1
|
Yang F, Tian J, Yuan P, Liu C, Zhang X, Yang L, Jiang Y. Unconscious and Conscious Gaze-Triggered Attentional Orienting: Distinguishing Innate and Acquired Components of Social Attention in Children and Adults with Autistic Traits and Autism Spectrum Disorders. RESEARCH (WASHINGTON, D.C.) 2024; 7:0417. [PMID: 38988610 PMCID: PMC11233194 DOI: 10.34133/research.0417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
Typically developing (TD) individuals can readily orient attention according to others' eye-gaze direction, an ability known as social attention, which involves both innate and acquired components. To distinguish between these two components, we used a critical flicker fusion technique to render gaze cues invisible to participants, thereby largely reducing influences from consciously acquired strategies. Results revealed that both visible and invisible gaze cues could trigger attentional orienting in TD adults (aged 20 to 30 years) and children (aged 6 to 12 years). Intriguingly, only the ability to involuntarily respond to invisible gaze cues was negatively correlated with autistic traits among all TD participants. This ability was substantially impaired in adults with autism spectrum disorder (ASD) and in children with high autistic traits. No such association or reduction was observed with visible gaze cues. These findings provide compelling evidence for the functional demarcation of conscious and unconscious gaze-triggered attentional orienting that emerges early in life and develops into adulthood, shedding new light on the differentiation of the innate and acquired aspects of social attention. Moreover, they contribute to a comprehensive understanding of social endophenotypes of ASD.
Collapse
Affiliation(s)
- Fang Yang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, P.R. China
- Department of Psychology and College of Life Science, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Junbin Tian
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Beijing, P.R. China
| | - Peijun Yuan
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, P.R. China
- Department of Psychology and College of Life Science, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Chunyan Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, P.R. China
- Department of Psychology and College of Life Science, University of Chinese Academy of Sciences, Beijing, P.R. China
- School of Education and Psychology, University of Jinan, Jinan, P.R. China
| | - Xinyuan Zhang
- School of New Media, Financial & Economic News, Guangdong University of Finance, Guangzhou, P.R. China
| | - Li Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Beijing, P.R. China
| | - Yi Jiang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, P.R. China
- Department of Psychology and College of Life Science, University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
2
|
Alister M, McKay KT, Sewell DK, Evans NJ. Uncovering the cognitive mechanisms underlying the gaze cueing effect. Q J Exp Psychol (Hove) 2024; 77:803-827. [PMID: 37246917 PMCID: PMC10960327 DOI: 10.1177/17470218231181238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/03/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
The gaze cueing effect is the tendency for people to respond faster to targets appearing at locations gazed at by others, compared with locations gazed away from by others. The effect is robust, widely studied, and is an influential finding within social cognition. Formal evidence accumulation models provide the dominant theoretical account of the cognitive processes underlying speeded decision-making, but they have rarely been applied to social cognition research. In this study, using a combination of individual-level and hierarchical computational modelling techniques, we applied evidence accumulation models to gaze cueing data (three data sets total, N = 171, 139,001 trials) for the first time to assess the relative capacity that an attentional orienting mechanism and information processing mechanisms have for explaining the gaze cueing effect. We found that most participants were best described by the attentional orienting mechanism, such that response times were slower at gazed away from locations because they had to reorient to the target before they could process the cue. However, we found evidence for individual differences, whereby the models suggested that some gaze cueing effects were driven by a short allocation of information processing resources to the gazed at location, allowing for a brief period where orienting and processing could occur in parallel. There was exceptionally little evidence to suggest any sustained reallocation of information processing resources neither at the group nor individual level. We discuss how this individual variability might represent credible individual differences in the cognitive mechanisms that subserve behaviourally observed gaze cueing effects.
