1
|
Han R, Zhang X, Chen Y, Hou X, Bai F. Associations between differential connectivity patterns of executive control networks and APOE ɛ4 in the Alzheimer continuum. Brain Res 2024; 1846:149229. [PMID: 39255904 DOI: 10.1016/j.brainres.2024.149229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/16/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
The APOE ɛ4 allele and age are risk factors for Alzheimer's disease (AD) and contribute to decreased executive function. However, the influence of APOE ɛ4 on the executive control network (ECN) in the AD continuum is still unclear. This study included 269 participants aged between 50 and 95 years old, based on ADNI data, including 104 cognitively normal (CN) individuals, 72 individuals with early mild cognitive impairment (EMCI), 55 individuals with late mild cognitive impairment (LMCI), and 38 AD patients. Within each disease group, participants were subdivided into APOE ɛ4 carriers and non-carriers. We explored brain regions within the ECN affected by the interactions between genes and disease states by resting-state functional magnetic resonance imaging (fMRI) and voxel-based two-way analysis of variance (ANOVA). Subsequently, functional connectivity (FC) between seeds and peak clusters were extracted and correlated with the cognitive performance. We found that the damages of carrying APOE ɛ4 in ECNs mainly distributed in the fronto-parietal and parietal-temporal systems. Functional network intergroup differences indicated increased intrafrontal and fronto-parietal connectivity at the early stage of AD and increased connectivity between the parietal lobe and related regions at late disease in these APOE ɛ4 carriers. Our conclusion is that the functional connectivity in the ECN exhibits different distinguishably patterns of impairment in the AD continuum under the influence of the APOE ɛ4 allele. Patients with different genotypes showed heterogeneity in functional network changes in the early stages of disease, which may be a potential biomarker for early AD.
Collapse
Affiliation(s)
- Ruichen Han
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing 210008, China
| | - Xue Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Ya Chen
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Xinle Hou
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Geriatric Medicine Center, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Institute of Geriatric Medicine, Medical School of Nanjing University, Nanjing 210008, China.
| |
Collapse
|
2
|
Bailey M, Ilchovska ZG, Hosseini AA, Jung J. Impact of Apolipoprotein E ε4 in Alzheimer's Disease: A Meta-Analysis of Voxel-Based Morphometry Studies. J Clin Neurol 2024; 20:469-477. [PMID: 39227329 PMCID: PMC11372214 DOI: 10.3988/jcn.2024.0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Alzheimer's disease (AD) is the most-prevalent form of dementia and imposes substantial burdens at the personal and societal levels. The apolipoprotein E (APOE) ε4 allele is a genetic factor known to increase AD risk and exacerbate brain atrophy and its symptoms. We aimed to provide a comprehensive review of the impacts of APOE ε4 on brain atrophy in AD as well as in mild cognitive impairment (MCI) as a transitional stage of AD. METHODS We performed a coordinate-based meta-analysis of voxel-based morphometry studies to compare gray-matter atrophy patterns between carriers and noncarriers of APOE ε4. We obtained coordinate-based structural magnetic resonance imaging data from 1,135 individuals who met our inclusion criteria among 12 studies reported in PubMed and Google Scholar. RESULTS We found that atrophy of the hippocampus and parahippocampus was significantly greater in APOE ε4 carriers than in noncarriers, especially among those with AD and MCI, while there was no significant atrophy in these regions in healthy controls who were also carriers. CONCLUSIONS The present meta-analysis has highlighted the significant link between the APOE ε4 allele and hippocampal atrophy in both AD and MCI, which emphasizes the critical influence of the allele on neurodegeneration, especially in the hippocampus. These findings improve the understanding of AD pathology, potentially facilitating progress in early detection, targeted interventions, and personalized care strategies for individuals at risk of AD who carry the APOE ε4 allele.
Collapse
Affiliation(s)
- Madison Bailey
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Zlatomira G Ilchovska
- School of Psychology, University of Nottingham, Nottingham, UK
- School of Psychology, University of Birmingham, Birmingham, UK
| | - Akram A Hosseini
- School of Medicine, University of Nottingham, Nottingham, UK
- Department of Academic Neurology, Nottingham University Hospitals NHS Trust, Queens Medical Centre, Nottingham, UK
- Centre for Dementia, Institute of Mental Health, University of Nottingham, Nottingham, UK
| | - JeYoung Jung
- School of Psychology, University of Nottingham, Nottingham, UK
- Centre for Dementia, Institute of Mental Health, University of Nottingham, Nottingham, UK
- Precision Imaging, University of Nottingham, Nottingham, UK.
| |
Collapse
|
3
|
Tabuena DR, Jang SS, Grone B, Yip O, Aery Jones EA, Blumenfeld J, Liang Z, Koutsodendris N, Rao A, Ding L, Zhang AR, Hao Y, Xu Q, Yoon SY, Leon SD, Huang Y, Zilberter M. Neuronal APOE4-induced Early Hippocampal Network Hyperexcitability in Alzheimer's Disease Pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.28.555153. [PMID: 37693533 PMCID: PMC10491126 DOI: 10.1101/2023.08.28.555153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The full impact of apolipoprotein E4 (APOE4), the strongest genetic risk factor for Alzheimer's disease (AD), on neuronal and network function remains unclear. We found hippocampal region-specific network hyperexcitability in young APOE4 knock-in (E4-KI) mice which predicted cognitive deficits at old age. Network hyperexcitability in young E4-KI mice was mediated by hippocampal region-specific subpopulations of smaller and hyperexcitable neurons that were eliminated by selective removal of neuronal APOE4. Aged E4-KI mice exhibited hyperexcitable granule cells, a progressive inhibitory deficit, and E/I imbalance in the dentate gyrus, exacerbating hippocampal hyperexcitability. Single-nucleus RNA-sequencing revealed neuronal cell type-specific and age-dependent transcriptomic changes, including Nell2 overexpression in E4-KI mice. Reducing Nell2 expression in specific neuronal types of E4-KI mice with CRISPRi rescued their abnormal excitability phenotypes, implicating Nell2 overexpression as a cause of APOE4-induced hyperexcitability. These findings highlight the early transcriptomic and electrophysiological alterations underlying APOE4-induced hippocampal network dysfunction and its contribution to AD pathogenesis with aging.
