1
|
Gutiérrez-Cordero I, García-Orza J. Disassembling an experimental artifact in aphasia: Why phonemic errors with words and semantic errors with numbers? Cortex 2025; 185:184-210. [PMID: 40068359 DOI: 10.1016/j.cortex.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 04/13/2025]
Abstract
There is broad consensus as to the significance of speech errors in aphasia. The analysis of errors is understood to provide clear clues for clinical diagnosis, the identification of those cognitive-linguistic processes affected, and the corresponding impaired cerebral structures. However, Stimulus Type Effect on Phonological and Semantic errors (STEPS), a phenomenon in which a person with aphasia produces more phonological errors with words (e.g., "tamle" for "table") but more semantic errors with number words (e.g., "thirteen" for "forty-two"), casts doubt on this consensus view. In this paper two studies are described, in which we explore whether STEPS is in fact a result of the lack of rigorous control over the materials compared (words versus numbers) and the evaluation conditions. Two persons, one with a reproduction conduction aphasia and the other with a repetition conduction aphasia, participated in the studies. Study 1 explored the role of memory load in the emergence of STEPS by eliciting the repetition of pairs of semantically-unrelated words. In Studies 2a and 2b, our participants were asked to produce sequences of high- and low-frequency words from one semantic category (colors), and this was compared to the performance in multi-digit number production tasks. The results showed that sequences of high-frequency colors, like multi-digit numbers, were produced mainly with semantic errors, whereas sequences of low-frequency colors showed a mixed pattern with many phonemic and semantic errors. It seems that the production of semantic errors and the absence of phonemic errors in multi-digit numbers that give rise to STEPS is an experimental artifact caused by the combination of several factors: the use of semantically-related high-frequency words, produced cyclically under high-memory-demand conditions. These findings contribute substantially to the current discussion of language production models and allow for a deeper understanding of the neurocognitive processes that underly speech errors in aphasia.
Collapse
Affiliation(s)
- Ismael Gutiérrez-Cordero
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga, Spain; Numerical Cognition Lab, Universidad de Málaga, Spain; Department of Basic Psychology, Universidad de Málaga, Spain.
| | - Javier García-Orza
- Numerical Cognition Lab, Universidad de Málaga, Spain; Department of Basic Psychology, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Spain
| |
Collapse
|
2
|
Osa García A, Brambati SM, Brisebois A, Houzé B, Bedetti C, Desautels A, Marcotte K. Dissociation of White Matter Bundles in Different Recovery Measures in Poststroke Aphasia. Stroke 2024; 55:2643-2651. [PMID: 39466893 DOI: 10.1161/strokeaha.124.047229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Poststroke aphasia (PSA) recovery shows high variability across individuals and at different time points. Although diffusion biomarkers from the ventral and dorsal streams have demonstrated strong predictive power for language outcomes, it is still unclear how these biomarkers relate to the various stages of PSA recovery. In this study, we aim to compare diffusion metrics and language measures as predictors of language recovery in a longitudinal cohort of participants with PSA. METHODS Participants were recruited at a stroke unit at the emergency room, and underwent diffusion magnetic resonance imaging scanning and language assessment within 3 days (acute phase) after stroke, with behavioral follow-ups at subacute (10±3 days) and chronic phases (>6 months). We conducted regression analyses on language performance (cross-sectional), Δscores between all time points (acute-subacute, subacute-chronic, acute-chronic), and relative Δscores between all time points (Δscore/language baseline score), with acute diffusion metrics from language-related white matter tracts, lesion size, language baseline scores, and demographic data as predictors. RESULTS Thirty-nine participants presenting PSA were recruited, and 24 participants (mean age, 73 years; 8 women) completed the 3-time point assessment in total. The best prediction model of performance scores used axial diffusivity from the left arcuate fasciculus in both the subacute (R2=0.785) and chronic stages (R2=0.626). Moreover, the prediction of ∆scores depended on axial diffusivity from the left inferior frontal-occipital fasciculus in the subacute stage (R2=0.5) and depended additionally on axial diffusivity from the right inferior frontal-occipital fasciculus in the chronic stage (R2=0.68). The prediction of mediation analyses showed that the lesion load of the left arcuate fasciculus mediated the relationship between axial diffusivity from the left arcuate fasciculus and chronic language performance. CONCLUSIONS Language performance at subacute and chronic time points could be predicted by the integrity of the left arcuate fasciculus, whereas Δscores in the subacute and chronic phases depended on the left inferior frontal-occipital fasciculus, showing a dissociation of the white matter pathways about language outcomes. These results suggest a functional differentiation of the dual-stream components in PSA recovery.
Collapse
Affiliation(s)
- Alberto Osa García
- École d'orthophonie et d'audiologie (A.O.G., A.B., K.M), Université de Montréal, Quebec, Canada
- Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Nord-de-l'île-de-Montréal, Quebec, Canada (A.O.G., S.M.B., A.B., A.D., K.M.)
| | - Simona Maria Brambati
- Département de Psychologie (S.M.B., B.H., C.B.), Université de Montréal, Quebec, Canada
- Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Nord-de-l'île-de-Montréal, Quebec, Canada (A.O.G., S.M.B., A.B., A.D., K.M.)