Collapse
Affiliation(s)
- Manikya Alister
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Kate T McKay
- School of Psychology, The University of Queensland, Saint Lucia, QLD, Australia
| | - David K Sewell
- School of Psychology, The University of Queensland, Saint Lucia, QLD, Australia
| | - Nathan J Evans
- School of Psychology, The University of Queensland, Saint Lucia, QLD, Australia
- Department of Psychology, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
3
|
Ibrahim K, Iturmendi-Sabater I, Vasishth M, Barron DS, Guardavaccaro M, Funaro MC, Holmes A, McCarthy G, Eickhoff SB, Sukhodolsky DG. Neural circuit disruptions of eye gaze processing in autism spectrum disorder and schizophrenia: An activation likelihood estimation meta-analysis. Schizophr Res 2024; 264:298-313. [PMID: 38215566 PMCID: PMC10922721 DOI: 10.1016/j.schres.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND Impairment in social cognition, particularly eye gaze processing, is a shared feature common to autism spectrum disorder (ASD) and schizophrenia. However, it is unclear if a convergent neural mechanism also underlies gaze dysfunction in these conditions. The present study examined whether this shared eye gaze phenotype is reflected in a profile of convergent neurobiological dysfunction in ASD and schizophrenia. METHODS Activation likelihood estimation (ALE) meta-analyses were conducted on peak voxel coordinates across the whole brain to identify spatial convergence. Functional coactivation with regions emerging as significant was assessed using meta-analytic connectivity modeling. Functional decoding was also conducted. RESULTS Fifty-six experiments (n = 30 with schizophrenia and n = 26 with ASD) from 36 articles met inclusion criteria, which comprised 354 participants with ASD, 275 with schizophrenia and 613 healthy controls (1242 participants in total). In ASD, aberrant activation was found in the left amygdala relative to unaffected controls during gaze processing. In schizophrenia, aberrant activation was found in the right inferior frontal gyrus and supplementary motor area. Across ASD and schizophrenia, aberrant activation was found in the right inferior frontal gyrus and right fusiform gyrus during gaze processing. Functional decoding mapped the left amygdala to domains related to emotion processing and cognition, the right inferior frontal gyrus to cognition and perception, and the right fusiform gyrus to visual perception, spatial cognition, and emotion perception. These regions also showed meta-analytic connectivity to frontoparietal and frontotemporal circuitry. CONCLUSION Alterations in frontoparietal and frontotemporal circuitry emerged as neural markers of gaze impairments in ASD and schizophrenia. These findings have implications for advancing transdiagnostic biomarkers to inform targeted treatments for ASD and schizophrenia.
Collapse
Affiliation(s)
- Karim Ibrahim
- Yale University School of Medicine, Child Study Center, United States of America.
| | | | - Maya Vasishth
- Yale University School of Medicine, Child Study Center, United States of America
| | - Daniel S Barron
- Brigham and Women's Hospital, Department of Psychiatry, Anesthesiology and Pain Medicine, United States of America; Harvard Medical School, Department of Psychiatry, United States of America
| | | | - Melissa C Funaro
- Yale University, Harvey Cushing/John Hay Whitney Medical Library, United States of America
| | - Avram Holmes
- Yale University, Department of Psychology, United States of America; Yale University, Department of Psychiatry, United States of America; Yale University, Wu Tsai Institute, United States of America
| | - Gregory McCarthy
- Yale University, Department of Psychology, United States of America; Yale University, Wu Tsai Institute, United States of America
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Denis G Sukhodolsky
- Yale University School of Medicine, Child Study Center, United States of America
| |
Collapse
|
4
|
Batouli SAH, Razavi F, Sisakhti M, Oghabian Z, Ahmadzade H, Tehrani Doost M. Examining the Dominant Presence of Brain Grey Matter in Autism During Functional Magnetic Resonance Imaging. Basic Clin Neurosci 2023; 14:585-604. [PMID: 38628837 PMCID: PMC11016874 DOI: 10.32598/bcn.2021.1774.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/07/2021] [Accepted: 06/02/2023] [Indexed: 04/19/2024] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a neurodevelopmental disorder with symptoms appearing from early childhood. Behavioral modifications, special education, and medicines are used to treat ASD; however, the effectiveness of the treatments depends on early diagnosis of the disorder. The primary approach in diagnosing ASD is based on clinical interviews and valid scales. Still, methods based on brain imaging could also be possible diagnostic biomarkers for ASD. Methods To identify the amount of information the functional magnetic resonance imaging (fMRI) reveals on ASD, we reviewed 292 task-based fMRI studies on ASD individuals. This study is part of a systematic review with the registration number CRD42017070975. Results We observed that face perception, language, attention, and social processing tasks were mainly studied in ASD. In addition, 73 brain regions, nearly 83% of brain grey matter, showed an altered activation between the ASD and normal individuals during these four tasks, either in a lower or a higher activation. Conclusion Using imaging methods, such as fMRI, to diagnose and predict ASD is a great objective; research similar to the present study could be the initial step.
