to short and to long ISI, as a measure to assess the decay of the auditory memory trace, higher values indicating less decay. ΔMMN and MMN amplitude after long ISI, but not the MMN amplitude after short ISI, was associated with episodic memory at baseline (β = 0.38, p = 0.003; β = −0.27, p = 0.047, respectively). ΔMMN, but not the MMN for long ISIs, was positively associated with episodic memory performance at the 5-year-follow-up (β = 0.57, p = 0.013). The results suggest that the MMN after long ISI might be suitable as an indicator for the decline in episodic memory and indicate ΔMMN as a potential biomarker for memory impairment in older adults at risk of dementia.
Collapse
Affiliation(s)
- Daria Laptinskaya
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany.,Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Franka Thurm
- Department of Psychology, University of Konstanz, Konstanz, Germany.,Faculty of Psychology, TU Dresden, Dresden, Germany
| | - Olivia C Küster
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany.,Department of Neurology, Ulm University, Ulm, Germany
| | - Patrick Fissler
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany.,Department of Neurology, Ulm University, Ulm, Germany
| | - Winfried Schlee
- Department for Psychiatry and Psychotherapy, University Hospital Regensburg, Regensburg, Germany
| | | | | | - Iris-Tatjana Kolassa
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany.,Department of Psychology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
21
|
Küster OC, Laptinskaya D, Fissler P, Schnack C, Zügel M, Nold V, Thurm F, Pleiner S, Karabatsiakis A, von Einem B, Weydt P, Liesener A, Borta A, Woll A, Hengerer B, Kolassa IT, von Arnim CA. Novel Blood-Based Biomarkers of Cognition, Stress, and Physical or Cognitive Training in Older Adults at Risk of Dementia: Preliminary Evidence for a Role of BDNF, Irisin, and the Kynurenine Pathway. J Alzheimers Dis 2017; 59:1097-1111. [DOI: 10.3233/jad-170447] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Olivia C. Küster
- Institute of Psychology and Education, Clinical and Biological Psychology, Ulm University, Germany
- Department of Neurology, Ulm University, Germany
| | - Daria Laptinskaya
- Institute of Psychology and Education, Clinical and Biological Psychology, Ulm University, Germany
| | - Patrick Fissler
- Institute of Psychology and Education, Clinical and Biological Psychology, Ulm University, Germany
- Department of Neurology, Ulm University, Germany
| | | | - Martina Zügel
- Department of Internal Medicine, Division of Sports Medicine, University Hospital Ulm, Germany
| | - Verena Nold
- Institute of Psychology and Education, Clinical and Biological Psychology, Ulm University, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, DMPK, Biberach an der Riss, Germany
| | | | - Sina Pleiner
- Boehringer Ingelheim Pharma GmbH & Co. KG, DMPK, Biberach an der Riss, Germany
| | - Alexander Karabatsiakis
- Institute of Psychology and Education, Clinical and Biological Psychology, Ulm University, Germany
| | | | | | - André Liesener
- Boehringer Ingelheim Pharma GmbH & Co. KG, DMPK, Biberach an der Riss, Germany
| | - Andreas Borta
- Boehringer Ingelheim Pharma GmbH & Co. KG, DMPK, Biberach an der Riss, Germany
| | - Alexander Woll
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Germany
| | - Bastian Hengerer
- Boehringer Ingelheim Pharma GmbH & Co. KG, RES CNS, Biberach an der Riss, Germany
| | - Iris-Tatjana Kolassa
- Institute of Psychology and Education, Clinical and Biological Psychology, Ulm University, Germany
| | | |
Collapse
|