1
|
Wang H, Li L. Effects of two-person synchronized cycling exercise on interpersonal cooperation: A near-infrared spectroscopy hyperscanning study. Int J Clin Health Psychol 2024; 24:100492. [PMID: 39308780 PMCID: PMC11416475 DOI: 10.1016/j.ijchp.2024.100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/04/2024] [Indexed: 09/25/2024] Open
Abstract
Objective Although psychological research indicating the synchronous activities can promote interpersonal cooperation, thus far there is no direct evidence that two-person synchronous exercise effectively enhances interpersonal cooperative behaviors in Physical exercise field. This suggests that, although synchronization phenomenon is widespread in sports and is considered a potential tool for enhancing teamwork, its specific effects and functioning mechanisms still need to be clarified by further scientific research. This study intends to use two-person synchronized cycling exercise to investigate the synchronized exercise effect on interpersonal cooperative behavior and its underlying neural mechanisms. Methods Eighty college students without regular exercise habits will be randomly assigned to the experimental group (10 male dyads and 10 female dyads) and the control group (10 male dyads and 10 female dyads). During the experiment, dyads in the experimental group performed a 30-minute synchronized cycling exercise with synchronized pedaling movements; dyads in the control group rested sedentary in the same environment for 30 minutes. Interpersonal cooperative behavior was assessed with the Prisoner's Dilemma task, and the interpersonal neural synchronization(INS) data were collected in the prefrontal cortex using near-infrared hyperscanning. Results This study compared behavior and brain activity before and after synchronous exercise. Behavioral results revealed that, compared to pre-exercise, dyads in the post-exercise had higher average cooperation rates, higher cooperation efficiency and shorter cooperation response times. Compared to post-sedentary, dyads in the post-exercise had shorter cooperation response times and higher cooperation efficiency. Furthermore, brain data showed that,compared to pre-exercise, dyads in the post-exercise had stronger INS in the dorsolateral prefrontal cortex(DLPFC), whereas the dyads in the post-exercise had stronge INS in the DLPFC compared to post-sedentary. After controlling for dyads' anxiety and mood states, this study also found a marginally significant negative correlation between INS differences in the left DLPFC and cooperation response time differences. Conclusions This research confirms, from both behavioral and neuroscience perspectives, that one synchronization cycle can significantly enhance interpersonal cooperative behavior, and this positive effect is closely associated with increased INS in the left DLPFC. This study provides new insights into understanding how positive interactive exercises promote interpersonal cooperation through specific neural mechanisms.
Collapse
Affiliation(s)
- Huiling Wang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Lin Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
2
|
Shamay-Tsoory SG, Marton-Alper IZ, Markus A. Post-interaction neuroplasticity of inter-brain networks underlies the development of social relationship. iScience 2024; 27:108796. [PMID: 38292433 PMCID: PMC10825012 DOI: 10.1016/j.isci.2024.108796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/01/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Inter-brain coupling has been increasingly recognized for its role in supporting connectedness during social communication. Here we investigate whether inter-brain coupling is plastic and persists beyond the offset of social interaction, facilitating the emergence of social closeness. Dyads were concurrently scanned using functional near infrared spectroscopy (fNIRS) while engaging in a task that involved movement synchronization. To assess post-interaction neuroplasticity, participants performed a baseline condition with no interaction before and after the interaction. The results reveal heightened inter-brain coupling in neural networks comprising the inferior frontal gyrus (IFG) and dorsomedial prefrontal cortex in the post-task compared to the pre-task baseline. Critically, the right IFG emerged as a highly connected hub, with post-task inter-brain coupling in this region predicting the levels of motivation to connect socially. We suggest that post-interactions inter-brain coupling may reflect consolidation of socially related cues, underscoring the role of inter-brain plasticity in fundamental aspects of relationship development.
Collapse
Affiliation(s)
- Simone G. Shamay-Tsoory
- Department of Psychology, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), Haifa, Israel
| | | | - Andrey Markus
- Department of Psychology, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), Haifa, Israel
| |
Collapse
|
3
|
Fairhurst MT, Tajadura-Jiménez A, Keller PE, Deroy O. You, me, and us: Maintaining self-other distinction enhances coordination, agency, and affect. iScience 2023; 26:108253. [PMID: 38025777 PMCID: PMC10679890 DOI: 10.1016/j.isci.2023.108253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/08/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Coordinating our actions with others changes how we behave and feel. Here, we provide evidence that interacting with others rests on a balance between self-other integration and segregation. Using a group walking paradigm, participants were instructed to synchronize with a metronome while listening to the sounds of 8 virtual partners. By manipulating the similarity and synchronicity of the partners' steps to the participant's own, our novel auditory task disentangles the effects of synchrony and self-other similarity and examines their contribution to both collective and individual awareness. We measured temporal coordination (step timing regularity and synchrony with the metronome), gait patterns, and subjective reports about sense of self and group cohesion. The main findings show that coordination is best when participants hear distinct but synchronous virtual others, leading to greater subjective feelings of agency, strength, dominance, and happiness.
Collapse
Affiliation(s)
- Merle T. Fairhurst
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Faculty of Electrical and Computer Engineering, Technische Universität Dresden, Dresden, Germany
- Munich Centre for Neuroscience, Ludwig Maximilian University, Munich, Germany
| | - Ana Tajadura-Jiménez
- i_mBODY Lab, DEI Interactive Systems Group, Department of Computer Science and Engineering, Universidad Carlos III de Madrid, Spain
- UCL Interaction Centre (UCLIC), University College London, London, United Kingdom
| | - Peter E. Keller
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Ophelia Deroy
- Munich Centre for Neuroscience, Ludwig Maximilian University, Munich, Germany
- Faculty of Philosophy, Ludwig Maximilian University, Munich, Germany
- Institute of Philosophy, School of Advanced Study, University of London, London, United Kingdom
| |
Collapse
|
4
|
Tamburro G, Fiedler P, De Fano A, Raeisi K, Khazaei M, Vaquero L, Bruña R, Oppermann H, Bertollo M, Filho E, Zappasodi F, Comani S. An ecological study protocol for the multimodal investigation of the neurophysiological underpinnings of dyadic joint action. Front Hum Neurosci 2023; 17:1305331. [PMID: 38125713 PMCID: PMC10730734 DOI: 10.3389/fnhum.2023.1305331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
A novel multimodal experimental setup and dyadic study protocol were designed to investigate the neurophysiological underpinnings of joint action through the synchronous acquisition of EEG, ECG, EMG, respiration and kinematic data from two individuals engaged in ecologic and naturalistic cooperative and competitive joint actions involving face-to-face real-time and real-space coordinated full body movements. Such studies are still missing because of difficulties encountered in recording reliable neurophysiological signals during gross body movements, in synchronizing multiple devices, and in defining suitable study protocols. The multimodal experimental setup includes the synchronous recording of EEG, ECG, EMG, respiration and kinematic signals of both individuals via two EEG amplifiers and a motion capture system that are synchronized via a single-board microcomputer and custom Python scripts. EEG is recorded using new dry sports electrode caps. The novel study protocol is designed to best exploit the multimodal data acquisitions. Table tennis is the dyadic motor task: it allows naturalistic and face-to-face interpersonal interactions, free in-time and in-space full body movement coordination, cooperative and competitive joint actions, and two task difficulty levels to mimic changing external conditions. Recording conditions-including minimum table tennis rally duration, sampling rate of kinematic data, total duration of neurophysiological recordings-were defined according to the requirements of a multilevel analytical approach including a neural level (hyperbrain functional connectivity, Graph Theoretical measures and Microstate analysis), a cognitive-behavioral level (integrated analysis of neural and kinematic data), and a social level (extending Network Physiology to neurophysiological data recorded from two interacting individuals). Four practical tests for table tennis skills were defined to select the study population, permitting to skill-match the dyad members and to form two groups of higher and lower skilled dyads to explore the influence of skill level on joint action performance. Psychometric instruments are included to assess personality traits and support interpretation of results. Studying joint action with our proposed protocol can advance the understanding of the neurophysiological mechanisms sustaining daily life joint actions and could help defining systems to predict cooperative or competitive behaviors before being overtly expressed, particularly useful in real-life contexts where social behavior is a main feature.