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Quebec, Canada (S.M.B., B.H., C.B.)
| | - Amélie Brisebois
- École d'orthophonie et d'audiologie (A.O.G., A.B., K.M), Université de Montréal, Quebec, Canada
- Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Nord-de-l'île-de-Montréal, Quebec, Canada (A.O.G., S.M.B., A.B., A.D., K.M.)
| | - Bérengère Houzé
- Département de Psychologie (S.M.B., B.H., C.B.), Université de Montréal, Quebec, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Quebec, Canada (S.M.B., B.H., C.B.)
| | - Christophe Bedetti
- Département de Psychologie (S.M.B., B.H., C.B.), Université de Montréal, Quebec, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Quebec, Canada (S.M.B., B.H., C.B.)
| | - Alex Desautels
- Département de Neurosciences (A.D.), Université de Montréal, Quebec, Canada
- Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Nord-de-l'île-de-Montréal, Quebec, Canada (A.O.G., S.M.B., A.B., A.D., K.M.)
- Centre d'Études Avancées en Médecine du Sommeil, Montreal, Quebec, Canada (A.D.)
| | - Karine Marcotte
- École d'orthophonie et d'audiologie (A.O.G., A.B., K.M), Université de Montréal, Quebec, Canada
- Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Nord-de-l'île-de-Montréal, Quebec, Canada (A.O.G., S.M.B., A.B., A.D., K.M.)
| |
Collapse
|
3
|
Barbeau EB, Badhwar A, Kousaie S, Bellec P, Descoteaux M, Klein D, Petrides M. Dissection of the Temporofrontal Extreme Capsule Fasciculus Using Diffusion MRI Tractography and Association with Lexical Retrieval. eNeuro 2024; 11:ENEURO.0363-23.2023. [PMID: 38164578 PMCID: PMC10849018 DOI: 10.1523/eneuro.0363-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/06/2023] [Indexed: 01/03/2024] Open
Abstract
The well-known arcuate fasciculus that connects the posterior superior temporal region with the language production region in the ventrolateral frontal cortex constitutes the classic peri-Sylvian dorsal stream of language. A second temporofrontal white matter tract connects ventrally the anterior to intermediate lateral temporal cortex with frontal areas via the extreme capsule. This temporofrontal extreme capsule fasciculus (TFexcF) constitutes the ventral stream of language processing. The precise origin, course, and termination of this pathway has been examined in invasive tract tracing studies in macaque monkeys, but there have been no standard protocols for its reconstruction in the human brain using diffusion imaging tractography. Here we provide a protocol for the dissection of the TFexcF in vivo in the human brain using diffusion magnetic resonance imaging (MRI) tractography which provides a solid basis for exploring its functional role. A key finding of the current dissection protocol is the demonstration that the TFexcF is left hemisphere lateralized. Furthermore, using the present dissection protocol, we demonstrate that the TFexcF is related to lexical retrieval scores measured with the category fluency test, in contrast to the classical arcuate fasciculus (the dorsal language pathway) that was also dissected and was related to sentence repetition.
Collapse
Affiliation(s)
- E B Barbeau
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
- Center for Research on Brain, Language and Music (CRBLM), Montreal, Quebec H3G 2A8, Canada
| | - A Badhwar
- Département de pharmacologie et physiologie, Faculté de médecine, Université de Montréal, Montreal, Québec H3C 3J7, Canada
- Institut de génie biomédical, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, Québec H3C 3J7, Canada
| | - S Kousaie
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - P Bellec
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, Québec H3C 3J7, Canada
- Département de Psychologie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - M Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - D Klein
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
- Center for Research on Brain, Language and Music (CRBLM), Montreal, Quebec H3G 2A8, Canada
- Departments of Neurology and Neurosurgery
| | - M Petrides
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
- Center for Research on Brain, Language and Music (CRBLM), Montreal, Quebec H3G 2A8, Canada
- Departments of Neurology and Neurosurgery
- Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| |
Collapse
|
4
|
Zhu W, Deng S, Jiang H, Zhang J, Li B, Liu W, Jia Q, Liu W, Meng Z. Application of diffusion tensor imaging in the diagnosis of post-stroke aphasia: a meta-analysis and systematic review. Front Psychol 2023; 14:1140588. [PMID: 37790217 PMCID: PMC10544987 DOI: 10.3389/fpsyg.2023.1140588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction Diffusion Tensor Imaging (DTI) indicators of different white matter (WM) fibers and brain region lesions for post-stroke aphasia (PSA) are inconsistent in existing studies. Our study examines the consistency and differences between PSA tests performed with DTI. In addition, obtaining consistent and independent conclusions between studies was made possible by utilizing DTI in PSA assessment. Methods In order to gather relevant studies using DTI for diagnosing PSA, we searched the Web of Science, PubMed, Embase, and CNKI databases. Based on the screening and evaluation of the included studies, the meta-analysis was used to conduct a quantitative analysis. Narrative descriptions were provided for studies that met the inclusion criteria but lacked data. Results First, we reported on the left hemisphere. The meta-analysis showed that fractional anisotropy (FA) of the arcuate fasciculus (AF) and superior longitudinal fasciculus (SLF), inferior frontal-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), and uncinate fasciculus (UF) were decreased in the PSA group in comparison with the healthy controls (p < 0.00001). However, in the comparison of axial diffusivity (AD), there was no statistically significant difference in white matter fiber tracts in the dual-stream language model of the PSA group. Elevated radial diffusivity (RD) was seen only in the IFOF and ILF (PIFOF = 0.01; PILF = 0.05). In the classic Broca's area, the FA of the PSA group was decreased (p < 0.00001) while the apparent diffusion coefficient was elevated (p = 0.03). Secondly, we evaluated the white matter fiber tracts in the dual-stream language model of the right hemisphere. The FA of the PSA group was decreased only in the IFOF (p = 0.001). AD was elevated in the AF and UF (PAF < 0.00001; PUF = 0.009). RD was elevated in the AF and UF (PAF = 0.01; PUF = 0.003). The other fiber tracts did not undergo similar alterations. Conclusion In conclusion, DTI is vital for diagnosing PSA because it detects WM changes effectively, but it still has some limitations. Due to a lack of relevant language scales and clinical manifestations, diagnosing and differentiating PSA independently remain challenging. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=365897.