Collapse
|
4
|
Ogonowski NS, García-Marín LM, Fernando AS, Flores-Ocampo V, Rentería ME. Impact of genetic predisposition to late-onset neurodegenerative diseases on early life outcomes and brain structure. Transl Psychiatry 2024; 14:185. [PMID: 38605018 PMCID: PMC11009228 DOI: 10.1038/s41398-024-02898-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Most patients with late-onset neurodegenerative diseases such as Alzheimer's and Parkinson's have a complex aetiology resulting from numerous genetic risk variants of small effects located across the genome, environmental factors, and the interaction between genes and environment. Over the last decade, genome-wide association studies (GWAS) and post-GWAS analyses have shed light on the polygenic architecture of these diseases, enabling polygenic risk scores (PRS) to estimate an individual's relative genetic liability for presenting with the disease. PRS can screen and stratify individuals based on their genetic risk, potentially years or even decades before the onset of clinical symptoms. An emerging body of evidence from various research studies suggests that genetic susceptibility to late-onset neurodegenerative diseases might impact early life outcomes, including cognitive function, brain structure and function, and behaviour. This article summarises recent findings exploring the potential impact of genetic susceptibility to neurodegenerative diseases on early life outcomes. A better understanding of the impact of genetic susceptibility to neurodegenerative diseases early in life could be valuable in disease screening, detection, and prevention and in informing treatment strategies before significant neural damage has occurred. However, ongoing studies have limitations. Overall, our review found several studies focused on APOE haplotypes and Alzheimer's risk, but a limited number of studies leveraging polygenic risk scores or focused on genetic susceptibility to other late-onset conditions.
Collapse
Affiliation(s)
- Natalia S Ogonowski
- Mental Health & Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Luis M García-Marín
- Mental Health & Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Amali S Fernando
- Mental Health & Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Victor Flores-Ocampo
- Mental Health & Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Miguel E Rentería
- Mental Health & Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
5
|
Topriceanu CC, Shah M, Webber M, Chan F, Shiwani H, Richards M, Schott J, Chaturvedi N, Moon JC, Hughes AD, Hingorani AD, O'Regan DP, Captur G. APOE ε4 carriage associates with improved myocardial performance from adolescence to older age. BMC Cardiovasc Disord 2024; 24:172. [PMID: 38509472 PMCID: PMC10956279 DOI: 10.1186/s12872-024-03808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Although APOE ε4 allele carriage confers a risk for coronary artery disease, its persistence in humans might be explained by certain survival advantages (antagonistic pleiotropy). METHODS Combining data from ~ 37,000 persons from three older age British cohorts (1946 National Survey of Health and Development [NSHD], Southall and Brent Revised [SABRE], and UK Biobank) and one younger age cohort (Avon Longitudinal Study of Parents and Children [ALSPAC]), we explored whether APOE ε4 carriage associates with beneficial or unfavorable left ventricular (LV) structural and functional metrics by echocardiography and cardiovascular magnetic resonance (CMR). RESULTS Compared to the non-APOE ε4 group, APOE ε4 carriers had similar cardiac phenotypes in terms of LV ejection fraction, E/e', posterior wall and interventricular septal thickness, and LV mass. However, they had improved myocardial performance resulting in greater LV stroke volume generation per 1 mL of myocardium (higher myocardial contraction fraction). In NSHD (n = 1467) and SABRE (n = 1187), ε4 carriers had a 4% higher MCF (95% CI 1-7%, p = 0.016) using echocardiography. Using CMR data, in UK Biobank (n = 32,972), ε4 carriers had a 1% higher MCF 95% (CI 0-1%, p = 0.020) with a dose-response relationship based on the number of ε4 alleles. In addition, UK Biobank ε4 carriers also had more favorable radial and longitudinal strain rates compared to non APOE ε4 carriers. In ALSPAC (n = 1397), APOE ε4 carriers aged < 24 years had a 2% higher MCF (95% CI 0-5%, p = 0.059). CONCLUSIONS By triangulating results in four independent cohorts, across imaging modalities (echocardiography and CMR), and in ~ 37,000 individuals, our results point towards an association between ε4 carriage and improved cardiac performance in terms of LV MCF. This potentially favorable cardiac phenotype adds to the growing number of reported survival advantages attributed to the pleiotropic effects APOE ε4 carriage that might collectively explain its persistence in human populations.
Collapse
Affiliation(s)
- Constantin-Cristian Topriceanu
- UCL MRC Unit for Lifelong Health and Ageing, University College London, London, UK
- UCL Institute of Cardiovascular Science, University College London, London, UK
- Cardiac MRI Unit, Barts Heart Centre, London, UK
- Cardiology Department, Centre for Inherited Heart Muscle Conditions, The Royal Free Hospital, Pond Street, Hampstead, London, UK
| | - Mit Shah
- Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK
- MRC London Institute of Medical Science, Imperial College London, London, UK
| | - Matthew Webber
- UCL MRC Unit for Lifelong Health and Ageing, University College London, London, UK
- UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Fiona Chan
- UCL MRC Unit for Lifelong Health and Ageing, University College London, London, UK
- UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Hunain Shiwani
- UCL Institute of Cardiovascular Science, University College London, London, UK
- Cardiac MRI Unit, Barts Heart Centre, London, UK
| | - Marcus Richards
- UCL MRC Unit for Lifelong Health and Ageing, University College London, London, UK
| | - Jonathan Schott
- UCL MRC Unit for Lifelong Health and Ageing, University College London, London, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Nishi Chaturvedi
- UCL MRC Unit for Lifelong Health and Ageing, University College London, London, UK
- UCL Institute of Cardiovascular Science, University College London, London, UK
| | - James C Moon
- UCL Institute of Cardiovascular Science, University College London, London, UK
- Cardiac MRI Unit, Barts Heart Centre, London, UK
| | - Alun D Hughes
- UCL MRC Unit for Lifelong Health and Ageing, University College London, London, UK
- UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Aroon D Hingorani
- UCL Institute of Cardiovascular Science, University College London, London, UK
- BHF Research Accelerator, University College London, London, UK
- Health Data Research, University College London, London, UK
| | - Declan P O'Regan
- Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK
- MRC London Institute of Medical Science, Imperial College London, London, UK
| | - Gabriella Captur
- UCL MRC Unit for Lifelong Health and Ageing, University College London, London, UK.