Collapse
Affiliation(s)
- Seyed Amir Hossein Batouli
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Foroogh Razavi
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Minoo Sisakhti
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Cognitive Sciences Studies, Tehran, Iran
| | - Zeinab Oghabian
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Haady Ahmadzade
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Tehrani Doost
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Cognitive and Behavioral Sciences, Roozbeh Psychiatry Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Dalmaso M, Castelli L, Bernardini C, Galfano G. Can masked gaze and arrow stimuli elicit overt orienting of attention? A registered report. Conscious Cogn 2023; 109:103476. [PMID: 36774882 DOI: 10.1016/j.concog.2023.103476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 02/12/2023]
Abstract
Viewing an averted gaze can elicit saccades towards the corresponding location. Here, the automaticity of this gaze-following behaviour phenomenon was further tested by exploring whether such an effect can be detected in response to briefly-presented masked averted gazes. Participants completed an oculomotor interference task consisting of making leftward/rightward saccades according to a symbolic instruction cue. Crucially, either a task-irrelevant averted-gaze face or an arrow (i.e., a non-social control stimulus) was also presented in different blocks of trials. Faces and arrows were presented for either 1000 ms, or 8 ms and then backward-masked, to reduce the likelihood of conscious processing. Worse oculomotor performance emerged when the saccade direction did not match (vs match) that suggested by the task-irrelevant gaze/arrow stimuli in the unmasked condition. However, in the masked condition, no oculomotor interference occurred for any task-irrelevant stimulus. Results enrich knowledge about boundary conditions for gaze/arrow-driven orienting using ecological attention measures.
Collapse
Affiliation(s)
- Mario Dalmaso
- Department of Developmental and Social Psychology, University of Padova, Italy.
| | - Luigi Castelli
- Department of Developmental and Social Psychology, University of Padova, Italy
| | - Chiara Bernardini
- Department of Developmental and Social Psychology, University of Padova, Italy
| | - Giovanni Galfano
- Department of Developmental and Social Psychology, University of Padova, Italy
| |
Collapse
|
6
|
Tomomi M, Arisa N, Katsumi T. Inappropriate driving behavior exhibited by drivers with the tendency of developmental disabilities. Heliyon 2022; 8:e12052. [PMID: 36561669 PMCID: PMC9763736 DOI: 10.1016/j.heliyon.2022.e12052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/22/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
The purpose of this study was to clarify what kind of driving behavior that attributes from the disabilities is troublesome for drivers with developmental disabilities, what driving actions they are aware of as being hard to deal with, and what near-miss incidents and accidents they have experienced. This paper is composed of three studies. Study 1 is the observation of driving behavior of drivers with developmental disabilities on public roads. Study 2 is the interview survey on drivers with developmental disabilities. Study 3 is the interview survey on family members of drivers with developmental disabilities. It is confirmed that in Survey 1 "stopping the car just before the entrance of a busy parking lot of a store" and "driving too much on the right or left side, but not at the center of the lane" are some of the characteristics of drivers with developmental disorder, in Survey 2 more than half the survey subjects feel anxiety about "right turn at an intersection without a green allow signal", "merging and changing lanes" and "placing a car in the garage". When asking about inappropriate behaviors of the drivers with developmental disorder to the family members who are also specialists of developmental disorder in Survey 3, more than half of them brought up the issues including "having narrow field of alert vision and not aware of his/her surroundings", "driving without predicting what is going to happen", "not good at doing more than one thing at the same time", and "easily getting distracted by any movement and noise in his/her surroundings".
Collapse
Affiliation(s)
- Mizuno Tomomi
- University of Tsukuba, Faculty of Medicine, Ibaraki, Japan,Corresponding author.
| | - Nishidate Arisa
- University of Toyama, Faculty of Human Development, Toyama, Japan
| | - Tokuda Katsumi
- University of Tsukuba, Faculty of Medicine, Ibaraki, Japan
| |
Collapse
|
7
|
Sultan S. Translating neuroimaging changes to neuro-endophenotypes of autistic spectrum disorder: a narrative review. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00578-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Abstract
Background
Autism-spectrum disorder is a neurodevelopmental disorder with heterogeneity in etiopathogenesis and clinical presentation. Neuroanatomical and neurophysiological abnormalities may represent neural endophenotypes for autism spectrum disorders which may help identify subgroups of patients seemingly similar in clinical presentation yet different in their pathophysiological underpinnings. Furthermore, a thorough understanding of the pathophysiology of disease can pave the way to effective treatments, prevention, and prognostic predictions. The aim of this review is to identify the predominant neural endophenotypes in autism-spectrum disorder. The evidence was researched at the following electronic databases: Pubmed, PsycINFO, Scopus, Web of Science, and EMBASE.