Collapse
Affiliation(s)
- Weiming Zhu
- Clinical Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shizhe Deng
- Clinical Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hailun Jiang
- Clinical Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jieying Zhang
- Clinical Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Boxuan Li
- Clinical Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Wei Liu
- Clinical Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qingqing Jia
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Liu
- Department of Scientific Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhihong Meng
- Clinical Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
5
|
López-Barroso D, Paredes-Pacheco J, Torres-Prioris MJ, Dávila G, Berthier ML. Brain structural and functional correlates of the heterogenous progression of mixed transcortical aphasia. Brain Struct Funct 2023:10.1007/s00429-023-02655-6. [PMID: 37256346 DOI: 10.1007/s00429-023-02655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/13/2023] [Indexed: 06/01/2023]
Abstract
Mixed transcortical aphasia (MTCA) is characterized by non-fluent speech and comprehension deficits coexisting with preserved repetition. MTCA may evolve to less severe variants of aphasias or even to full language recovery. Mechanistically, MCTA has traditionally been attributed to a disconnection between the spared left perisylvian language network (PSLN) responsible for preserved verbal repetition, and damaged left extrasylvian networks, which are responsible for language production and comprehension impairments. However, despite significant advances in in vivo neuroimaging, the structural and functional status of the PSLN network in MTCA and its evolution has not been investigated. Thus, the aim of the present study is to examine the status of the PSLN, both in terms of its functional activity and structural integrity, in four cases who developed acute post-stroke MTCA and progressed to different types of aphasia. For it, we conducted a neuroimaging-behavioral study performed in the chronic stage of four patients. The behavioral profile of MTCA persisted in one patient, whereas the other three patients progressed to less severe types of aphasias. Neuroimaging findings suggest that preserved verbal repetition in MTCA does not always depend on the optimal status of the PSLN and its dorsal connections. Instead, the right hemisphere or the left ventral pathway may also play a role in supporting verbal repetition. The variability in the clinical evolution of MTCA may be explained by the varying degree of PSLN alteration and individual premorbid neuroanatomical language substrates. This study offers a fresh perspective of MTCA through the lens of modern neuroscience and unveils novel insights into the neural underpinnings of repetition.
Collapse
Affiliation(s)
- Diana López-Barroso
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias (CIMES), University of Malaga, Malaga, Spain
- Research Laboratory on the Neuroscience of Language, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga - IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology, University of Malaga, Malaga, Spain
| | - José Paredes-Pacheco
- Radiology and Psychiatry Department, Faculty of Medicine, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias (CIMES), General Foundation of the University of Malaga, Malaga, Spain
| | - María José Torres-Prioris
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias (CIMES), University of Malaga, Malaga, Spain
- Research Laboratory on the Neuroscience of Language, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga - IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology, University of Malaga, Malaga, Spain
| | - Guadalupe Dávila
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias (CIMES), University of Malaga, Malaga, Spain
- Research Laboratory on the Neuroscience of Language, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga - IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology, University of Malaga, Malaga, Spain
| | - Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias (CIMES), University of Malaga, Malaga, Spain.
- Research Laboratory on the Neuroscience of Language, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.