- UCL Institute of Cardiovascular Science, University College London, London, UK.
- Cardiac MRI Unit, Barts Heart Centre, London, UK.
- Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK.
- Cardiology Department, Centre for Inherited Heart Muscle Conditions, The Royal Free Hospital, Pond Street, Hampstead, London, UK.
| |
Collapse
|
6
|
Puramat P, Dimick MK, Kennedy KG, Zai CC, Kennedy JL, MacIntosh BJ, Goldstein BI. Neurostructural and neurocognitive correlates of APOE ε4 in youth bipolar disorder. J Psychopharmacol 2023; 37:408-419. [PMID: 36919310 DOI: 10.1177/02698811221147151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
BACKGROUND Bipolar disorder (BD) is a clinical risk factor for Alzheimer's disease (AD). Apolipoprotein E ε4 (APOE ε4), a genetic risk factor for AD, has been associated with brain structure and neurocognition in healthy youth. AIMS We evaluated whether there was an association between APOE ε4 with neurostructure and neurocognition in youth with BD. METHODS Participants included 150 youth (78 BD:19 ε4-carriers, 72 controls:17 ε4-carriers). 3T-magnetic resonance imaging yielded measures of cortical thickness, surface area, and volume. Regions-of-interest (ROI) and vertex-wise analyses of the cortex were conducted. Neurocognitive tests of attention and working memory were examined. RESULTS Vertex-wise analyses revealed clusters with a diagnosis-by-APOE ε4 interaction effect for surface area (p = 0.002) and volume (p = 0.046) in pars triangularis (BD ε4-carriers > BD noncarriers), and surface area (p = 0.03) in superior frontal gyrus (controls ε4-carriers > other groups). ROI analyses were not significant. A significant interaction effect for working memory (p = 0.001) appeared to be driven by nominally poorer performance in BD ε4-carriers but not control ε4-carriers; however, post hoc contrasts were not significant. CONCLUSIONS APOE ε4 was associated with larger neurostructural metrics in BD and controls, however, the regional association of APOE ε4 with neurostructure differed between groups. The role of APOE ε4 on neurodevelopmental processes is a plausible explanation for the observed differences. Future studies should evaluate the association of APOE ε4 with pars triangularis and its neurofunctional implications among youth with BD.
Collapse
Affiliation(s)
- Parnian Puramat
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto Faculty of Medicine, Toronto, ON, Canada
| | - Mikaela K Dimick
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto Faculty of Medicine, Toronto, ON, Canada
| | - Kody G Kennedy
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto Faculty of Medicine, Toronto, ON, Canada
| | - Clement C Zai
- Neurogenetics Section and Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto Faculty of Medicine, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - James L Kennedy
- Neurogenetics Section and Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto Faculty of Medicine, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto Faculty of Medicine, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto Faculty of Medicine, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Brugulat-Serrat A, Sánchez-Benavides G, Cacciaglia R, Salvadó G, Shekari M, Collij LE, Buckley C, van Berckel BNM, Perissinotti A, Niñerola-Baizán A, Milà-Alomà M, Vilor-Tejedor N, Operto G, Falcon C, Grau-Rivera O, Arenaza-Urquijo EM, Minguillón C, Fauria K, Molinuevo JL, Suárez-Calvet M, Gispert JD. APOE-ε4 modulates the association between regional amyloid deposition and cognitive performance in cognitively unimpaired middle-aged individuals. EJNMMI Res 2023; 13:18. [PMID: 36856866 PMCID: PMC9978048 DOI: 10.1186/s13550-023-00967-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
PURPOSE To determine whether the APOE-ε4 allele modulates the relationship between regional β-amyloid (Aβ) accumulation and cognitive change in middle-aged cognitively unimpaired (CU) participants. METHODS The 352 CU participants (mean aged 61.1 [4.7] years) included completed two cognitive assessments (average interval 3.34 years), underwent [18F]flutemetamol Aβ positron emission tomography (PET), T1w magnetic resonance imaging (MRI), as well as APOE genotyping. Global and regional Aβ PET positivity was assessed across five regions-of-interest by visual reading (VR) and regional Centiloids. Linear regression models were developed to examine the interaction between regional and global Aβ PET positivity and APOE-ε4 status on longitudinal cognitive change assessed with the Preclinical Alzheimer's Cognitive Composite (PACC), episodic memory, and executive function, after controlling for age, sex, education, cognitive baseline scores, and hippocampal volume. RESULTS In total, 57 participants (16.2%) were VR+ of whom 41 (71.9%) were APOE-ε4 carriers. No significant APOE-ε4*global Aβ PET interactions were associated with cognitive change for any cognitive test. However, APOE-ε4 carriers who were VR+ in temporal areas (n = 19 [9.81%], p = 0.04) and in the striatum (n = 8 [4.14%], p = 0.01) exhibited a higher decline in the PACC. The temporal areas findings were replicated when regional PET positivity was determined with Centiloid values. Regionally, VR+ in the striatum was associated with higher memory decline. As for executive function, interactions between APOE-ε4 and regional VR+ were found in temporal and parietal regions, and in the striatum. CONCLUSION CU APOE-ε4 carriers with a positive Aβ PET VR in regions known to accumulate amyloid at later stages of the Alzheimer's disease (AD) continuum exhibited a steeper cognitive decline. This work supports the contention that regional VR of Aβ PET might convey prognostic information about future cognitive decline in individuals at higher risk of developing AD. CLINICALTRIALS gov Identifier: NCT02485730. Registered 20 June 2015 https://clinicaltrials.gov/ct2/show/NCT02485730 and ClinicalTrials.gov Identifier:NCT02685969. Registered 19 February 2016 https://clinicaltrials.gov/ct2/show/NCT02685969 .