Collapse
Affiliation(s)
- Gabriella Tamburro
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
- Behavioral Imaging and Neural Dynamics Center, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Patrique Fiedler
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Antonio De Fano
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
- Behavioral Imaging and Neural Dynamics Center, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Khadijeh Raeisi
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Mohammad Khazaei
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Lucia Vaquero
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Experimental Pschology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Radiology, Universidad Complutense de Madrid, IdISSC, Madrid, Spain
| | - Hannes Oppermann
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Maurizio Bertollo
- Behavioral Imaging and Neural Dynamics Center, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
- Department of Medicine and Sciences of Aging, “University G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Edson Filho
- Wheelock College of Education and Human Development, Boston University, Boston, MA, United States
| | - Filippo Zappasodi
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
- Behavioral Imaging and Neural Dynamics Center, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Silvia Comani
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
- Behavioral Imaging and Neural Dynamics Center, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| |
Collapse
|
5
|
Hakim U, De Felice S, Pinti P, Zhang X, Noah JA, Ono Y, Burgess PW, Hamilton A, Hirsch J, Tachtsidis I. Quantification of inter-brain coupling: A review of current methods used in haemodynamic and electrophysiological hyperscanning studies. Neuroimage 2023; 280:120354. [PMID: 37666393 DOI: 10.1016/j.neuroimage.2023.120354] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
Hyperscanning is a form of neuroimaging experiment where the brains of two or more participants are imaged simultaneously whilst they interact. Within the domain of social neuroscience, hyperscanning is increasingly used to measure inter-brain coupling (IBC) and explore how brain responses change in tandem during social interaction. In addition to cognitive research, some have suggested that quantification of the interplay between interacting participants can be used as a biomarker for a variety of cognitive mechanisms aswell as to investigate mental health and developmental conditions including schizophrenia, social anxiety and autism. However, many different methods have been used to quantify brain coupling and this can lead to questions about comparability across studies and reduce research reproducibility. Here, we review methods for quantifying IBC, and suggest some ways moving forward. Following the PRISMA guidelines, we reviewed 215 hyperscanning studies, across four different brain imaging modalities: functional near-infrared spectroscopy (fNIRS), functional magnetic resonance (fMRI), electroencephalography (EEG) and magnetoencephalography (MEG). Overall, the review identified a total of 27 different methods used to compute IBC. The most common hyperscanning modality is fNIRS, used by 119 studies, 89 of which adopted wavelet coherence. Based on the results of this literature survey, we first report summary statistics of the hyperscanning field, followed by a brief overview of each signal that is obtained from each neuroimaging modality used in hyperscanning. We then discuss the rationale, assumptions and suitability of each method to different modalities which can be used to investigate IBC. Finally, we discuss issues surrounding the interpretation of each method.
Collapse
Affiliation(s)
- U Hakim
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom.
| | - S De Felice
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom; Department of Psychology, University of Cambridge, United Kingdom
| | - P Pinti
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom
| | - X Zhang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - J A Noah
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Y Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Kanagawa, Japan
| | - P W Burgess
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - A Hamilton
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - J Hirsch
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States; Departments of Neuroscience and Comparative Medicine, Yale School of Medicine, New Haven, CT, United States; Yale University, Wu Tsai Institute, New Haven, CT, United States
| | - I Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
6
|
Park J, Shin J, Lee J, Jeong J. Inter-Brain Synchrony Pattern Investigation on Triadic Board Game Play-Based Social Interaction: An fNIRS Study. IEEE Trans Neural Syst Rehabil Eng 2023; 31:2923-2932. [PMID: 37410649 DOI: 10.1109/tnsre.2023.3292844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Recent advances in functional neuroimaging techniques, including methodologies such as fNIRS, have enabled the evaluation of inter-brain synchrony (IBS) induced by interpersonal interactions. However, the social interactions assumed in existing dyadic hyperscanning studies do not sufficiently emulate polyadic social interactions in the real world. Therefore, we devised an experimental paradigm that incorporates the Korean folk board game "Yut-nori" to reproduce social interactions that emulate social activities in the real world. We recruited 72 participants aged 25.2 ± 3.9 years (mean ± standard deviation) and divided them into 24 triads to play Yut-nori, following the standard or modified rules. The participants either competed against an opponent (standard rule) or cooperated with an opponent (modified rule) to achieve a goal efficiently. Three different fNIRS devices were employed to record cortical hemodynamic activations in the prefrontal cortex both individually and simultaneously. Wavelet transform coherence (WTC) analyses were performed to assess prefrontal IBS within a frequency range of 0.05-0.2 Hz. Consequently, we observed that cooperative interactions increased prefrontal IBS across overall frequency bands of interest. In addition, we also found that different purposes for cooperation generated different spectral characteristics of IBS depending on the frequency bands. Moreover, IBS in the frontopolar cortex (FPC) reflected the influence of verbal interactions. The findings of our study suggest that future hyperscanning studies should consider polyadic social interactions to reveal the properties of IBS in real-world interactions.
Collapse
|
7
|
Cheng X, Guo B, Hu Y. Distinct neural couplings to shared goal and action coordination in joint action: evidence based on fNIRS hyperscanning. Soc Cogn Affect Neurosci 2022; 17:956-964. [PMID: 35325237 PMCID: PMC9527463 DOI: 10.1093/scan/nsac022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/19/2022] [Accepted: 03/23/2022] [Indexed: 11/15/2022] Open
Abstract
Joint action is central to human nature, enabling individuals to coordinate in time and space to achieve a joint outcome. Such interaction typically involves two key elements: shared goal and action coordination. Yet, the substrates entrained to these two components in joint action remained unclear. In the current study, dyads performed two tasks involving both sharing goal and action coordination, i.e. complementary joint action and imitative joint action, a task only involving shared goal and a task only involving action coordination, while their brain activities were recorded by the functional near-infrared spectroscopy hyperscanning technique. The results showed that both complementary and imitative joint action (i.e. involving shared goal and action coordination) elicited better behavioral performance than the task only involving shared goal/action coordination. We observed that the interbrain synchronization (IBS) at the right inferior frontal cortex (IFC) entrained more to shared goal, while left-IFC IBS entrained more to action coordination. We also observed that the right-IFC IBS was greater during completing a complementary action than an imitative action. Our results suggest that IFC plays an important role in joint action, with distinct lateralization for the sub-components of joint action.