- Instituto de Investigación Biomédica de Málaga - IBIMA, Malaga, Spain.
| |
Collapse
|
6
|
Schelinski S, Tabas A, von Kriegstein K. Altered processing of communication signals in the subcortical auditory sensory pathway in autism. Hum Brain Mapp 2022; 43:1955-1972. [PMID: 35037743 PMCID: PMC8933247 DOI: 10.1002/hbm.25766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/24/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterised by social communication difficulties. These difficulties have been mainly explained by cognitive, motivational, and emotional alterations in ASD. The communication difficulties could, however, also be associated with altered sensory processing of communication signals. Here, we assessed the functional integrity of auditory sensory pathway nuclei in ASD in three independent functional magnetic resonance imaging experiments. We focused on two aspects of auditory communication that are impaired in ASD: voice identity perception, and recognising speech-in-noise. We found reduced processing in adults with ASD as compared to typically developed control groups (pairwise matched on sex, age, and full-scale IQ) in the central midbrain structure of the auditory pathway (inferior colliculus [IC]). The right IC responded less in the ASD as compared to the control group for voice identity, in contrast to speech recognition. The right IC also responded less in the ASD as compared to the control group when passively listening to vocal in contrast to non-vocal sounds. Within the control group, the left and right IC responded more when recognising speech-in-noise as compared to when recognising speech without additional noise. In the ASD group, this was only the case in the left, but not the right IC. The results show that communication signal processing in ASD is associated with reduced subcortical sensory functioning in the midbrain. The results highlight the importance of considering sensory processing alterations in explaining communication difficulties, which are at the core of ASD.
Collapse
Affiliation(s)
- Stefanie Schelinski
- Faculty of Psychology, Chair of Cognitive and Clinical NeuroscienceTechnische Universität DresdenDresdenGermany
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Alejandro Tabas
- Faculty of Psychology, Chair of Cognitive and Clinical NeuroscienceTechnische Universität DresdenDresdenGermany
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Katharina von Kriegstein
- Faculty of Psychology, Chair of Cognitive and Clinical NeuroscienceTechnische Universität DresdenDresdenGermany
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
7
|
Can music restore brain connectivity in post-stroke cognitive deficits? Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Tung H, Lin WH, Hsieh PF, Lan TH, Chiang MC, Lin YY, Peng SJ. Left Frontotemporal Region Plays a Key Role in Letter Fluency Task-Evoked Activation and Functional Connectivity in Normal Subjects: A Functional Near-Infrared Spectroscopy Study. Front Psychiatry 2022; 13:810685. [PMID: 35722586 PMCID: PMC9205401 DOI: 10.3389/fpsyt.2022.810685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Letter fluency task (LFT) is a tool that measures memory, executive function, and language function but lacks a definite cutoff value to define abnormalities. We used the optical signals of functional near-infrared spectroscopy (fNIRS) to study the differences in power and connectivity between the high-functioning and low-functioning participants while performing three successive LFTs, as well as the relationships between the brain network/power and LFT performance. We found that the most differentiating factor between these two groups was network topology rather than activation power. The high-functional group (7 men and 10 women) displayed higher left intra-hemispheric global efficiency, nodal strength, and shorter characteristic path length in the first section. They then demonstrated a higher power over the left Broca's area than the right corresponding area in the latter two sections. The low-LFT group (9 men and 11 women) displayed less left-lateralized connectivity and activation power. LFT performance was only related to the network topology rather than the power values, which was only presented in the low-functioning group in the second section. The direct correlation between power and connectivity primarily existed in the inter-hemispheric network, with the timing relationship also seeming to be present. In conclusion, the high-functioning group presented more prominent left-lateralized intra-hemispheric network connectivity and power activation, particularly in the Broca's area. The low-functioning group seemed to prefer using other networks, like the inter-hemispheric, rather than having a single focus on left intra-hemispheric connectivity. The network topology seemed to better reflect the LFT performance than did the power values.
Collapse
Affiliation(s)
- Hsin Tung
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Center of Faculty Development, Taichung Veterans General Hospital, Taichung, Taiwan.,Division of Epilepsy, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Hao Lin
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Peiyuan F Hsieh
- Division of Epilepsy, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Tsuo-Hung Lan
- Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan.,Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Chang Chiang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yung-Yang Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Syu-Jyun Peng
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
9
|
Weng SM, Fang SY, Li LW, Fan X, Wang YY, Jiang T. Intra-operative mapping and language protection in glioma. Chin Med J (Engl) 2021; 134:2398-2402. [PMID: 34561323 PMCID: PMC8654440 DOI: 10.1097/cm9.0000000000001751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 12/29/2022] Open
Abstract
ABSTRACT The demand for acquiring different languages has increased with increasing globalization. However, knowledge of the modification of the new language in the neural language network remains insufficient. Although many details of language function have been detected based on the awake intra-operative mapping results, the language neural network of the bilingual or multilingual remains unclear, which raises difficulties in clinical practice to preserve patients' full language ability in neurosurgery. In this review, we present a summary of the current findings regarding the structure of the language network and its evolution as the number of acquired languages increased in glioma patients. We then discuss a new insight into the awake intra-operative mapping protocol to reduce surgical risks during the preservation of language function in multilingual patients with glioma.