Collapse
Affiliation(s)
- Anna Brugulat-Serrat
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.411142.30000 0004 1767 8811IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain ,grid.512357.7Global Brain Health Institute, San Francisco, CA USA
| | - Gonzalo Sánchez-Benavides
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.411142.30000 0004 1767 8811IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Raffaele Cacciaglia
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.411142.30000 0004 1767 8811IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Salvadó
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.4514.40000 0001 0930 2361Department of Clinical Sciences, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Mahnaz Shekari
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.411142.30000 0004 1767 8811IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain ,grid.5612.00000 0001 2172 2676Universitat Pompeu Fabra, Barcelona, Spain
| | - Lyduine E. Collij
- grid.12380.380000 0004 1754 9227Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, The Netherlands
| | - Christopher Buckley
- grid.83440.3b0000000121901201Center for Medical Image Computing, and Queen Square Institute of Neurology, UCL, London, UK
| | - Bart N. M. van Berckel
- grid.12380.380000 0004 1754 9227Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, The Netherlands
| | - Andrés Perissinotti
- grid.410458.c0000 0000 9635 9413Nuclear Medicine Department, Hospital Clínic, Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Biomedical Research Networking Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Aida Niñerola-Baizán
- grid.410458.c0000 0000 9635 9413Nuclear Medicine Department, Hospital Clínic, Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Biomedical Research Networking Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Milà-Alomà
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.411142.30000 0004 1767 8811IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain ,grid.5612.00000 0001 2172 2676Universitat Pompeu Fabra, Barcelona, Spain
| | - Natàlia Vilor-Tejedor
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.5612.00000 0001 2172 2676Universitat Pompeu Fabra, Barcelona, Spain ,grid.473715.30000 0004 6475 7299Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Grégory Operto
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.411142.30000 0004 1767 8811IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Carles Falcon
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.411142.30000 0004 1767 8811IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain ,grid.411142.30000 0004 1767 8811Neurologia Department, Hospital del Mar, Barcelona, Spain
| | - Oriol Grau-Rivera
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.411142.30000 0004 1767 8811IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain ,grid.411142.30000 0004 1767 8811Neurologia Department, Hospital del Mar, Barcelona, Spain
| | - Eider M. Arenaza-Urquijo
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.411142.30000 0004 1767 8811IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Minguillón
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.411142.30000 0004 1767 8811IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Karine Fauria
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.411142.30000 0004 1767 8811IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - José Luis Molinuevo
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.424580.f0000 0004 0476 7612H. Lundbeck A/S, Copenhagen, Denmark
| | - Marc Suárez-Calvet
- grid.430077.7Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain ,grid.411142.30000 0004 1767 8811IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain ,grid.411142.30000 0004 1767 8811Neurologia Department, Hospital del Mar, Barcelona, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain. .,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain. .,Biomedical Research Networking Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.
| | | |
Collapse
|
8
|
The association of apolipoprotein E (ApoE) genotype and cognitive outcomes in multiple sclerosis; a systematic review and meta-analysis. Mult Scler Relat Disord 2022; 65:104011. [DOI: 10.1016/j.msard.2022.104011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/11/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
|
9
|
Wei X, Du X, Xie Y, Suo X, He X, Ding H, Zhang Y, Ji Y, Chai C, Liang M, Yu C, Liu Y, Qin W. Mapping cerebral atrophic trajectory from amnestic mild cognitive impairment to Alzheimer's disease. Cereb Cortex 2022; 33:1310-1327. [PMID: 35368064 PMCID: PMC9930625 DOI: 10.1093/cercor/bhac137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/13/2022] [Accepted: 03/13/2022] [Indexed: 11/14/2022] Open
Abstract
Alzheimer's disease (AD) patients suffer progressive cerebral atrophy before dementia onset. However, the region-specific atrophic processes and the influences of age and apolipoprotein E (APOE) on atrophic trajectory are still unclear. By mapping the region-specific nonlinear atrophic trajectory of whole cerebrum from amnestic mild cognitive impairment (aMCI) to AD based on longitudinal structural magnetic resonance imaging data from Alzheimer's disease Neuroimaging Initiative (ADNI) database, we unraveled a quadratic accelerated atrophic trajectory of 68 cerebral regions from aMCI to AD, especially in the superior temporal pole, caudate, and hippocampus. Besides, interaction analyses demonstrated that APOE ε4 carriers had faster atrophic rates than noncarriers in 8 regions, including the caudate, hippocampus, insula, etc.; younger patients progressed faster than older patients in 32 regions, especially for the superior temporal pole, hippocampus, and superior temporal gyrus; and 15 regions demonstrated complex interaction among age, APOE, and disease progression, including the caudate, hippocampus, etc. (P < 0.05/68, Bonferroni correction). Finally, Cox proportional hazards regression model based on the identified region-specific biomarkers could effectively predict the time to AD conversion within 10 years. In summary, cerebral atrophic trajectory mapping could help a comprehensive understanding of AD development and offer potential biomarkers for predicting AD conversion.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoxi He
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China,Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hao Ding
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China,Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China,School of Medical Imaging, Tianjin Medical University, Tianjin 300070, China
| | - Yu Zhang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China,Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yi Ji
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China,Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chao Chai
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China,Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Meng Liang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China,Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China,School of Medical Imaging, Tianjin Medical University, Tianjin 300070, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China,Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China,School of Medical Imaging, Tianjin Medical University, Tianjin 300070, China
| | - Yong Liu
- Corresponding author: Wen Qin, Department of Radiology, and Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Anshan Road No 154, Heping District, Tianjin 300052, China. ; Yong Liu, School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China.
| | - Wen Qin
- Corresponding author: Wen Qin, Department of Radiology, and Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Anshan Road No 154, Heping District, Tianjin 300052, China. ; Yong Liu, School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China.