Results
Enlarged brain, especially frontotemporal cortices have been consistently reported by structural neuroimaging, whereas functional neuroimaging has revealed frontotemporal dysconnectivity.
Conclusions
Regrettably, many of these findings have not been consistent. Therefore, translating these findings into neural endophenotype is by far an attempt in its budding stage. The structural and functional neuroimaging changes may represent neural endophenotypes unique to autism-spectrum disorder. Despite inconsistent results, a clinically meaningful finding may require combined efforts of autism-spectrum-disorder researchers focused on different aspects of basic, genetic, neuroimaging, and clinical research.
Collapse
|
8
|
Griffin JW, Geier CF, Smyth JM, Scherf KS. Improving sensitivity to eye gaze cues in adolescents on the autism spectrum using serious game technology: A randomized controlled trial. JCPP ADVANCES 2021; 1:e12041. [PMID: 36643718 PMCID: PMC9835110 DOI: 10.1002/jcv2.12041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background Perceiving and interpreting eye gaze cues is foundational for social cognition and social interactions because it involves the ability to use eye gaze direction to predict the actions and intentions of others. Autism is a disability that impacts social interactions. A diagnostic symptom of autism is difficulty understanding eye gaze cues as social signals. This deficit has long-term consequences for understanding goal-directed behavior, language learning, and social communication. We hypothesize that targeted intervention methods designed to improve sensitivity to eye gaze cues may begin to treat core symptoms of autism and potentially alter multiple aspects of social functioning. Social Games for Autistic Adolescents (SAGA) is a serious computer game intervention designed to improve sensitivity to eye gaze cues. Serious games improve targeted skills with the goal of enhancing real life outcomes. In SAGA, participants progress through a narrative storyline and interact with animated characters. In so doing, they implicitly discover that eye gaze cues are useful for guiding their own goal-directed behavior to solve problems in the game. Methods We evaluated the feasibility and effectiveness of SAGA in a hybrid phase 1/2, randomized controlled trial. Forty adolescents on the autism spectrum were randomized to either the treatment or standard care control group. Adolescents in the treatment group were asked to play SAGA for 30-minute sessions at home 3 times a week over 10 weeks. Results A group × time interaction revealed that the treatment group developed increasing sensitivity to human eye gaze cues, whereas the standard care group did not. Participants who experienced a sufficient dose of gameplay showed larger treatment-related improvements. Critically, increases in sensitivity to human eye gaze cues were associated with improvements in social skills. Conclusions This accessible, scalable, and affordable intervention shows promise as an effective tool for improving the ability to interpret and understand eye gaze cues and social skills in adolescents on the autism spectrum.
Collapse
Affiliation(s)
| | - Charles F. Geier
- Department of Human Development and Family Studies, Pennsylvania State University
| | - Joshua M. Smyth
- Departments of Biobehavioral Health and Medicine, Pennsylvania State University
| | | |
Collapse
|
9
|
Blink and You Will Miss It: a Core Role for Fast and Dynamic Visual Processing in Social Impairments in Autism Spectrum Disorder. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2020. [DOI: 10.1007/s40474-020-00220-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
The influence of subcortical shortcuts on disordered sensory and cognitive processing. Nat Rev Neurosci 2020; 21:264-276. [PMID: 32269315 DOI: 10.1038/s41583-020-0287-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2020] [Indexed: 12/14/2022]
Abstract
The very earliest stages of sensory processing have the potential to alter how we perceive and respond to our environment. These initial processing circuits can incorporate subcortical regions, such as the thalamus and brainstem nuclei, which mediate complex interactions with the brain's cortical processing hierarchy. These subcortical pathways, many of which we share with other animals, are not merely vestigial but appear to function as 'shortcuts' that ensure processing efficiency and preservation of vital life-preserving functions, such as harm avoidance, adaptive social interactions and efficient decision-making. Here, we propose that functional interactions between these higher-order and lower-order brain areas contribute to atypical sensory and cognitive processing that characterizes numerous neuropsychiatric disorders.