Collapse
Affiliation(s)
- Shi-Meng Weng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Sheng-Yu Fang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Lian-Wang Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Xing Fan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Yin-Yan Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors, Chinese Academy of Medical Sciences, Beijing 100070, China
| |
Collapse
|
10
|
Chen PY, Chen CL, Tseng HM, Hsu YC, Huang CWC, Chan WP, Tseng WYI. Differential Associations of White Matter Brain Age With Language-Related Mechanisms in Word-Finding Ability Across the Adult Lifespan. Front Aging Neurosci 2021; 13:701565. [PMID: 34539378 PMCID: PMC8446673 DOI: 10.3389/fnagi.2021.701565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/30/2021] [Indexed: 12/02/2022] Open
Abstract
Research on cognitive aging has established that word-finding ability declines progressively in late adulthood, whereas semantic mechanism in the language system is relatively stable. The aim of the present study was to investigate the associations of word-finding ability and language-related components with brain aging status, which was quantified by using the brain age paradigm. A total of 616 healthy participants aged 18–88 years from the Cambridge Centre for Ageing and Neuroscience databank were recruited. The picture-naming task was used to test the participants’ language-related word retrieval ability through word-finding and word-generation processes. The naming response time (RT) and accuracy were measured under a baseline condition and two priming conditions, namely phonological and semantic priming. To estimate brain age, we established a brain age prediction model based on white matter (WM) features and estimated the modality-specific predicted age difference (PAD). Mass partial correlation analyses were performed to test the associations of WM-PAD with the cognitive performance measures under the baseline and two priming conditions. We observed that the domain-specific language WM-PAD and domain-general WM-PAD were significantly correlated with general word-finding ability. The phonological mechanism, not the semantic mechanism, in word-finding ability was significantly correlated with the domain-specific WM-PAD. In contrast, all behavioral measures of the conditions in the picture priming task were significantly associated with chronological age. The results suggest that chronological aging and WM aging have differential effects on language-related word retrieval functions, and support that cognitive alterations in word-finding functions involve not only the domain-specific processing within the frontotemporal language network but also the domain-general processing of executive functions in the fronto-parieto-occipital (or multi-demand) network. The findings further indicate that the phonological aspect of word retrieval ability declines as cerebral WM ages, whereas the semantic aspect is relatively resilient or unrelated to WM aging.
Collapse
Affiliation(s)
- Pin-Yu Chen
- Molecular Imaging Centre, National Taiwan University, Taipei, Taiwan
| | - Chang-Le Chen
- Molecular Imaging Centre, National Taiwan University, Taipei, Taiwan
| | - Hui-Ming Tseng
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | - Chi-Wen Christina Huang
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Radiology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wing P Chan
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Radiology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Yih I Tseng
- Molecular Imaging Centre, National Taiwan University, Taipei, Taiwan.,Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
11
|
Tung H, Lin WH, Lan TH, Hsieh PF, Chiang MC, Lin YY, Peng SJ. Network reorganization during verbal fluency task in fronto-temporal epilepsy: A functional near-infrared spectroscopy study. J Psychiatr Res 2021; 138:541-549. [PMID: 33990025 DOI: 10.1016/j.jpsychires.2021.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/25/2021] [Accepted: 05/01/2021] [Indexed: 10/21/2022]
Abstract
This is the first study to use functional near-infrared spectroscopy (fNIRS) to investigate how the lateralization of the epileptogenic zone affects the reconfiguration of task-related network patterns. Eleven left fronto-temporal epilepsy (L-FTE) and 11 right fronto-temporal epilepsy (R-FTE), as well as 22 age- and gender-matched controls, were enrolled. Signals from 52-channel fNIRS were recorded while the subject was undertaking verbal fluency tasks (VFTs), which included categorical (CFT) and letter (LFT) fluency tasks. Three analytic methods were used to study the network topology: network-based analysis, hub identification, and proportional threshold to select the top 20% strongest connections for both graph theory parameters and clinical correlation. Performance of CFT is accomplished primarily using the ventral pathway, and bilateral ventral pathways are augmented in fronto-temporal epilepsy patients by strengthening the inter-hemispheric connections, especially for R-FTE. LFT mainly employed the dorsal pathway, and further prioritized the left dorsal pathway in strengthening intra-hemispheric connections in fronto-temporal epilepsy, especially L-FTE. The top 20% of the strongest connections only present differences in CFT network compared with the controls. R-FTE increased inter-hemispheric network density, while L-FTE decreased inter-hemispheric average characteristic path length. Accumulative seizure burden only affects L-FTE network. Better LFT performance and longer educational years seem to promote left fronto-temporal networks, and decreased the demand from RR intra-hemispheric connectivity in L-FTE. LFT scores in R-FTE are maintained by preserved RR intra-hemispheric networks. However, CFT scores and educational years seem to have no effect on the CFT network topology in both FTE.