| | | |
Collapse
|
10
|
Roberts JA, Varma VR, An Y, Varma S, Candia J, Fantoni G, Tiwari V, Anerillas C, Williamson A, Saito A, Loeffler T, Schilcher I, Moaddel R, Khadeer M, Lovett J, Tanaka T, Pletnikova O, Troncoso JC, Bennett DA, Albert MS, Yu K, Niu M, Haroutunian V, Zhang B, Peng J, Croteau DL, Resnick SM, Gorospe M, Bohr VA, Ferrucci L, Thambisetty M. A brain proteomic signature of incipient Alzheimer's disease in young APOE ε4 carriers identifies novel drug targets. SCIENCE ADVANCES 2021; 7:eabi8178. [PMID: 34757788 PMCID: PMC8580310 DOI: 10.1126/sciadv.abi8178] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/14/2021] [Indexed: 05/13/2023]
Abstract
Aptamer-based proteomics revealed differentially abundant proteins in Alzheimer’s disease (AD) brains in the Baltimore Longitudinal Study of Aging and Religious Orders Study (mean age, 89 ± 9 years). A subset of these proteins was also differentially abundant in the brains of young APOE ε4 carriers relative to noncarriers (mean age, 39 ± 6 years). Several of these proteins represent targets of approved and experimental drugs for other indications and were validated using orthogonal methods in independent human brain tissue samples as well as in transgenic AD models. Using cell culture–based phenotypic assays, we showed that drugs targeting the cytokine transducer STAT3 and the Src family tyrosine kinases, YES1 and FYN, rescued molecular phenotypes relevant to AD pathogenesis. Our findings may accelerate the development of effective interventions targeting the earliest molecular triggers of AD.
Collapse
Affiliation(s)
- Jackson A. Roberts
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032
| | - Vijay R. Varma
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yang An
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | - Julián Candia
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Giovanna Fantoni
- Clinical Research Core, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vinod Tiwari
- Section on DNA Repair, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Andrew Williamson
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Atsushi Saito
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tina Loeffler
- QPS Austria GmbH, Parkring 12, 8074 Grambach, Austria
| | | | - Ruin Moaddel
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mohammed Khadeer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jacqueline Lovett
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Toshiko Tanaka
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Juan C. Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Marilyn S. Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kaiwen Yu
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mingming Niu
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Vahram Haroutunian
- Departments of Psychiatry and Neuroscience, The Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences and Department of Pharmacological Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Deborah L. Croteau
- Section on DNA Repair, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Susan M. Resnick
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A. Bohr
- Section on DNA Repair, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
11
|
Piersson AD, Mohamad M, Suppiah S, Rajab NF. Topographical patterns of whole-brain structural alterations in association with genetic risk, cerebrospinal fluid, positron emission tomography biomarkers of Alzheimer’s disease, and neuropsychological measures. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00440-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Pinkas J, Bojar I, Gujski M, Sarecka-Hujar B, Owoc A, Raczkiewicz D. Effect of interactions between APOE and ESR1 polymorphisms on cognitive functions in postmenopausal women. Arch Med Sci 2021; 17:31-39. [PMID: 33488853 PMCID: PMC7811303 DOI: 10.5114/aoms.2018.72972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 11/13/2017] [Indexed: 01/31/2023] Open
Abstract
INTRODUCTION During menopause the level of estrogens is decreased, which may lead to cognitive impairment or dementia. Some forms of genetic polymorphism were found to be related to cognitive functions, including APOE and ESR1 (PvuII and XbaI) polymorphisms. In the present study we aimed to analyze the impact of interactions between APOE and ESR1 polymorphisms on cognitive functions in the group of postmenopausal women. MATERIAL AND METHODS The study group consisted of 266 postmenopausal women aged 50-65 years without symptoms of dementia. A computerized battery of the Central Nervous System Vital Signs (CNS VS) test was used to diagnose cognitive functions. APOE and ESR1 polymorphisms were genotyped using multiplex PCR and PCR-RFLP methods, respectively. Statistical analysis was performed using two-way analysis of variance in Statistica software. RESULTS The best memory, visual memory, processing and psychomotor speeds were found in women carrying the C allele of the PvuII polymorphism (TC + CC genotypes) in the presence of the APOE ε2/ε3 genotype, while a lower outcome was noted in women with ε3/ε3, and the lowest if they had the ε4 allele. In the case of women with TT genotype of the PvuII polymorphism, cognitive functioning did not decrease in women with the ε4 allele. A similar effect on cognitive functions was observed for AG + GG genotypes of the XbaI and APOE polymorphisms. Women who simultaneously carried CC PvuII and GG XbaI genotypes had the lowest cognitive functions. CONCLUSIONS Interactions of polymorphic variants of APOE and ESR1 genes influenced cognitive functions in postmenopausal women.
Collapse
Affiliation(s)
- Jarosław Pinkas
- School of Public Health, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Iwona Bojar
- Department of Women’s Health, Institute of Rural Health, Lublin, Poland
| | - Mariusz Gujski
- Department of Prevention of Environmental Hazards and Allergology, Medical University of Warsaw, Poland
| | - Beata Sarecka-Hujar
- Department of Pharmaceutical Technology, Medical University of Silesia, Katowice, Poland
| | - Alfred Owoc
- Polish Society of Social Medicine and Public Health, Poland
| | - Dorota Raczkiewicz
- Department of Demography, Institute of Statistics and Demography, Collegium of Economic Analysis, SGH Warsaw School of Economics, Warsaw, Poland
| |
Collapse
|
13
|
Ford J, Zheng B, Hurtado B, de Jager CA, Udeh-Momoh C, Middleton L, Price G. Strategy or symptom: Semantic clustering and risk of Alzheimer's disease-related impairment. J Clin Exp Neuropsychol 2020; 42:849-856. [PMID: 32933358 DOI: 10.1080/13803395.2020.1819964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, impacting global cognitive performance, including episodic memory. Semantic clustering is a learning strategy involving grouping words of similar meaning and can improve episodic memory performance, e.g., list learning. As the APOE ε4 allele is the most validated genetic risk factor for AD, we predicted that its presence would be associated with poorer list learning performance, and we hypothesized that semantic clustering moderates or mediates this association. The sample comprised 699 healthy older adults participating in the CHARIOT PRO Main Study, 169 of whom were APOE ε4 carriers. Participants' ability to form groups of related stimuli (assessed via a categorization task, CAT), and their use of semantic clustering during list learning, were investigated using the Neuropsychological Assessment Battery (NAB). CAT scores predicted the use of semantic clustering in, and performance on, the list learning task. CAT scores were not significantly lower in APOE ε4 carriers, suggesting that the ability to categorize was preserved. However, APOE ε4 carriers made less use of semantic clustering in list learning. Semantic clustering use partially mediated the relationship between CAT scores and list learning performance, and, in women only, moderated the impact of APOE ε4 on list learning performance. The results suggest that better categorization ability is associated with greater use of mnemonic strategies and better performance on memory tasks regardless of genetic risk, but that APOE ε4 carriers make less use of such strategies. Furthermore, female APOE ε4 carriers may benefit more than their non-carriers from using semantic clustering to aid list learning. Thus, semantic clustering may be a contributing factor of their "cognitive reserve", compensating for potential deficits in episodic memory.
