1
|
Nostadt A, Schlaffke L, Merz CJ, Wolf OT, Nitsche MA, Tegenthoff M, Lissek S. Microstructural differences in the cingulum and the inferior longitudinal fasciculus are associated with (extinction) learning. BMC Psychol 2024; 12:324. [PMID: 38831468 PMCID: PMC11149371 DOI: 10.1186/s40359-024-01800-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/19/2024] [Indexed: 06/05/2024] Open
Abstract
Cognitive functions, such as learning and memory processes, depend on effective communication between brain regions which is facilitated by white matter tracts (WMT). We investigated the microstructural properties and the contribution of WMT to extinction learning and memory in a predictive learning task. Forty-two healthy participants completed an extinction learning paradigm without a fear component. We examined differences in microstructural properties using diffusion tensor imaging to identify underlying neural connectivity and structural correlates of extinction learning and their potential implications for the renewal effect. Participants with good acquisition performance exhibited higher fractional anisotropy (FA) in WMT including the bilateral inferior longitudinal fasciculus (ILF) and the right temporal part of the cingulum (CNG). This indicates enhanced connectivity and communication between brain regions relevant to learning and memory resulting in better learning performance. Our results suggest that successful acquisition and extinction performance were linked to enhanced structural connectivity. Lower radial diffusivity (RD) in the right ILF and right temporal part of the CNG was observed for participants with good acquisition learning performance. This observation suggests that learning difficulties associated with increased RD may potentially be due to less myelinated axons in relevant WMT. Also, participants with good acquisition performance were more likely to show a renewal effect. The results point towards a potential role of structural integrity in extinction-relevant WMT for acquisition and extinction.
Collapse
Affiliation(s)
- Alina Nostadt
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, 44789, Germany.
- Ruhr University Bochum, Bochum, Germany.
| | - Lara Schlaffke
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, 44789, Germany
| | - Christian J Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, 44801, Germany
| | - Oliver T Wolf
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, 44801, Germany
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Dortmund, 44139, Germany
- German Centre for Mental Health (DZPG), Bochum, Germany
- University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld University, Bielefeld, 33617, Germany
| | - Martin Tegenthoff
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, 44789, Germany
| | - Silke Lissek
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, 44789, Germany
| |
Collapse
|
2
|
Brain Functional Network Analysis of Patients with Primary Angle-Closure Glaucoma. DISEASE MARKERS 2022; 2022:2731007. [PMID: 35035609 PMCID: PMC8758296 DOI: 10.1155/2022/2731007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023]
Abstract
Objectives. Recent resting-state functional magnetic resonance imaging (fMRI) studies have focused on glaucoma-related neuronal degeneration in structural and spontaneous functional brain activity. However, there are limited studies regarding the differences in the topological organization of the functional brain network in patients with glaucoma. In this study, we aimed to assess both potential alterations and the network efficiency in the functional brain networks of patients with primary angle-closure glaucoma (PACG). Methods. We applied resting-state fMRI data to construct the functional connectivity network of 33 patients with PACG (
) and 33 gender- and age-matched healthy controls (
). The differences in the global and regional topological brain network properties between the two groups were assessed using graph theoretical analysis. Partial correlations between the altered regional values and clinical parameters were computed for patients with PACG. Results. No significant differences in global topological measures were identified between the two groups. However, significant regional alterations were identified in the patients with PACG, including differences within visual and nonvisual (somatomotor and cognition-emotion) regions. The normalized clustering coefficient and normalized local efficiency of the right superior parietal gyrus were significantly correlated with the retinal fiber layer thickness (RNFLT) and the vertical cup to disk ratio (V C/D). In addition, the normalized node betweenness of the left middle frontal gyrus (orbital portion) was significantly correlated with the V C/D in the patients with PACG. Conclusions. Our results suggest that regional inefficiency with decrease and compensatory increase in local functional properties of visual and nonvisual nodes preserved the brain network of the PACG at the global level.
Collapse
|
3
|
Junker FB, Schlaffke L, Bellebaum C, Ghio M, Brühl S, Axmacher N, Schmidt-Wilcke T. Transition From Sublexical to Lexico-Semantic Stimulus Processing. Front Syst Neurosci 2020; 14:522384. [PMID: 33192346 PMCID: PMC7662113 DOI: 10.3389/fnsys.2020.522384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 10/07/2020] [Indexed: 11/18/2022] Open
Abstract
Resembling letter-by-letter translation, Morse code can be used to investigate various linguistic components by slowing down the cognitive process of language decoding. Using fMRI and Morse code, we investigated patterns of brain activation associated with decoding three-letter words or non-words and making a lexical decision. Our data suggest that early sublexical processing is associated with activation in brain regions that are involved in sound-patterns to phoneme conversion (inferior parietal lobule), phonological output buffer (inferior frontal cortex: pars opercularis) as well as phonological and semantic top-down predictions (inferior frontal cortex: pars triangularis). In addition, later lexico-semantic processing of meaningful stimuli is associated with activation of the phonological lexicon (angular gyrus) and the semantic system (default mode network). Overall, our data indicate that sublexical and lexico-semantic analyses comprise two cognitive processes that rely on neighboring networks in the left frontal cortex and parietal lobule.