Collapse
Affiliation(s)
- Xiaojun Cheng
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Bing Guo
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Yinying Hu
- Institute of Brain and Education Innovation, East China Normal University, Shanghai 200062, China
| |
Collapse
|
8
|
Hu Y, Zhu M, Liu Y, Wang Z, Cheng X, Pan Y, Hu Y. Musical Meter Induces Interbrain Synchronization during Interpersonal Coordination. eNeuro 2022; 9:ENEURO.0504-21.2022. [PMID: 36280287 PMCID: PMC9616439 DOI: 10.1523/eneuro.0504-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
Music induces people to coordinate with one another. Here, we conduct two experiments to examine the underlying mechanism of the interbrain synchronization (IBS) that is induced by interpersonal coordination when people are exposed to musical beat and meter. In experiment 1, brain signals at the frontal cortex were recorded simultaneously from two participants of a dyad by using functional near-infrared spectroscopy (fNIRS) hyperscanning, while each tapped their fingers to aural feedback from their partner (coordination task) or from themselves (independence task) with and without the musical meter. The results showed enhanced IBS at the left-middle frontal cortex in case of the coordination task with musical beat and meter. The IBS was significantly correlated with the participants performance in terms of coordination. In experiment 2, we further examined the IBS while the participants coordinated their behaviors in various metrical contexts, such as strong and weak meters (i.e., high/low loudness of acoustically accenting beats). The results showed that strong meters elicited higher IBS at the middle frontal cortex than weak meters. These findings reveal that the musical beat and meter can affect brain-to-brain coupling in action coordination between people, and provide insights into the interbrain mechanism underlying the effects of music on cooperation.
Collapse
Affiliation(s)
- Yinying Hu
- Shanghai Key Laboratory of Mental Health and Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Min Zhu
- College of Emergency Management, Nanjing Tech University, Nanjing 211816, China
| | - Yang Liu
- Shanghai Key Laboratory of Mental Health and Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Zixuan Wang
- Shanghai Key Laboratory of Mental Health and Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Xiaojun Cheng
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Hu
- Shanghai Key Laboratory of Mental Health and Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| |
Collapse
|
9
|
The presence of adjacent others facilitates interpersonal neural synchronization in the left prefrontal cortex during a simple addition task. Sci Rep 2022; 12:12662. [PMID: 35879339 PMCID: PMC9314338 DOI: 10.1038/s41598-022-16936-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/18/2022] [Indexed: 11/08/2022] Open
Abstract
The hyperscanning technique, that is, simultaneous measurement of neural signals in more than one person, is a powerful research tool for understanding humans' social interactions. In recent years, many studies have investigated interpersonal neural synchronization during various types of communication processes. However, there has been little focus on the impact of the presence of others without explicit social interaction, despite the mere presence of others having been suggested as influencing behavior. In this study, we clarify whether neural signals during a self-paced, repeated, addition task are synchronized when another individual is adjacent without direct interaction. Twenty pairs of participants were measured using a hyperscanning approach with near-infrared spectroscopy. The results show that interpersonal neural synchronization of the task-related signal in the left forehead region was enhanced under the condition of being adjacent to another participant. By contrast, a significant decrease in neural synchronization in the center of the forehead region, where increased neural synchronization is often reported in explicit communication, was observed. Thus, the results indicate that the adjacency of others modulates interpersonal neural synchronization in the task-related signal, and the effect on cognitive processing is different from that of explicit social interaction.
Collapse
|
10
|
Andrea B, Atiqah A, Gianluca E. Reproducible Inter-Personal Brain Coupling Measurements in Hyperscanning Settings With functional Near Infra-Red Spectroscopy. Neuroinformatics 2022; 20:665-675. [PMID: 34716564 DOI: 10.1007/s12021-021-09551-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 12/31/2022]
Abstract
Despite a huge advancement in neuroimaging techniques and growing importance of inter-personal brain research, few studies assess the most appropriate computational methods to measure brain-brain coupling. Here, we focus on the signal processing methods to detect brain-coupling in dyads. From a public dataset of functional Near Infra-Red Spectroscopy signals (N=24 dyads), we derived a synthetic control condition by randomization, we investigated the effectiveness of four most used signal similarity metrics: Cross Correlation, Mutual Information, Wavelet Coherence and Dynamic Time Warping. We also accounted for temporal variations between signals by allowing for misalignments up to a maximum lag. Starting from the observed effect sizes, computed in terms of Cohen's d, the power analysis indicated that a high sample size ([Formula: see text]) would be required to detect significant brain-coupling. We therefore discuss the need for specialized statistical approaches and propose bootstrap as an alternative method to avoid over-penalizing the results. In our settings, and based on bootstrap analyses, Cross Correlation and Dynamic Time Warping outperform Mutual Information and Wavelet Coherence for all considered maximum lags, with reproducible results. These results highlight the need to set specific guidelines as the high degree of customization of the signal processing procedures prevents the comparability between studies, their reproducibility and, ultimately, undermines the possibility of extracting new knowledge.
Collapse
Affiliation(s)
- Bizzego Andrea
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
| | - Azhari Atiqah
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Esposito Gianluca
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy.
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
11
|
Zhou C, Cheng X, Liu C, Li P. Interpersonal coordination enhances brain-to-brain synchronization and influences responsibility attribution and reward allocation in social cooperation. Neuroimage 2022; 252:119028. [PMID: 35217208 DOI: 10.1016/j.neuroimage.2022.119028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/12/2022] [Accepted: 02/21/2022] [Indexed: 11/22/2022] Open
Abstract
Fair distribution of resources matters to both individual interests and group harmony during social cooperation. Different allocation rules, including equity- and equality-based rules, have been widely discussed in reward allocation research; however, it remains unclear whether and how individuals' cooperative manner, such as interpersonal coordination, influence their subsequent responsibility attribution and reward allocation. Here, 46 dyads conducted a time estimation task-either synergistically (the coordination group) or solely (the control group)-while their brain activities were measured using a functional near-infrared spectroscopy hyperscanning approach. Dyads in the coordination group showed higher behavioral synchrony and higher interpersonal brain synchronization (IBS) in the dorsal lateral prefrontal cortex (DLPFC) during the time estimation task than those in the control group. They also showed a more egalitarian tendency of responsibility attribution for the task outcome. More importantly, dyads in the coordination group who had higher IBS in the dorsal medial prefrontal cortex (DMPFC) were more inclined to make egalitarian reward allocations, and this effect was mediated by responsibility attribution. Our findings elucidate the influence of interpersonal coordination on reward allocation and the critical role of the prefrontal cortex in these processes.