Collapse
Affiliation(s)
- Jamie Ford
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London , London, UK
| | - Bang Zheng
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London , London, UK
| | - Barbara Hurtado
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London , London, UK
| | - Celeste A de Jager
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London , London, UK
| | - Chi Udeh-Momoh
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London , London, UK
| | - Lefkos Middleton
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London , London, UK.,Directorate of Public Health, Imperial College Healthcare NHS Trust , London, UK
| | - Geraint Price
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London , London, UK
| |
Collapse
|
14
|
Zokaei N, Grogan J, Fallon SJ, Slavkova E, Hadida J, Manohar S, Nobre AC, Husain M. Short-term memory advantage for brief durations in human APOE ε4 carriers. Sci Rep 2020; 10:9503. [PMID: 32528115 PMCID: PMC7289888 DOI: 10.1038/s41598-020-66114-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 05/07/2020] [Indexed: 12/19/2022] Open
Abstract
The Apolipoprotein-E (APOE) ε4 gene allele, the highest known genetic risk factor for Alzheimer's disease, has paradoxically been well preserved in the human population. One possible explanation offered by evolutionary biology for survival of deleterious genes is antagonistic pleiotropy. This theory proposes that such genetic variants might confer an advantage, even earlier in life when humans are also reproductively fit. The results of some small-cohort studies have raised the possibility of such a pleiotropic effect for the ε4 allele in short-term memory (STM) but the findings have been inconsistent. Here, we tested STM performance in a large cohort of individuals (N = 1277); nine hundred and fifty-nine of which included carrier and non-carriers of the APOE ε4 gene, those at highest risk of developing Alzheimer's disease. We first confirm that this task is sensitive to subtle deterioration in memory performance across ageing. Importantly, individuals carrying the APOE ε4 gene actually exhibited a significant memory advantage across all ages, specifically for brief retention periods but crucially not for longer durations. Together, these findings present the strongest evidence to date for a gene having an antagonistic pleiotropy effect on human cognitive function across a wide age range, and hence provide an explanation for the survival of the APOE ε4 allele in the gene pool.
Collapse
Affiliation(s)
- Nahid Zokaei
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK.
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK.
| | - John Grogan
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Sean James Fallon
- National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS foundation Trust and University of Bristol, Oxford, UK
| | - Ellie Slavkova
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Jonathan Hadida
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Sanjay Manohar
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Anna Christina Nobre
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| |
Collapse
|
15
|
Lamballais S, Muetzel RL, Ikram MA, Tiemeier H, Vernooij MW, White T, Adams HHH. Genetic Burden for Late-Life Neurodegenerative Disease and Its Association With Early-Life Lipids, Brain, Behavior, and Cognition. Front Psychiatry 2020; 11:33. [PMID: 32116848 PMCID: PMC7018686 DOI: 10.3389/fpsyt.2020.00033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/10/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Genetics play a significant role in the etiology of late-life neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, and frontotemporal dementia. Part of the individual differences in risk for these diseases can be traced back decades before the onset of disease symptoms. Previous studies have shown evidence for plausible links of apolipoprotein E (APOE), the most important genetic marker for Alzheimer's disease, with early-life cognition and neuroimaging markers. We aimed to assess whether genome-wide genetic burden for the aforementioned neurodegenerative diseases plays a role in early-life processes. METHODS We studied children from the Generation R Study, a prospective birth cohort. APOE genotypes and polygenic genetic burdens for Alzheimer's disease, Parkinson's disease, and frontotemporal dementia were obtained through genome-wide genotyping. Non-verbal intelligence was assessed through cognitive tests at the research center around the age of 6 years, and educational attainment through a national school performance test around the age of 11 years. The Child Behavior Checklist was administered around the age of 10 years, and data from the anxious/depressed, withdrawn/depressed, and the internalizing behavior problems scales were used. Children participated in a neuroimaging study when they were 10 years old, in which structural brain metrics were obtained. Lipid serum profiles, which may be influenced by APOE genotype, were assessed from venal blood obtained around the age of 6 years. The sample size per analysis varied between 1,641 and 3,650 children due to completeness of data. RESULTS We did not find evidence that APOE genotype or the polygenic scores impact on childhood nonverbal intelligence, educational attainment, internalizing behavior, and global brain structural measures including total brain volume and whole brain fractional anisotropy (all p > 0.05). Carriership of the APOE ε2 allele was associated with lower and APOE ε4 with higher low-density lipoprotein cholesterol concentrations when compared to APOE ε3/ε3 carriers. CONCLUSION We found no evidence that genetic burden for late-life neurodegenerative diseases associates with early-life cognition, internalizing behavior, or global brain structure.