Collapse
Affiliation(s)
- Frederick Benjamin Junker
- Department of Neuropsychology, Ruhr-University Bochum, Bochum, Germany
- Department of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - Lara Schlaffke
- Department for Neurology, Professional Association Berufsgenossenschaft-University Hospital Bergmannsheil, Bochum, Germany
| | - Christian Bellebaum
- Institute of Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - Marta Ghio
- Institute of Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - Stefanie Brühl
- St. Mauritius Therapy Clinic, Meerbusch, Germany
- Department of Neurology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| | - Nikolai Axmacher
- Department of Neuropsychology, Ruhr-University Bochum, Bochum, Germany
| | - Tobias Schmidt-Wilcke
- Department of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany
- St. Mauritius Therapy Clinic, Meerbusch, Germany
| |
Collapse
|
4
|
Zhao J, Su Q, Liu F, Zhang Z, Li R, Zhu F, Wu R, Zhao J, Guo W. Regional white matter volume abnormalities in first-episode somatization disorder. Int J Psychophysiol 2018; 133:12-16. [DOI: 10.1016/j.ijpsycho.2018.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 10/28/2022]
|
5
|
Ozernov-Palchik O, Norton ES, Wang Y, Beach SD, Zuk J, Wolf M, Gabrieli JDE, Gaab N. The relationship between socioeconomic status and white matter microstructure in pre-reading children: A longitudinal investigation. Hum Brain Mapp 2018; 40:741-754. [PMID: 30276914 DOI: 10.1002/hbm.24407] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 12/18/2022] Open
Abstract
Reading is a learned skill crucial for educational attainment. Children from families of lower socioeconomic status (SES) tend to have poorer reading performance and this gap widens across years of schooling. Reading relies on the orchestration of multiple neural systems integrated via specific white-matter pathways, but there is limited understanding about whether these pathways relate differentially to reading performance depending on SES background. Kindergarten white-matter FA and second-grade reading outcomes were investigated in an SES-diverse sample of 125 children. The three left-hemisphere white-matter tracts most associated with reading, and their right-hemisphere homologs, were examined: arcuate fasciculus (AF), superior longitudinal fasciculus (SLF), and inferior longitudinal fasciculus (ILF). There was a significant and positive association between SES and fractional anisotropy (FA) in the bilateral ILF in kindergarten. SES moderated the association between kindergarten ILF and second grade reading performance, such that it was positive in lower-SES children, but not significant in higher-SES children. These results have implications for understanding the role of the environment in the development of the neural pathways that support reading.
Collapse
Affiliation(s)
- Ola Ozernov-Palchik
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA.,Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA
| | - Elizabeth S Norton
- Department of Communication Sciences and Disorders, Department of Medical Social Sciences, and Institute for Innovations in Developmental Sciences, Northwestern University, Evanston, IL
| | - Yingying Wang
- College of Education and Human Sciences, University of Nebraska, Lincoln, NE
| | - Sara D Beach
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA.,Harvard Medical School, Boston, Massachusetts Boston Children's Hospital, Boston, MA
| | - Jennifer Zuk
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA.,Harvard Medical School, Boston, Massachusetts Boston Children's Hospital, Boston, MA
| | - Maryanne Wolf
- Center for Dyslexia, Diverse Learners, and Social Justice, Graduate School of Education and Information Studies, UCLA
| | - John D E Gabrieli
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
| | - Nadine Gaab
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA.,Harvard Medical School, Boston, Massachusetts Boston Children's Hospital, Boston, MA
| |
Collapse
|
6
|
Herbet G, Zemmoura I, Duffau H. Functional Anatomy of the Inferior Longitudinal Fasciculus: From Historical Reports to Current Hypotheses. Front Neuroanat 2018; 12:77. [PMID: 30283306 PMCID: PMC6156142 DOI: 10.3389/fnana.2018.00077] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
The inferior longitudinal fasciculus (ILF) is a long-range, associative white matter pathway that connects the occipital and temporal-occipital areas of the brain to the anterior temporal areas. In view of the ILF's anatomic connections, it has been suggested that this pathway has a major role in a relatively large array of brain functions. Until recently, however, the literature data on these potential functions were scarce. Here, we review the key findings of recent anatomic, neuromodulation, and neuropsychological studies. We also summarize reports on how this tract is disrupted in a wide range of brain disorders, including psychopathologic, neurodevelopmental, and neurologic diseases. Our review reveals that the ILF is a multilayered, bidirectional tract involved in processing and modulating visual cues and thus in visually guided decisions and behaviors. Accordingly, sudden disruption of the ILF by neurologic insult is mainly associated with neuropsychological impairments of visual cognition (e.g., visual agnosia, prosopagnosia, and alexia). Furthermore, disruption of the ILF may constitute the pathophysiologic basis for visual hallucinations and socio-emotional impairments in schizophrenia, as well as emotional difficulties in autism spectrum disorder. Degeneration of the ILF in neurodegenerative diseases affecting the temporal lobe may explain (at least in part) the gradual onset of semantic and lexical access difficulties. Although some of the functions mediated by the ILF appear to be relatively lateralized, observations from neurosurgery suggest that disruption of the tract's anterior portion can be dynamically compensated for by the contralateral portion. This might explain why bilateral disruption of the ILF in either acute or progressive disease is highly detrimental in neuropsychological terms.
