1
|
Abstract
Recent advances in imaging and tracing technology provide increasingly detailed reconstructions of brain connectomes. Concomitant analytic advances enable rigorous identification and quantification of functionally important features of brain network architecture. Null models are a flexible tool to statistically benchmark the presence or magnitude of features of interest, by selectively preserving specific architectural properties of brain networks while systematically randomizing others. Here we describe the logic, implementation and interpretation of null models of connectomes. We introduce randomization and generative approaches to constructing null networks, and outline a taxonomy of network methods for statistical inference. We highlight the spectrum of null models - from liberal models that control few network properties, to conservative models that recapitulate multiple properties of empirical networks - that allow us to operationalize and test detailed hypotheses about the structure and function of brain networks. We review emerging scenarios for the application of null models in network neuroscience, including for spatially embedded networks, annotated networks and correlation-derived networks. Finally, we consider the limits of null models, as well as outstanding questions for the field.
Collapse
|
2
|
Conrad EC, Bernabei JM, Kini LG, Shah P, Mikhail F, Kheder A, Shinohara RT, Davis KA, Bassett DS, Litt B. The sensitivity of network statistics to incomplete electrode sampling on intracranial EEG. Netw Neurosci 2020; 4:484-506. [PMID: 32537538 PMCID: PMC7286312 DOI: 10.1162/netn_a_00131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Network neuroscience applied to epilepsy holds promise to map pathological networks, localize seizure generators, and inform targeted interventions to control seizures. However, incomplete sampling of the epileptic brain because of sparse placement of intracranial electrodes may affect model results. In this study, we evaluate the sensitivity of several published network measures to incomplete spatial sampling and propose an algorithm using network subsampling to determine confidence in model results. We retrospectively evaluated intracranial EEG data from 28 patients implanted with grid, strip, and depth electrodes during evaluation for epilepsy surgery. We recalculated global and local network metrics after randomly and systematically removing subsets of intracranial EEG electrode contacts. We found that sensitivity to incomplete sampling varied significantly across network metrics. This sensitivity was largely independent of whether seizure onset zone contacts were targeted or spared from removal. We present an algorithm using random subsampling to compute patient-specific confidence intervals for network localizations. Our findings highlight the difference in robustness between commonly used network metrics and provide tools to assess confidence in intracranial network localization. We present these techniques as an important step toward translating personalized network models of seizures into rigorous, quantitative approaches to invasive therapy.
Collapse
Affiliation(s)
- Erin C. Conrad
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - John M. Bernabei
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Lohith G. Kini
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Preya Shah
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Fadi Mikhail
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ammar Kheder
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Russell T. Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Center, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A. Davis
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Danielle S. Bassett
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics and Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Litt
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|