Collapse
Affiliation(s)
- Sander Lamballais
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ryan L Muetzel
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Mohammad Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Social and Behavioral Science, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Tonya White
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Hieab H H Adams
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Clinical Genetics, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
16
|
Abstract
Radiogenomics, defined as the integrated analysis of radiologic imaging and genetic data, is a well-established tool shown to augment neuroimaging in the clinical diagnosis, prognostication, and scientific study of late-onset Alzheimer disease (LOAD). Early work using candidate single nucleotide polymorphisms (SNPs) identified genetic variation in APOE, BIN1, CLU, and CR1 as key modifiers of brain structure and function using magnetic resonance imaging (MRI). More recently, polygenic risk scores used in conjunction with MRI and positron emission tomography have shown great promise as a risk-stratification tool for clinical trials and care-management decisions. In addition, recent work using multimodal MRI and positron emission tomography as proxies of LOAD progression has identified novel risk variants that are enhancing our understanding of LOAD pathophysiology and progression. Herein, we highlight key studies and trends in the radiogenomics of LOAD over the past two decades and their implications for clinical practice and scientific research.
Collapse
|
17
|
Li Z, Yang N, Lei X, Lin C, Li N, Jiang X, Wei X, Xu B. The association between the ApoE polymorphisms and the MRI-defined intracranial lesions in a cohort of southern China population. J Clin Lab Anal 2019; 33:e22950. [PMID: 31199015 PMCID: PMC6757122 DOI: 10.1002/jcla.22950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 11/20/2022] Open
Abstract
Background The apolipoprotein E (APOE) ε4 allele is considered as a risk factor for Alzheimer's disease (AD). However, the association of APOE allele with MRI evidence of intracranial lesions has not been well understood. Methods Quantitative real‐time PCR was performed to detect the APOE genotype; MRI was examined for intracranial lesions. Their association was evaluated in a cohort of 226 AD patients and 2607 healthy individuals in southern China. Results The frequencies of ε2, ε3, and ε4 alleles were 8.0%, 82.9%, and 9.1% in the whole study population. The frequency of APOE‐ε4 allele was significantly higher in the AD subjects than that in the control group (14.4% vs 8.6%, P < 0.001). We found that brain atrophy occurred at a rate of 12.3% in ε4 allele group vs 8.5% in non‐ε4 genotype group, with a significance of P = 0.008. Severe brain atrophy occurred at a rate of 1.0% in ε4 allele group vs 0.2% in non‐ε4 genotype group (P = 0.011). The individuals carrying APOE ε4/ε4 had an odds ratio (OR) of 7.64 (P < 0.01) for developing AD, while the APOE ε3/ε4 gene carriers had an OR of 1.47 (P = 0.031) and the OR in APOE ε2/ε3 carriers is 0.81 (P = 0.372). Interestingly, we found that the risk of ε4/ε4 allele carrier developing AD was significantly higher in male (P < 0.001) than female (P = 0.478). Conclusion Compared to ε2 and ε3 alleles, the presence of APOE‐ε4 allele might increase the risk for AD in a dose‐dependent manner in southern China. Moreover, the presence of APOE‐ε4 allele results in a higher incidence of brain atrophy.
Collapse
Affiliation(s)
- Zhuoran Li
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Na Yang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiuxia Lei
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chuying Lin
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Nan Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinqing Jiang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Banglao Xu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
18
|
Roheger M, Meyer J, Kessler J, Kalbe E. Predicting short- and long-term cognitive training success in healthy older adults: who benefits? AGING NEUROPSYCHOLOGY AND COGNITION 2019; 27:351-369. [DOI: 10.1080/13825585.2019.1617396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mandy Roheger
- Department of Medical Psychology, Neuropsychology and Gender Studies & Center for Neuropsychological Diagnostics and Intervention (CeNDI), Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - Julia Meyer
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), University of Osnabrueck, Osnabrueck, Germany
| | - Josef Kessler
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Elke Kalbe
- Department of Medical Psychology, Neuropsychology and Gender Studies & Center for Neuropsychological Diagnostics and Intervention (CeNDI), Medical Faculty and University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
19
|
APOE-ε4 risk variant for Alzheimer's disease modifies the association between cognitive performance and cerebral morphology in healthy middle-aged individuals. NEUROIMAGE-CLINICAL 2019; 23:101818. [PMID: 30991302 PMCID: PMC6463204 DOI: 10.1016/j.nicl.2019.101818] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/01/2019] [Accepted: 04/07/2019] [Indexed: 12/18/2022]
Abstract
The APOE-ε4 genotype is the highest genetic risk factor for Alzheimer's disease (AD). In cognitively unimpaired individuals, it has been related to altered brain morphology, function and earlier amyloid beta accumulation. However, its impact on cognitive performance is less evident. Here, we examine the impact of APOE-ε4 allele load in modulating the association between cognitive functioning and brain morphology in middle-aged healthy individuals. A high-resolution structural MRI scan was acquired and episodic memory (EM) as well as executive functions (EFs) were assessed in a sample of 527 middle-aged unimpaired individuals hosting a substantial representation of ε4-homozygous (N = 64). We adopted a voxel-wise unbiased method to assess whether the number of APOE-ε4 alleles significantly modified the associations between gray matter volumes (GMv) and performance in both cognitive domains. Even though the APOE-ε4 allele load did not exert a direct impact on any cognitive measures, it reversed the relationships between GMv and cognitive performance in a highly symmetrical topological pattern. For EM, interactions mapped onto the inferior temporal gyrus and the dorsal anterior cingulate cortex. Regarding EFs, significant interactions were observed for processing speed, working memory, and visuospatial attention in distinct brain regions. These results suggest that APOE-ε4 carriers display a structure-function association corresponding to an older age than their chronological one. Our findings additionally indicate that APOE-ε4 carriers may rely on the integrity of multiple compensatory brain systems in order to preserve their cognitive abilities, possibly due to an incipient neurodegeneration. Overall this study provides novel insights on the mechanisms through which APOE-ε4 posits an increased AD risk.