Collapse
Affiliation(s)
- Hsin Tung
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taiwan; Center of Faculty Development, Taichung Veterans General Hospital, Taiwan; Division of Epilepsy, Neurological Institute, Taichung Veterans General Hospital, Taiwan
| | - Wei-Hao Lin
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsuo-Hung Lan
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Peiyuan F Hsieh
- Division of Epilepsy, Neurological Institute, Taichung Veterans General Hospital, Taiwan
| | - Ming-Chang Chiang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yung-Yang Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taiwan; Department of Critical Care Medicine, Taipei Veterans General Hospital, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Syu-Jyun Peng
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
12
|
Torres-Prioris MJ, López-Barroso D, Càmara E, Fittipaldi S, Sedeño L, Ibáñez A, Berthier ML, García AM. Neurocognitive signatures of phonemic sequencing in expert backward speakers. Sci Rep 2020; 10:10621. [PMID: 32606382 PMCID: PMC7326922 DOI: 10.1038/s41598-020-67551-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/10/2020] [Indexed: 11/09/2022] Open
Abstract
Despite its prolific growth, neurolinguistic research on phonemic sequencing has largely neglected the study of individuals with highly developed skills in this domain. To bridge this gap, we report multidimensional signatures of two experts in backward speech, that is, the capacity to produce utterances by reversing the order of phonemes while retaining their identity. Our approach included behavioral assessments of backward and forward speech alongside neuroimaging measures of voxel-based morphometry, diffusion tensor imaging, and resting-state functional connectivity. Relative to controls, both backward speakers exhibited behavioral advantages for reversing words and sentences of varying complexity, irrespective of working memory skills. These patterns were accompanied by increased grey matter volume, higher mean diffusivity, and enhanced functional connectivity along dorsal and ventral stream regions mediating phonological and other linguistic operations, with complementary support of areas subserving associative-visual and domain-general processes. Still, the specific loci of these neural patterns differed between both subjects, suggesting individual variability in the correlates of expert backward speech. Taken together, our results offer new vistas on the domain of phonemic sequencing, while illuminating neuroplastic patterns underlying extraordinary language abilities.
Collapse
Affiliation(s)
- María José Torres-Prioris
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Malaga, Spain.,Area of Psychobiology, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Diana López-Barroso
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Malaga, Spain.,Area of Psychobiology, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Estela Càmara
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sol Fittipaldi
- Universidad de San Andrés, Vito Dumas 284, B1644BID Victoria, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Lucas Sedeño
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Agustín Ibáñez
- Universidad de San Andrés, Vito Dumas 284, B1644BID Victoria, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Universidad Autónoma del Caribe, Barranquilla, Colombia.,Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile.,Global Brain Health Institute, University of California, San Francisco, United States
| | - Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Malaga, Spain
| | - Adolfo M García
- Universidad de San Andrés, Vito Dumas 284, B1644BID Victoria, Buenos Aires, Argentina. .,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina. .,Global Brain Health Institute, University of California, San Francisco, United States. .,Faculty of Education, National University of Cuyo (UNCuyo), Mendoza, Argentina. .,Departamento de Lingüística Y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
13
|
Saying thirteen instead of forty-two but saying lale instead of tale: is number production special? Cortex 2020; 128:281-296. [PMID: 32442931 DOI: 10.1016/j.cortex.2020.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/28/2020] [Accepted: 03/12/2020] [Indexed: 10/24/2022]
Abstract
Stimulus Type Effect on Phonological and Semantic errors (STEPS) occurs when a person, following brain damage, produces phonemic errors with non-number words (e.g., lale for tale), but produces semantic errors with number words (e.g., thirteen for forty-two). Despite the relative frequency of this phenomenon, it has received little scholarly attention thus far. To explain STEPS, the Building Blocks hypothesis has been proposed (Cohen, Verstichel, & Dehaene, 1997; Dotan & Friedmann, 2015): the phonological output buffer includes single phonemes as the units of speech production for words, whereas entire number words are the building blocks of multi-digit production. Impairment in the phonological output buffer results in the incorrect selection of these units, leading to phonemic errors when producing non-number words, but semantic errors when producing numbers. In the present study we consider two patients, one with a deficit in the phonological output buffer, and one with a deficit in the phonological input buffer but with a preserved phonological output buffer. Number word and non-number word repetition, naming, and reading abilities were assessed. As expected, STEPS was found in the patient with deficits in the phonological output buffer in the three tasks; more notably, evidence of STEPS was also found for the patient with deficits in the phonological input buffer in the repetition task. Since our results cannot be fully explained by the Building Blocks hypothesis in its present form, we discuss the suitability of this hypothesis for the current data, and consider alternative accounts of STEPS.