Collapse
|
11
|
Sato W, Kochiyama T, Uono S, Yoshimura S, Kubota Y, Sawada R, Sakihama M, Toichi M. Atypical Amygdala-Neocortex Interaction During Dynamic Facial Expression Processing in Autism Spectrum Disorder. Front Hum Neurosci 2019; 13:351. [PMID: 31680906 PMCID: PMC6813184 DOI: 10.3389/fnhum.2019.00351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
Atypical reciprocal social interactions involving emotional facial expressions are a core clinical feature of autism spectrum disorder (ASD). Previous functional magnetic resonance imaging (fMRI) studies have demonstrated that some social brain regions, including subcortical (e.g., amygdala) and neocortical regions (e.g., fusiform gyrus, FG) are less activated during the processing of facial expression stimuli in individuals with ASD. However, the functional networking patterns between the subcortical and cortical regions in processing emotional facial expressions remain unclear. We investigated this issue in ASD (n = 31) and typically developing (TD; n = 31) individuals using fMRI. Participants viewed dynamic facial expressions of anger and happiness and their corresponding mosaic images. Regional brain activity analysis revealed reduced activation of several social brain regions, including the amygdala, in the ASD group compared with the TD group in response to dynamic facial expressions vs. dynamic mosaics (p < 0.05, ηp2 = 0.19). Dynamic causal modeling (DCM) analyses were then used to compare models with forward, backward, and bi-directional effective connectivity between the amygdala and neocortical networks. The results revealed that: (1) the model with effective connectivity from the amygdala to the neocortex best fit the data of both groups; and (2) the same model best accounted for group differences. Coupling parameter (i.e., effective connectivity) analyses showed that the modulatory effects of dynamic facial processing were substantially weaker in the ASD group than in the TD group. These findings suggest that atypical modulation from the amygdala to the neocortex underlies impairment in social interaction involving dynamic facial expressions in individuals with ASD.
Collapse
Affiliation(s)
- Wataru Sato
- Kokoro Research Center, Kyoto University, Kyoto, Japan
| | | | - Shota Uono
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sayaka Yoshimura
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasutaka Kubota
- Health and Medical Services Center, Shiga University, Hikone, Japan
| | - Reiko Sawada
- Faculty of Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,The Organization for Promoting Developmental Disorder Research, Kyoto, Japan
| | | | - Motomi Toichi
- Faculty of Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,The Organization for Promoting Developmental Disorder Research, Kyoto, Japan
| |
Collapse
|
12
|
The atypical social brain network in autism: advances in structural and functional MRI studies. Curr Opin Neurol 2019; 32:617-621. [DOI: 10.1097/wco.0000000000000713] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Uono S, Sato W, Sawada R, Kochiyama T, Toichi M. Spatiotemporal commonalities of fronto-parietal activation in attentional orienting triggered by supraliminal and subliminal gaze cues: An event-related potential study. Biol Psychol 2018; 136:29-38. [PMID: 29733867 DOI: 10.1016/j.biopsycho.2018.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 02/09/2018] [Accepted: 05/04/2018] [Indexed: 01/01/2023]
Abstract
Eye gaze triggers attentional shifts with and without conscious awareness. It remains unclear whether the spatiotemporal patterns of electric neural activity are the same for conscious and unconscious attentional shifts. Thus, the present study recorded event-related potentials (ERPs) and evaluated the neural activation involved in attentional orienting induced by subliminal and supraliminal gaze cues. Nonpredictive gaze cues were presented in the central field of vision, and participants were asked to detect a subsequent peripheral target. The mean reaction time was shorter for congruent gaze cues than for incongruent gaze cues under both presentation conditions, indicating that both types of cues reliably trigger attentional orienting. The ERP analysis revealed that averted versus straight gaze induced greater negative deflection in the bilateral fronto-central and temporal regions between 278 and 344 ms under both supraliminal and subliminal presentation conditions. Supraliminal cues, irrespective of gaze direction, induced a greater negative amplitude than did subliminal cues at the right posterior cortices at a peak of approximately 170 ms and in the 200-300 ms. These results suggest that similar spatial and temporal fronto-parietal activity is involved in attentional orienting triggered by both supraliminal and subliminal gaze cues, although inputs from different visual processing routes (cortical and subcortical regions) may trigger activity in the attentional network.
Collapse
Affiliation(s)
- Shota Uono
- Graduate School of Medicine, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Wataru Sato
- Graduate School of Medicine, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Reiko Sawada
- Graduate School of Medicine, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; The Organization for Promoting Neurodevelopmental Disorder Research, 40 Shogoin Sanno-cho, Sakyo-ku, Kyoto 606-8392, Japan
| | - Takanori Kochiyama
- ATR Brain Activity Imaging Center, 2-2-2, Hikaridai, Seika-cho, Souraku-gun, Kyoto 619-0288, Japan
| | - Motomi Toichi
- Graduate School of Medicine, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; The Organization for Promoting Neurodevelopmental Disorder Research, 40 Shogoin Sanno-cho, Sakyo-ku, Kyoto 606-8392, Japan
| |
Collapse
|