Collapse
Affiliation(s)
- Can Zhou
- School of Psychology, Shenzhen University, No 3688, Nanhai Road, Nanshan District, Shenzhen 518060, China
| | - Xiaojun Cheng
- School of Psychology, Shenzhen University, No 3688, Nanhai Road, Nanshan District, Shenzhen 518060, China
| | - Chengwei Liu
- School of Education, Hunan University of Science and Technology, Xiangtan, China
| | - Peng Li
- School of Psychology, Shenzhen University, No 3688, Nanhai Road, Nanshan District, Shenzhen 518060, China; Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, China.
| |
Collapse
|
12
|
Zhou S, Zhang Y, Fu Y, Wu L, Li X, Zhu N, Li D, Zhang M. The Effect of Task Performance and Partnership on Interpersonal Brain Synchrony during Cooperation. Brain Sci 2022; 12:brainsci12050635. [PMID: 35625021 PMCID: PMC9139361 DOI: 10.3390/brainsci12050635] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Interpersonal brain synchrony (IBS) during cooperation has not been systematically investigated. To address this research gap, this study assessed neural synchrony during a cooperative jigsaw puzzle solving task using functional near-infrared spectroscopy (fNIRS)-based hyperscanning. IBS was measured for successful and failed tasks in 31 dyads in which the partners were familiar or unknown to each other. No significant difference in IBS was observed between the different types of cooperative partnership; however, stronger IBS within regions of the pars triangularis Broca’s area, right frontopolar cortex, and right temporoparietal junction was observed during task success. These results highlight the effect of better task performance on cooperative IBS for the first time and further extend understanding of the neural basis of cooperation.
Collapse
Affiliation(s)
- Shujin Zhou
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
| | - Yuxuan Zhang
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
| | - Yiwen Fu
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
| | - Lingling Wu
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
| | - Xiaodie Li
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
| | - Ningning Zhu
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
| | - Dan Li
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
| | - Mingming Zhang
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
- College of Marxism, Kashgar Vocational and Technical College, Kashgar, Xinjiang 844000, China
- Correspondence: ; Tel.: +86-137-7669-9751
| |
Collapse
|
13
|
Young A, Robbins I, Shelat S. From Micro to Macro: The Combination of Consciousness. Front Psychol 2022; 13:755465. [PMID: 35432082 PMCID: PMC9008346 DOI: 10.3389/fpsyg.2022.755465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
Crick and Koch’s 1990 “neurobiological theory of consciousness” sparked the race for the physical correlates of subjective experience. 30 years later, cognitive sciences trend toward consideration of the brain’s electromagnetic field as the primary seat of consciousness, the “to be” of the individual. Recent advancements in laboratory tools have preceded an influx of studies reporting a synchronization between the neuronally generated EM fields of interacting individuals. An embodied and enactive neuroscientific approach has gained traction in the wake of these findings wherein consciousness and cognition are theorized to be regulated and distributed beyond the individual. We approach this frontier to extend the implications of person-to-person synchrony to propose a process of combination whereby coupled individual agents merge into a hierarchical cognitive system to which they are subsidiary. Such is to say, the complex mammalian consciousness humans possess may not be the tip of the iceberg, but another step in a succeeding staircase. To this end, the axioms and conjectures of General Resonance Theory are utilized to describe this phenomenon of interpersonal resonant combination. Our proposal describes a coupled system of spatially distributed EM fields that are synchronized through recurrent, entraining behavioral interactions. The system, having achieved sufficient synchronization, enjoys an optimization of information flow that alters the conscious states of its merging agents and enhances group performance capabilities. In the race for the neurobiological correlates of subjective experience, we attempt the first steps in the journey toward defining the physical basis of “group consciousness.” The establishment of a concrete account of the combination of consciousness at a scale superseding individual human consciousness remains speculation, but our suggested approach provides a framework for empirical testing of these possibilities.
Collapse
Affiliation(s)
- Asa Young
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Isabella Robbins
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Shivang Shelat
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
14
|
Hu Y, Cheng X, Pan Y, Hu Y. The intrapersonal and interpersonal consequences of interpersonal synchrony. Acta Psychol (Amst) 2022; 224:103513. [PMID: 35093851 DOI: 10.1016/j.actpsy.2022.103513] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/25/2022] Open
Abstract
Interpersonal synchrony, the time-matching behaviors, is pervasive in human interactions. This resonation of movements or other forms was generally considered as one of critical survival skills for humans, as the important consequences of synchronizing with other persons in review of the empirical data in this article. These include positive affects towards and between interacting partners, but also include complex effects on the individual level. The intrapersonal effects of interpersonal synchrony are varied with positive or negative ones, including cognitive style, attitude bias, mood state, self-regulatory ability, and academic performance. At the interpersonal level, synchronized movement consistently affects the interaction with the partner and his/her affiliations, but they can be eliminated or magnified by several moderators, such as physiological arousal, shared intentionality, group bias, and musical rhythm. Finally, the research discussed the possible mechanisms underlying the effects of interpersonal synchrony in psychological and biological aspects.
Collapse
|
15
|
Nozawa T, Kondo M, Yamamoto R, Jeong H, Ikeda S, Sakaki K, Miyake Y, Ishikawa Y, Kawashima R. Prefrontal Inter-brain Synchronization Reflects Convergence and Divergence of Flow Dynamics in Collaborative Learning: A Pilot Study. FRONTIERS IN NEUROERGONOMICS 2021; 2:686596. [PMID: 38235236 PMCID: PMC10790863 DOI: 10.3389/fnrgo.2021.686596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/11/2021] [Indexed: 01/19/2024]
Abstract
Flow is a highly motivated and affectively positive state in which a person is deeply engaged in an activity and feeling enjoyment from it. In collaborative activities, it would be optimal if all participants were in a state of flow. However, flow states fluctuate amongst individuals due to differences in the dynamics of motivation and cognition. To explore the possibility that inter-brain synchronization can provide a quantitative measure of the convergence and divergence of collective motivational dynamics, we conducted a pilot study to investigate the relationship between inter-brain synchronization and the interpersonal similarity of flow state dynamics during the collaborative learning process. In two English as a Foreign Language (EFL) classes, students were divided into groups of three-four and seated at desks facing each other while conducting a 60-min group work. In both classes, two groups with four members were randomly selected, and their medial prefrontal neural activities were measured simultaneously using wireless functional near-infrared spectroscopy (fNIRS) devices. Later the participants observed their own activities on recorded videos and retrospectively rated their subjective degree of flow state on a seven-point scale for each 2-min period. For the pairs of students whose neural activities were measured, the similarity of their flow experience dynamics was evaluated by the temporal correlation between their flow ratings. Prefrontal inter-brain synchronization of the same student pairs during group work was evaluated using wavelet transform coherence. Statistical analyses revealed that: (1) flow dynamics were significantly more similar for the student pairs within the same group compared to the pairs of students assigned across different groups; (2) prefrontal inter-brain synchronization in the relatively short time scale (9.3-13.9 s) was significantly higher for the within-group pairs than for the cross-group pairs; and (3) the prefrontal inter-brain synchronization at the same short time scale was significantly and positively correlated with the similarity of flow dynamics, even after controlling for the effects of within- vs. cross-group pair types from the two variables. These suggest that inter-brain synchronization can indeed provide a quantitative measure for converging and diverging collective motivational dynamics during collaborative learning, with higher inter-brain synchronization corresponding to a more convergent flow experience.