Collapse
|
14
|
Ryu H, Park CH. Structural Characteristic of the Arcuate Fasciculus in Patients with Fluent Aphasia Following Intracranial Hemorrhage: A Diffusion Tensor Tractography Study. Brain Sci 2020; 10:brainsci10050280. [PMID: 32384620 PMCID: PMC7287646 DOI: 10.3390/brainsci10050280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 11/22/2022] Open
Abstract
This study investigated the relationship between the structural characteristics of the left arcuate fasciculus (AF) reconstructed using diffusion tensor image (DTI) and the type of fluent aphasia according to hemorrhage lesions in patients with fluent aphasia following intracranial hemorrhage (ICH). Five patients with fluent aphasia following ICH (three males, two females; mean age 55.0 years; range 47 to 60 years) and with sixteen age-matched heathy control subjects were involved in this study. The ICHs of patients 1 and 2 were located in the left parietal lobe and the left basal ganglia. ICHs were located in the left anterior temporal of patient 3, the left temporal lobe of patient 4, and the left frontal lobe of patient 5. We assessed patients’ language function using K-WAB (the Korean version of the Western Aphasia Battery) and reconstructed the AF using DTI. We measured DTI parameters including the fractional anisotropy (FA), tract volume (TV), fiber number (FN), and mean diffusivity (MD). All patients showed neural tract injury (the decrement of FA, TV, and FN and increment of MD). The left AFs in patients 1 and 2 were shifted from Broca’s and Wernicke’s territories. The destruction of Wernicke’s territory resulted in conduction or transcortical sensory aphasia in patients 3 and 4. The structural difference of the AF in patients following ICH in the left hemisphere was associated with various types of fluent aphasia.
Collapse
|
15
|
Beuter A, Balossier A, Vassal F, Hemm S, Volpert V. Cortical stimulation in aphasia following ischemic stroke: toward model-guided electrical neuromodulation. BIOLOGICAL CYBERNETICS 2020; 114:5-21. [PMID: 32020368 DOI: 10.1007/s00422-020-00818-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
The aim of this paper is to integrate different bodies of research including brain traveling waves, brain neuromodulation, neural field modeling and post-stroke language disorders in order to explore the opportunity of implementing model-guided, cortical neuromodulation for the treatment of post-stroke aphasia. Worldwide according to WHO, strokes are the second leading cause of death and the third leading cause of disability. In ischemic stroke, there is not enough blood supply to provide enough oxygen and nutrients to parts of the brain, while in hemorrhagic stroke, there is bleeding within the enclosed cranial cavity. The present paper focuses on ischemic stroke. We first review accumulating observations of traveling waves occurring spontaneously or triggered by external stimuli in healthy subjects as well as in patients with brain disorders. We examine the putative functions of these waves and focus on post-stroke aphasia observed when brain language networks become fragmented and/or partly silent, thus perturbing the progression of traveling waves across perilesional areas. Secondly, we focus on a simplified model based on the current literature in the field and describe cortical traveling wave dynamics and their modulation. This model uses a biophysically realistic integro-differential equation describing spatially distributed and synaptically coupled neural networks producing traveling wave solutions. The model is used to calculate wave parameters (speed, amplitude and/or frequency) and to guide the reconstruction of the perturbed wave. A stimulation term is included in the model to restore wave propagation to a reasonably good level. Thirdly, we examine various issues related to the implementation model-guided neuromodulation in the treatment of post-stroke aphasia given that closed-loop invasive brain stimulation studies have recently produced encouraging results. Finally, we suggest that modulating traveling waves by acting selectively and dynamically across space and time to facilitate wave propagation is a promising therapeutic strategy especially at a time when a new generation of closed-loop cortical stimulation systems is about to arrive on the market.
Collapse
Affiliation(s)
- Anne Beuter
- Bordeaux INP, University of Bordeaux, Bordeaux, France.
| | - Anne Balossier
- Service de neurochirurgie fonctionnelle et stéréotaxique, AP-HM La Timone, Aix-Marseille University, Marseille, France
| | - François Vassal
- INSERM U1028 Neuropain, UMR 5292, Centre de Recherche en Neurosciences, Universités Lyon 1 et Saint-Etienne, Saint-Étienne, France
- Service de Neurochirurgie, Hôpital Nord, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Étienne, France
| | - Simone Hemm
- School of Life Sciences, Institute for Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland, 4132, Muttenz, Switzerland
| | - Vitaly Volpert
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622, Villeurbanne, France
- INRIA Team Dracula, INRIA Lyon La Doua, 69603, Villeurbanne, France
- People's Friendship University of Russia (RUDN University), Miklukho-Maklaya St, Moscow, Russian Federation, 117198
| |
Collapse
|
16
|
Faulkner JW, Wilshire CE. Mapping eloquent cortex: A voxel-based lesion-symptom mapping study of core speech production capacities in brain tumour patients. BRAIN AND LANGUAGE 2020; 200:104710. [PMID: 31739187 DOI: 10.1016/j.bandl.2019.104710] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/21/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
This study used voxel-based lesion-symptom mapping to examine the cortical and white matter regions associated with language production impairments in a sample of 63 preoperative tumour patients. We identified four cognitive functions considered crucial for spoken language production: semantic-to-lexical mapping (selecting the appropriate lexical label for the intended concept); phonological encoding (retrieving the word's phonological form); articulatory-motor planning (programming the articulatory motor movements); and goal-driven language selection (exerting top-down control over the words selected for production). Each participant received a score estimating their competence on each function. We then mapped the region(s) where pathology was significantly associated with low scores. For semantic-to-lexical mapping, the critical map encompassed portions of the left posterior middle and inferior temporal gyri, extending into posterior fusiform gyrus, overlapping substantially with the territory of the inferior longitudinal fasciculus. For phonological encoding, the map encompassed the left inferior parietal lobe and posterior middle temporal gyrus, overlapping with the territory of the inferior longitudinal and posterior arcuate fasciculi. For articulatory-motor planning, the map encompassed parts of the left frontal pole, frontal operculum, and inferior frontal gyrus, and overlapped with the territory of the frontal aslant tract. Finally, the map for goal-driven language selection encompassed the left frontal pole and the anterior cingulate cortex. We compare our findings with those from other neuropsychological samples, and conclude that the study of tumour patients offers evidence that complements that available from other populations.