Collapse
Affiliation(s)
- Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- INSERM-1051, Team 4, Saint-Eloi Hospital, Institute for Neurosciences of Montpellier, Montpellier, France
- University of Montpellier, Montpellier, France
| | - Ilyess Zemmoura
- Department of Neurosurgery, Tours University Medical Center, Tours, France
- UMR 1253, iBrain, INSERM, University of Tours, Tours, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- INSERM-1051, Team 4, Saint-Eloi Hospital, Institute for Neurosciences of Montpellier, Montpellier, France
- University of Montpellier, Montpellier, France
| |
Collapse
|
7
|
Tymofiyeva O, Blom EH, Ho TC, Connolly CG, Lindqvist D, Wolkowitz OM, Lin J, LeWinn KZ, Sacchet MD, Han LKM, Yuan JP, Bhandari SP, Xu D, Yang TT. High levels of mitochondrial DNA are associated with adolescent brain structural hypoconnectivity and increased anxiety but not depression. J Affect Disord 2018; 232:283-290. [PMID: 29500956 PMCID: PMC5864120 DOI: 10.1016/j.jad.2018.02.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/19/2018] [Accepted: 02/15/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Adolescent anxiety and depression are highly prevalent psychiatric disorders that are associated with altered molecular and neurocircuit profiles. Recently, increased mitochondrial DNA copy number (mtDNA-cn) has been found to be associated with several psychopathologies in adults, especially anxiety and depression. The associations between mtDNA-cn and anxiety and depression have not, however, been investigated in adolescents. Moreover, to date there have been no studies examining associations between mtDNA-cn and brain network alterations in mood disorders in any age group. METHODS The first aim of this study was to compare salivary mtDNA-cn between 49 depressed and/or anxious adolescents and 35 well-matched healthy controls. The second aim of this study was to identify neural correlates of mtDNA-cn derived from diffusion tensor imaging (DTI) and tractography, in the full sample of adolescents. RESULTS There were no diagnosis-specific alterations in mtDNA-cn. However, there was a positive correlation between mtDNA-cn and levels of anxiety, but not depression, in the full sample of adolescents. A subnetwork of connections largely corresponding to the left fronto-occipital fasciculus had significantly lower fractional anisotropy (FA) values in adolescents with higher than median mtDNA-cn. LIMITATIONS Undifferentiated analysis of free and intracellular mtDNA and use of DTI-based tractography represent this study's limitations. CONCLUSIONS The results of this study help elucidate the relationships between clinical symptoms, molecular changes, and neurocircuitry alterations in adolescents with and without anxiety and depression, and they suggest that increased mtDNA-cn is associated both with increased anxiety symptoms and with decreased fronto-occipital structural connectivity in this population.
Collapse
Affiliation(s)
- Olga Tymofiyeva
- Department of Radiology & Biomedical Imaging, University of California San Francisco, United States.
| | - Eva Henje Blom
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, United States,Department of Clinical Sciences/ Child- and Adolescent Psychiatry, Umeå University, Umeå, Sweden
| | - Tiffany C. Ho
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, United States,Department of Psychology, Stanford University, United States
| | - Colm G. Connolly
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, United States
| | - Daniel Lindqvist
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, United States,Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Psychiatry, Sweden
| | - Owen M. Wolkowitz
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, United States
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California San Francisco, United States
| | - Kaja Z. LeWinn
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, United States
| | - Matthew D. Sacchet
- Department of Psychiatry and Behavioral Sciences, Stanford University, United States
| | - Laura K. M. Han
- Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, GGZ inGeest, Amsterdam Public Health research institute, Amsterdam, The Netherlands
| | - Justin P. Yuan
- Department of Radiology & Biomedical Imaging, University of California San Francisco, United States
| | - Sarina P. Bhandari
- Department of Radiology & Biomedical Imaging, University of California San Francisco, United States
| | - Duan Xu
- Department of Radiology & Biomedical Imaging, University of California San Francisco, United States
| | - Tony T. Yang
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, United States
| |
Collapse
|
8
|
Structural changes in brain morphology induced by brief periods of repetitive sensory stimulation. Neuroimage 2018; 165:148-157. [DOI: 10.1016/j.neuroimage.2017.10.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 09/25/2017] [Accepted: 10/08/2017] [Indexed: 01/29/2023] Open
|