Collapse
Affiliation(s)
- Takayuki Nozawa
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Research Institute for the Earth Inclusive Sensing, Tokyo Institute of Technology, Tokyo, Japan
| | - Mutsumi Kondo
- Department of British and American Studies, Kyoto University of Foreign Studies, Kyoto, Japan
| | - Reiko Yamamoto
- Department of British and American Studies, Kyoto University of Foreign Studies, Kyoto, Japan
| | - Hyeonjeong Jeong
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Graduate School of International Cultural Studies, Tohoku University, Sendai, Japan
| | - Shigeyuki Ikeda
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Kohei Sakaki
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yoshihiro Miyake
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan
| | - Yasushige Ishikawa
- Department of British and American Studies, Kyoto University of Foreign Studies, Kyoto, Japan
| | - Ryuta Kawashima
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
16
|
Gifford A, Marmelat V, Beadle JN. A Narrative Review Examining the Utility of Interpersonal Synchrony for the Caregiver-Care Recipient Relationship in Alzheimer's Disease and Related Dementias. Front Psychol 2021; 12:595816. [PMID: 34025493 PMCID: PMC8137821 DOI: 10.3389/fpsyg.2021.595816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/05/2021] [Indexed: 12/03/2022] Open
Abstract
The stressful nature of caring for an older adult with a chronic disease, such as Alzheimer’s disease (AD), can create barriers between the caregiver-care recipient, as they try to navigate their continuously changing social relationship. Interpersonal synchrony (i.e., matching or similarity of movement, emotions, hormones, or brain activity), is an innovative approach that could help to sustain caregiving relationship dynamics by promoting feelings of connection and empathy through shared behavior and experiences. This review investigates the current literature on interpersonal synchrony from an interdisciplinary perspective by examining interpersonal synchrony through psychological, neural, and hormonal measures across the adult lifespan. We then present a case for examining the degree to which interpersonal synchrony can be used to facilitate affiliation and well-being in the caregiver-care recipient relationship. We find that there is significant evidence in healthy adult populations that interpersonal synchrony can support affiliative feelings, prosocial behavior, and well-being. Characterizing the psychological, neural, and hormonal mechanisms of interpersonal synchrony is a first step towards laying the groundwork for the development of tools to support relational closeness and empathy in the caregiving context. Finally, we explore the strengths and limitations of using interpersonal synchrony to support relational well-being, and discuss possible avenues for future research.
Collapse
Affiliation(s)
- Angela Gifford
- Neuroscience and Behavior Graduate Program, Department of Psychology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Vivien Marmelat
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, United States
| | - Janelle N Beadle
- Department of Gerontology, University of Nebraska at Omaha, Omaha, NE, United States
| |
Collapse
|
17
|
Basso JC, Satyal MK, Rugh R. Dance on the Brain: Enhancing Intra- and Inter-Brain Synchrony. Front Hum Neurosci 2021; 14:584312. [PMID: 33505255 PMCID: PMC7832346 DOI: 10.3389/fnhum.2020.584312] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Dance has traditionally been viewed from a Eurocentric perspective as a mode of self-expression that involves the human body moving through space, performed for the purposes of art, and viewed by an audience. In this Hypothesis and Theory article, we synthesize findings from anthropology, sociology, psychology, dance pedagogy, and neuroscience to propose The Synchronicity Hypothesis of Dance, which states that humans dance to enhance both intra- and inter-brain synchrony. We outline a neurocentric definition of dance, which suggests that dance involves neurobehavioral processes in seven distinct areas including sensory, motor, cognitive, social, emotional, rhythmic, and creative. We explore The Synchronicity Hypothesis of Dance through several avenues. First, we examine evolutionary theories of dance, which suggest that dance drives interpersonal coordination. Second, we examine fundamental movement patterns, which emerge throughout development and are omnipresent across cultures of the world. Third, we examine how each of the seven neurobehaviors increases intra- and inter-brain synchrony. Fourth, we examine the neuroimaging literature on dance to identify the brain regions most involved in and affected by dance. The findings presented here support our hypothesis that we engage in dance for the purpose of intrinsic reward, which as a result of dance-induced increases in neural synchrony, leads to enhanced interpersonal coordination. This hypothesis suggests that dance may be helpful to repattern oscillatory activity, leading to clinical improvements in autism spectrum disorder and other disorders with oscillatory activity impairments. Finally, we offer suggestions for future directions and discuss the idea that our consciousness can be redefined not just as an individual process but as a shared experience that we can positively influence by dancing together.
Collapse
Affiliation(s)
- Julia C Basso
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, United States.,Center for Transformative Research on Health Behaviors, Fralin Biomedical Research Institute, Virginia Tech, Blacksburg, VA, United States.,School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - Medha K Satyal
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States
| | - Rachel Rugh
- Center for Communicating Science, Virginia Tech, Blacksburg, VA, United States.,School of Performing Arts, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
18
|
Campanella S, Arikan K, Babiloni C, Balconi M, Bertollo M, Betti V, Bianchi L, Brunovsky M, Buttinelli C, Comani S, Di Lorenzo G, Dumalin D, Escera C, Fallgatter A, Fisher D, Giordano GM, Guntekin B, Imperatori C, Ishii R, Kajosch H, Kiang M, López-Caneda E, Missonnier P, Mucci A, Olbrich S, Otte G, Perrottelli A, Pizzuti A, Pinal D, Salisbury D, Tang Y, Tisei P, Wang J, Winkler I, Yuan J, Pogarell O. Special Report on the Impact of the COVID-19 Pandemic on Clinical EEG and Research and Consensus Recommendations for the Safe Use of EEG. Clin EEG Neurosci 2021; 52:3-28. [PMID: 32975150 PMCID: PMC8121213 DOI: 10.1177/1550059420954054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION The global COVID-19 pandemic has affected the economy, daily life, and mental/physical health. The latter includes the use of electroencephalography (EEG) in clinical practice and research. We report a survey of the impact of COVID-19 on the use of clinical EEG in practice and research in several countries, and the recommendations of an international panel of experts for the safe application of EEG during and after this pandemic. METHODS Fifteen clinicians from 8 different countries and 25 researchers from 13 different countries reported the impact of COVID-19 on their EEG activities, the procedures implemented in response to the COVID-19 pandemic, and precautions planned or already implemented during the reopening of EEG activities. RESULTS Of the 15 clinical centers responding, 11 reported a total stoppage of all EEG activities, while 4 reduced the number of tests per day. In research settings, all 25 laboratories reported a complete stoppage of activity, with 7 laboratories reopening to some extent since initial closure. In both settings, recommended precautions for restarting or continuing EEG recording included strict hygienic rules, social distance, and assessment for infection symptoms among staff and patients/participants. CONCLUSIONS The COVID-19 pandemic interfered with the use of EEG recordings in clinical practice and even more in clinical research. We suggest updated best practices to allow safe EEG recordings in both research and clinical settings. The continued use of EEG is important in those with psychiatric diseases, particularly in times of social alarm such as the COVID-19 pandemic.