Collapse
Affiliation(s)
- Josh W Faulkner
- School of Psychology, Victoria University of Wellington, New Zealand
| | | |
Collapse
|
17
|
Torres-Prioris MJ, López-Barroso D, Roé-Vellvé N, Paredes-Pacheco J, Dávila G, Berthier ML. Repetitive verbal behaviors are not always harmful signs: Compensatory plasticity within the language network in aphasia. BRAIN AND LANGUAGE 2019; 190:16-30. [PMID: 30665003 DOI: 10.1016/j.bandl.2018.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/14/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Repetitive verbal behaviors such as conduite d'approche (CdA) and mitigated echolalia (ME) are well-known phenomena since early descriptions of aphasia. Nevertheless, there is no substantial fresh knowledge on their clinical features, neural correlates and treatment interventions. In the present study we take advantage of three index cases of chronic fluent aphasia showing CdA, ME or both symptoms to dissect their clinical and neural signatures. Using multimodal neuroimaging (structural magnetic resonance imaging and [18]-fluorodeoxyglucose positron emission tomography during resting state), we found that despite of the heterogeneous lesions in terms of etiology (stroke, traumatic brain injury), volume and location, CdA was present when the lesion affected in greater extent the left dorsal language pathway, while ME resulted from preferential damage to the left ventral stream. The coexistence of CdA and ME was associated with involvement of areas overlapping with the structural lesions and metabolic derangements described in the subjects who showed one of these symptoms (CdA or ME). These findings suggest that CdA and ME represent the clinical expression of plastic changes that occur within the spared language network and its interconnected areas in order to compensate for the linguistic functions that previously relied on the activity of the damaged pathway. We discuss the results in the light of this idea and consider alternative undamaged neural networks that may support CdA and ME.
Collapse
Affiliation(s)
- María José Torres-Prioris
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Malaga, Spain; Area of Psychobiology, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain; Research Laboratory on the Neuroscience of Language, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.
| | - Diana López-Barroso
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Malaga, Spain; Area of Psychobiology, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain; Research Laboratory on the Neuroscience of Language, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.
| | - Núria Roé-Vellvé
- Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias, General Foundation of the University of Malaga, Malaga, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - José Paredes-Pacheco
- Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias, General Foundation of the University of Malaga, Malaga, Spain; Molecular Imaging and Medical Physics Group, Department of Psychiatry, Radiology and Public Health, University of Compostela, Galicia, Spain
| | - Guadalupe Dávila
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Malaga, Spain; Area of Psychobiology, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain; Research Laboratory on the Neuroscience of Language, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Malaga, Spain; Research Laboratory on the Neuroscience of Language, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| |
Collapse
|
18
|
Eeles E, Teodorczuk A, Mitleton-Kelly E. Reconceptualizing delirium as a disorder of complex system failure. Med Hypotheses 2018; 118:121-126. [PMID: 30037597 DOI: 10.1016/j.mehy.2018.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/19/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
Abstract
Delirium is conceptually elusive and falls outside of conventional biomedical models. Positivist theoretical paradigms of single linear causality are therefore insufficient to provide mechanistic enlightenment. Delirium does, however, share parallels with features of failure within a complex system. Lessons from complex system theory provide important potential healthcare dividends with respect to delirium. The brain is complex and exhibits emergence, a feature of consciousness, which is crucially impacted in delirium. Volatility, non-linear relationships and multiple point failures are cardinal features of complex system failure, thence delirium. An alternative emphasis away from end of chain analysis and oversimplification of cause and an attempt to avoid introduction of new forms of failure in a responsive healthcare environment are lessons from complex system theory. Insights from complex systems provide potentially important mechanistic underpinnings and new lines of research enquiry for delirium. Not least, a fuller understanding of delirium from a complex system viewpoint may help transform management and outcomes in one of the biggest challenges of acute healthcare.
Collapse
Affiliation(s)
- E Eeles
- 4th Floor, Internal Medicine Services, The Prince Charles Hospital, Brisbane, Queensland 4032, Australia; The Northside Clinical Unit, The Prince Charles Hospital, The University of Queensland, Brisbane 4032, Australia.
| | - A Teodorczuk
- School of Medicine, Griffiths University, Gold Coast Campus, Queensland 4222, Australia; The Northside Clinical Unit, The Prince Charles Hospital, The University of Queensland, Brisbane 4032, Australia
| | - E Mitleton-Kelly
- LSE Complexity Research Group, London School of Economics and Political Science, Houghton St, London WC2A 2AE, UK
| |
Collapse
|