Collapse
|
20
|
Responses to executive demand in young adulthood differ by APOE genotype. Behav Brain Res 2019; 360:158-168. [PMID: 30472114 DOI: 10.1016/j.bbr.2018.11.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/06/2018] [Accepted: 11/21/2018] [Indexed: 11/23/2022]
Abstract
Despite evidence of a relationship between Apolipoprotein E (APOE) ε4+ and later-life cognitive decline, the lifespan effects of carrying an ε4+ allele on cognitive ageing are not well understood. Evidence of ε4+ advantages in early-life are inconsistent, but not inconsiderable. We explored the proposal that APOE ε4+ cognitive advantages arise only in response to complex and sensitive tasks targeting specific executive functions. We systematically manipulated executive demand within verbal fluency, decision-making, prospective memory, and sustained attention tasks. Participants aged 18-25 years (21 ε4+, 63 ε33) also completed a measure of subjective effort. Under low executive demand, ε4+ made fewer verbal fluency word repeats compared to ε33 carriers. Under high executive demand, ε4+ showed lower costs associated with performing concurrent tasks, greater switching errors, and more verbal fluency root repetition errors. Overall, ε4+ appeared to be showing working memory updating advantages under conditions of low executive demand, more effective resource allocation under elevated levels of executive demand, and errors indicating different strategy use compared to ε33 carriers, including speed-accuracy trade-offs.
Collapse
|
21
|
Li W, Qiu Q, Sun L, Li X, Xiao S. Short-term adverse effects of the apolipoprotein E ε4 allele over language function and executive function in healthy older adults. Neuropsychiatr Dis Treat 2019; 15:1855-1861. [PMID: 31371959 PMCID: PMC6628858 DOI: 10.2147/ndt.s183064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 06/10/2019] [Indexed: 01/14/2023] Open
Abstract
Background: The 4 allele of the apolipoprotein E (APOE) gene is known as a risk factor for cognitive impairment. How APOE ε polymorphism affects the language and executive functions of healthy aging subjects remains less clear. Purpose: In this follow-up study, the relationship between APOE status and cognitive performance across various cognitive domains in healthy individuals (without dementia or mild cognitive impairment (MCI)) over 60 years old was investigated. Patients and methods: Based on multiplex amplification refractory mutation system polymerase chain reaction (PCR), 228 subjects (n=228; mean age: 70.59±8.07 years old; male %=40.8%) were divided into three groups, e2 (ε2/ε2 and ε2/ε3, n=35), e3 (ε3/ε3, n=152), and e4 (ε2/ε4, ε3/ε4, and ε4/ε4, n=41). Results: There was no statistical difference (p>0.05) in the general demographic data and neuropsychological tests among the three groups on the baseline; however, e4 group showed a greater drop rate (p<0.05) versus non-carriers on verbal fluency (e2: -0.043±0.221; e3: -0.081±0.239; e4: 0.069±0.329) and Webster picture completion (e2: 0.055±0.281; e3: 0.083±0.428; e4: 0.438±1.280) over the subsequent one year. Conclusion: The findings suggest that possession of the APOE ε4 allele predicted a higher decline on tasks of language function and executive function in healthy elderly. And further research is required to determine whether strengthening the training of language function and executive function will delay the occurrence of cognitive impairment.
Collapse
Affiliation(s)
- Wei Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Qiu
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Sun
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Shifu Xiao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
Zokaei N, Čepukaitytė G, Board AG, Mackay CE, Husain M, Nobre AC. Dissociable effects of the apolipoprotein-E (APOE) gene on short- and long-term memories. Neurobiol Aging 2019; 73:115-122. [PMID: 30342272 PMCID: PMC6261846 DOI: 10.1016/j.neurobiolaging.2018.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/22/2018] [Accepted: 09/15/2018] [Indexed: 12/27/2022]
Abstract
Short- and long-term memory performance as a function of apolipoprotein-E (APOE) genotype was examined in older, healthy individuals using sensitive and comparable tasks to provide a more detailed description of influences of the ε4 allele (highest genetic risk factor for Alzheimer's disease) on memory. Older heterozygous and homozygous ε4 carriers and noncarriers performed 2 tasks of memory. Both tasks allowed us to measure memory for item identity and locations, using a sensitive, continuous measure of report. Long-term memory for object locations was impaired in ε4/ε4 carriers, whereas, paradoxically, this group demonstrated superior short-term memory for locations. The dissociable effects of the gene on short- and long-term memory suggest that the effect of genotype on these two types of memories, and their neural underpinnings, might not be co-extensive. Whereas the long-term memory impairment might be linked to preclinical Alzheimer's disease, the short-term memory advantage may reflect an independent, phenotypical effect of this allele on cognition.
Collapse
Affiliation(s)
- Nahid Zokaei
- Department of Psychiatry, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK; Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Giedrė Čepukaitytė
- Department of Psychiatry, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK; Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Alexander G Board
- Department of Psychiatry, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK; Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Clare E Mackay
- Department of Psychiatry, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK; Department of Psychiatry, University of Oxford, Oxford, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anna Christina Nobre
- Department of Psychiatry, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK; Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Priya V, Srikumar BN, Shankaranarayana Rao BS. Contrasting effects of pre-training on acquisition of operant and radial arm maze tasks in rats. J Integr Neurosci 2018:JIN077. [PMID: 29562551 DOI: 10.3233/jin-180077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Performing multiple tasks either simultaneously, in rapid alternation or in succession, is routine in daily life. Further, testing rodents in a battery of tests is common both in drug discovery and behavioral phenotyping research. However, learning of new tasks can be influenced by prior experience(s). There has been some research on 'switching cost' involved in the transition from one behavior to another. However, there has been no specific assessment of the effect of learning an operant paradigm on performance in a spatial memory task and vice versa. Accordingly, we evaluated task switching between two forms of learning paradigms, operant conditioning and radial arm maze (RAM) tasks. In experiment 1, rats were trained for operant conditioning with food reward followed by a partially baited RAM task. In experiment 2, rats were trained first on a RAM task followed by operant learning. Pre-training on the operant task, impaired the acquisition of the RAM. On the contrary, pre-training on the RAM enhanced operant performance. Our study reveals significant effects of the test order on task-switching in rats. This knowledge can be useful when framing test sequences in test batteries for drug discovery research and screening genetically modified mice.
Collapse
Affiliation(s)
- V Priya
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru - 560 029, India
| | - B N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru - 560 029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru - 560 029, India
| |
Collapse
|