Collapse
Affiliation(s)
- Salvatore Campanella
- Laboratoire de Psychologie Médicale et d'Addictologie, ULB Neuroscience Institute (UNI), CHU Brugmann-Université Libre de Bruxelles (U.L.B.), Belgium
| | - Kemal Arikan
- Kemal Arıkan Psychiatry Clinic, Istanbul, Turkey
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Italy.,San Raffaele Cassino, Cassino (FR), Italy
| | - Michela Balconi
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Catholic University of Milan, Milan, Italy
| | - Maurizio Bertollo
- BIND-Behavioral Imaging and Neural Dynamics Center, Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Viviana Betti
- Department of Psychology, Sapienza University of Rome, Fondazione Santa Lucia, Rome, Italy
| | - Luigi Bianchi
- Dipartimento di Ingegneria Civile e Ingegneria Informatica (DICII), University of Rome Tor Vergata, Rome, Italy
| | - Martin Brunovsky
- National Institute of Mental Health, Klecany Czech Republic.,Third Medical Faculty, Charles University, Prague, Czech Republic
| | - Carla Buttinelli
- Department of Neurosciences, Public Health and Sense Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Silvia Comani
- BIND-Behavioral Imaging and Neural Dynamics Center, Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giorgio Di Lorenzo
- Laboratory of Psychophysiology and Cognitive Neuroscience, Chair of Psychiatry, Department of Systems Medicine, School of Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Daniel Dumalin
- AZ Sint-Jan Brugge-Oostende AV, Campus Henri Serruys, Lab of Neurophysiology, Department Neurology-Psychiatry, Ostend, Belgium
| | - Carles Escera
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Andreas Fallgatter
- Department of Psychiatry, University of Tübingen, Germany; LEAD Graduate School and Training Center, Tübingen, Germany.,German Center for Neurodegenerative Diseases DZNE, Tübingen, Germany
| | - Derek Fisher
- Department of Psychology, Mount Saint Vincent University, and Department of Psychiatry, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | | | - Bahar Guntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Claudio Imperatori
- Cognitive and Clinical Psychology Laboratory, Department of Human Science, European University of Rome, Rome, Italy
| | - Ryouhei Ishii
- Department of Psychiatry Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hendrik Kajosch
- Laboratoire de Psychologie Médicale et d'Addictologie, ULB Neuroscience Institute (UNI), CHU Brugmann-Université Libre de Bruxelles (U.L.B.), Belgium
| | - Michael Kiang
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Eduardo López-Caneda
- Psychological Neuroscience Laboratory, Center for Research in Psychology, School of Psychology, University of Minho, Braga, Portugal
| | - Pascal Missonnier
- Mental Health Network Fribourg (RFSM), Sector of Psychiatry and Psychotherapy for Adults, Marsens, Switzerland
| | - Armida Mucci
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sebastian Olbrich
- Psychotherapy and Psychosomatics, Department for Psychiatry, University Hospital Zurich, Zurich, Switzerland
| | | | - Andrea Perrottelli
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandra Pizzuti
- Department of Psychology, Sapienza University of Rome, Fondazione Santa Lucia, Rome, Italy
| | - Diego Pinal
- Psychological Neuroscience Laboratory, Center for Research in Psychology, School of Psychology, University of Minho, Braga, Portugal
| | - Dean Salisbury
- Clinical Neurophysiology Research Laboratory, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Paolo Tisei
- Department of Neurosciences, Public Health and Sense Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Istvan Winkler
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Jiajin Yuan
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Oliver Pogarell
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
19
|
Balters S, Baker JM, Hawthorne G, Reiss AL. Capturing Human Interaction in the Virtual Age: A Perspective on the Future of fNIRS Hyperscanning. Front Hum Neurosci 2020; 14:588494. [PMID: 33240067 PMCID: PMC7669622 DOI: 10.3389/fnhum.2020.588494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/02/2020] [Indexed: 01/09/2023] Open
Abstract
Advances in video conferencing capabilities combined with dramatic socio-dynamic shifts brought about by COVID-19, have redefined the ways in which humans interact in modern society. From business meetings to medical exams, or from classroom instruction to yoga class, virtual interfacing has permeated nearly every aspect of our daily lives. A seemingly endless stream of technological advances combined with our newfound reliance on virtual interfacing makes it likely that humans will continue to use this modern form of social interaction into the future. However, emergent evidence suggests that virtual interfacing may not be equivalent to face-to-face interactions. Ultimately, too little is currently understood about the mechanisms that underlie human interactions over the virtual divide, including how these mechanisms differ from traditional face-to-face interaction. Here, we propose functional near-infrared spectroscopy (fNIRS) hyperscanning-simultaneous measurement of two or more brains-as an optimal approach to quantify potential neurocognitive differences between virtual and in-person interactions. We argue that increased focus on this understudied domain will help elucidate the reasons why virtual conferencing doesn't always stack up to in-person meetings and will also serve to spur new technologies designed to improve the virtual interaction experience. On the basis of existing fNIRS hyperscanning literature, we highlight the current gaps in research regarding virtual interactions. Furthermore, we provide insight into current hurdles regarding fNIRS hyperscanning hardware and methodology that should be addressed in order to shed light on this newly critical element of everyday life.
Collapse
Affiliation(s)
- Stephanie Balters
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Joseph M. Baker
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Grace Hawthorne
- Hasso Plattner Institute of Design, Stanford University, Stanford, CA, United States
| | - Allan L. Reiss
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
20
|
Kingsbury L, Hong W. A Multi-Brain Framework for Social Interaction. Trends Neurosci 2020; 43:651-666. [PMID: 32709376 PMCID: PMC7484406 DOI: 10.1016/j.tins.2020.06.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/08/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
Social interaction can be seen as a dynamic feedback loop that couples action, reaction, and internal cognitive processes across individual agents. A fuller understanding of the social brain requires a description of how the neural dynamics across coupled brains are linked and how they coevolve over time. We elaborate a multi-brain framework that considers social interaction as an integrated network of neural systems that dynamically shape behavior, shared cognitive states, and social relationships. We describe key findings from multi-brain experiments in humans and animal models that shed new light on the function of social circuits in health and disease. Finally, we discuss recent progress in elucidating the cellular-level mechanisms underlying inter-brain neural dynamics and outline key areas for future research.
Collapse
Affiliation(s)
- Lyle Kingsbury
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Weizhe Hong
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
21
|
Lu K, Xue H, Nozawa T, Hao N. Cooperation Makes a Group be More Creative. Cereb Cortex 2020; 29:3457-3470. [PMID: 30192902 DOI: 10.1093/cercor/bhy215] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/20/2018] [Indexed: 12/21/2022] Open
Abstract
This study investigated how cooperative and competitive interaction modes affect the group creative performance. The participants were recruited as dyads to solve 2 problems either demanding divergent thinking (alternative uses task, AUT) or not (object characteristic task, OCT). The dyads solved 1 of the 2 problems in the cooperative mode and the other in the competitive mode. Functional near-infrared spectroscopy (fNIRS)-based hyperscanning was used to record their neural activities in the prefrontal and right temporal-parietal junction (r-TPJ) regions. Results revealed the dyads showed higher AUT fluency, AUT originality, OCT fluency, and cooperation level in the cooperative mode than in the competitive mode. The fNIRS data revealed increased (task-baseline) interpersonal brain synchronization (IBS) in the right dorsolateral prefrontal cortex (r-DLPFC) and r-TPJ, only for dyads in the AUT/cooperation condition. In both r-DLPFC and r-TPJ, the IBS of dyads in the AUT/cooperation condition was stronger than in the AUT/competition and OCT/cooperation. Moreover, a stronger IBS was evoked between the regions in prefrontal and posterior temporal regions in the AUT/cooperation condition, as compared with the competition mode. These findings suggest that enhanced IBS may underlie the positive effects of cooperation as compared with the competition in terms of group creativity.
Collapse
Affiliation(s)
- Kelong Lu
- Shanghai Key Laboratory of Brain Functional Genomics, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Hua Xue
- Shanghai Key Laboratory of Brain Functional Genomics, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Takayuki Nozawa
- Collaborative Research Center for Happiness Co-Creation Society through Intelligent Communications, Tokyo Institute of Technology, Tokyo, Japan
| | - Ning Hao
- Shanghai Key Laboratory of Brain Functional Genomics, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| |
Collapse
|
22
|
Czeszumski A, Eustergerling S, Lang A, Menrath D, Gerstenberger M, Schuberth S, Schreiber F, Rendon ZZ, König P. Hyperscanning: A Valid Method to Study Neural Inter-brain Underpinnings of Social Interaction. Front Hum Neurosci 2020; 14:39. [PMID: 32180710 PMCID: PMC7059252 DOI: 10.3389/fnhum.2020.00039] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/27/2020] [Indexed: 01/11/2023] Open
Abstract
Social interactions are a crucial part of human life. Understanding the neural underpinnings of social interactions is a challenging task that the hyperscanning method has been trying to tackle over the last two decades. Here, we review the existing literature and evaluate the current state of the hyperscanning method. We review the type of methods (fMRI, M/EEG, and fNIRS) that are used to measure brain activity from more than one participant simultaneously and weigh their pros and cons for hyperscanning. Further, we discuss different types of analyses that are used to estimate brain networks and synchronization. Lastly, we present results of hyperscanning studies in the context of different cognitive functions and their relations to social interactions. All in all, we aim to comprehensively present methods, analyses, and results from the last 20 years of hyperscanning research.
Collapse
Affiliation(s)
- Artur Czeszumski
- Institute of Cognitive Science, Universität Osnabrück, Osnabrück, Germany
| | - Sara Eustergerling
- Institute of Cognitive Science, Universität Osnabrück, Osnabrück, Germany
| | - Anne Lang
- Institute of Cognitive Science, Universität Osnabrück, Osnabrück, Germany
| | - David Menrath
- Institute of Cognitive Science, Universität Osnabrück, Osnabrück, Germany
| | | | - Susanne Schuberth
- Institute of Cognitive Science, Universität Osnabrück, Osnabrück, Germany
| | - Felix Schreiber
- Institute of Cognitive Science, Universität Osnabrück, Osnabrück, Germany
| | | | - Peter König
- Institute of Cognitive Science, Universität Osnabrück, Osnabrück, Germany.,Institut für Neurophysiologie und Pathophysiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
23
|
Lu K, Hao N. When do we fall in neural synchrony with others? Soc Cogn Affect Neurosci 2020; 14:253-261. [PMID: 30753646 PMCID: PMC6413689 DOI: 10.1093/scan/nsz012] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/30/2019] [Accepted: 02/06/2019] [Indexed: 12/24/2022] Open
Abstract
This study aimed to investigate the situation in which interpersonal brain synchronization (IBS) occurs during a collaborative task and examined its trajectory over time by developing a novel functional near-infrared spectroscopy (fNIRS)-based hyperscanning paradigm. Participants were asked to perform a collaborative task in three-person groups where two of the members are real participants and one is a confederate. Compared to dyads between real participants and confederates, real-participant pairings showed greater cooperation behavior and IBS between bilateral dorsolateral prefrontal cortex. And, IBS and cooperation increased over time in real-participant pairings, whereas they remained low and constant in dyads with the confederate. These findings indicate that IBS occurs between individuals engaging in interpersonal interaction during a collaborative task, during which both IBS and cooperatively interpersonal interaction tend to increase over time.
Collapse
Affiliation(s)
- Kelong Lu
- Shanghai Key Laboratory of Brain Functional Genomics, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Ning Hao
- Shanghai Key Laboratory of Brain Functional Genomics, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| |
Collapse
|
24
|
Cheng X, Pan Y, Hu Y, Hu Y. Coordination Elicits Synchronous Brain Activity Between Co-actors: Frequency Ratio Matters. Front Neurosci 2019; 13:1071. [PMID: 31680812 PMCID: PMC6803479 DOI: 10.3389/fnins.2019.01071] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/24/2019] [Indexed: 11/23/2022] Open
Abstract
People could behave in two different ways when engaging in interpersonal coordination activities: moving at the same frequency (isofrequency pattern, IP; the movement frequency ratio is 1:1) or at different frequencies (multifrequency pattern, MP; the movement frequency ratio is non 1:1). However, how the interpersonal coordination pattern modulates coordination outcome and the related brain-to-brain connectivity is not fully understood. Here, we adopted a continuous joint drawing task in which two participants co-drew parallelogram shapes according to two coordination patterns (i.e., IP vs. MP) while their brain activities were simultaneously recorded by the functional near-infrared spectroscopy (fNIRS) based hyperscanning technique. Dyads showed better coordination performance, as well as relatively greater interpersonal brain synchronization (IBS) at the left frontopolar area, in the MP condition compared to the IP condition. Granger causality analyses further disclosed the bidirectional influences between the brains of the coordinating individuals. Such interpersonal influences were enhanced when individuals coordinated in the MP condition. Finally, the IBS during coordination was related to the dyadic self-control level. Taken together, our study revealed that interpersonal multifrequency coordination pattern facilitates the coordination efficiency, which was associated with the enhanced brain-to-brain connectivity. Our work also suggests the potentially positive role of self-control during the interpersonal coordination process.
Collapse
Affiliation(s)
- Xiaojun Cheng
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Yafeng Pan
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yinying Hu
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yi Hu
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| |
Collapse
|
25
|
Prior physical synchrony enhances rapport and inter-brain synchronization during subsequent educational communication. Sci Rep 2019; 9:12747. [PMID: 31484977 PMCID: PMC6726616 DOI: 10.1038/s41598-019-49257-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
Physical synchrony has been suggested to have positive effects on not only concurrent but also subsequent communication, but the underlying neural processes are unclear. Using functional near-infrared spectroscopy (fNIRS) hyperscanning, we tested the effects of preceding physical synchrony on subsequent dyadic teaching-learning communication. Thirty-two pairs of participants performed two experimental sessions. In each session, they underwent a rhythmic arm movement block with synchronous or asynchronous conditions, and then taught/learned unknown words to/from each other according to a given scenario. Neural activities in their medial and left lateral prefrontal cortex (PFC) were measured and inter-brain synchronization (IBS) during the teaching-learning blocks was evaluated. Participants rated their subjective rapport during the teaching-learning blocks, and took a word memory test. The analyses revealed that (1) prior physical synchrony enhanced teacher-learner rapport; (2) prior physical synchrony also enhanced IBS in the lateral PFC; and (3) IBS changes correlated positively with rapport changes. Physical synchrony did however not affect word memory performance. These results suggest that IBS can be useful to measure the effects of social-bonding facilitation activities for educational communication.
Collapse
|
26
|
Liu J, Zhang R, Geng B, Zhang T, Yuan D, Otani S, Li X. Interplay between prior knowledge and communication mode on teaching effectiveness: Interpersonal neural synchronization as a neural marker. Neuroimage 2019; 193:93-102. [PMID: 30851445 DOI: 10.1016/j.neuroimage.2019.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/29/2018] [Accepted: 03/03/2019] [Indexed: 12/18/2022] Open
Abstract
Teacher-student interaction allows students to combine prior knowledge with new information to develop new knowledge. It is widely understood that both communication mode and students' knowledge state contribute to the teaching effectiveness (i.e., higher students' scores), but the nature of the interplay of these factors and the underlying neural mechanism remain unknown. In the current study, we manipulated the communication modes (face-to-face [FTF] communication mode/computer-mediated communication [CMC] mode) and prior knowledge states (with vs. without) when teacher-student dyads participated in a teaching task. Using functional near-infrared spectroscopy, the brain activities of both the teacher and student in the dyads were recorded simultaneously. After teaching, perceived teacher-student interaction and teaching effectiveness were assessed. The behavioral results demonstrated that, during teaching with prior knowledge, FTF communication improved students' academic performance, as compared with CMC. Conversely, no such effect was found for teaching without prior knowledge. Accordingly, higher task-related interpersonal neural synchronization (INS) in the left prefrontal cortex (PFC) was found in the FTF teaching condition with prior knowledge. Such INS mediated the relationship between perceived interaction and students' test scores. Furthermore, the cumulative INS in the left PFC could predict the teaching effectiveness early in the teaching process (around 25-35 s into the teaching task) only in FTF teaching with prior knowledge. These findings provide insight into how the interplay between the communication mode and students' knowledge state affects teaching effectiveness. Moreover, our findings suggest that INS could be a possible neuromarker for dynamic evaluation of teacher-student interaction and teaching effectiveness.
Collapse
Affiliation(s)
- Jieqiong Liu
- School of Psychology and Cognitive Science, Shanghai Changning-ECNU Mental Health Center, East China Normal University, Shanghai, 200062, China
| | - Ruqian Zhang
- School of Psychology and Cognitive Science, Shanghai Changning-ECNU Mental Health Center, East China Normal University, Shanghai, 200062, China
| | - Binbin Geng
- School of Psychology and Cognitive Science, Shanghai Changning-ECNU Mental Health Center, East China Normal University, Shanghai, 200062, China
| | - Tingyu Zhang
- School of Psychology and Cognitive Science, Shanghai Changning-ECNU Mental Health Center, East China Normal University, Shanghai, 200062, China
| | - Di Yuan
- School of Psychology and Cognitive Science, Shanghai Changning-ECNU Mental Health Center, East China Normal University, Shanghai, 200062, China
| | - Satoru Otani
- Aging in Vision and Action Lab, Institute of Vision, CNRS-INSERM-Sorbonne University, Paris, 75012, France
| | - Xianchun Li
- School of Psychology and Cognitive Science, Shanghai Changning-ECNU Mental Health Center, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
27
|
Lu K, Qiao X, Hao N. Praising or keeping silent on partner’s ideas: Leading brainstorming in particular ways. Neuropsychologia 2019; 124:19-30. [DOI: 10.1016/j.neuropsychologia.2019.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 01/27/2023]
|
28
|
Interpersonal synchronization of inferior frontal cortices tracks social interactive learning of a song. Neuroimage 2018; 183:280-290. [DOI: 10.1016/j.neuroimage.2018.08.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 07/19/2018] [Accepted: 08/03/2018] [Indexed: 01/17/2023] Open
|
29
|
Hu Y, Hu Y, Li X, Pan Y, Cheng X. Brain-to-brain synchronization across two persons predicts mutual prosociality. Soc Cogn Affect Neurosci 2018; 12:1835-1844. [PMID: 29040766 PMCID: PMC5716073 DOI: 10.1093/scan/nsx118] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/10/2017] [Indexed: 12/19/2022] Open
Abstract
People tend to be more prosocial after synchronizing behaviors with others, yet the underlying neural mechanisms are rarely known. In this study, participant dyads performed either a coordination task or an independence task, with their brain activations recorded via the functional near-infrared spectroscopy hyperscanning technique. Participant dyads in the coordination group showed higher synchronized behaviors and greater subsequent inclination to help each other than those in the independence group, indicating the prosocial effect of interpersonal synchrony. Importantly, the coordination group demonstrated the significant task-related brain coherence, namely the interbrain synchronization, at the left middle frontal area. The detected interbrain synchronization was sensitive to shared intentionality between participants and was correlated with the mutual prosocial inclination. Further, the task-related brain coherence played a mediation role in the prosocial effect of interpersonal synchrony. This study reveals the relevance of brain-to-brain synchronization among individuals with subsequent mutual prosocial inclination and suggests the neural mechanism associating with shared cognition for the facilitation of interpersonal synchrony on prosociality.
Collapse
Affiliation(s)
- Yi Hu
- Faculty of Education, East China Normal University, Shanghai, China.,The Key Lab of Brain Functional Genomics, MOE & STCSM, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yinying Hu
- The Key Lab of Brain Functional Genomics, MOE & STCSM, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Xianchun Li
- The Key Lab of Brain Functional Genomics, MOE & STCSM, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yafeng Pan
- The Key Lab of Brain Functional Genomics, MOE & STCSM, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Xiaojun Cheng
- The Key Lab of Brain Functional Genomics, MOE & STCSM, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| |
Collapse
|
30
|
Xue H, Lu K, Hao N. Cooperation makes two less-creative individuals turn into a highly-creative pair. Neuroimage 2018; 172:527-537. [DOI: 10.1016/j.neuroimage.2018.02.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 01/09/2018] [Accepted: 02/05/2018] [Indexed: 12/16/2022] Open
|