Treatment with platelet-rich plasma attenuates proprioceptor abnormalities in a rat model of postpartum stress urinary incontinence.
Int Urogynecol J 2022;
33:2159-2167. [PMID:
35195739 DOI:
10.1007/s00192-022-05112-w]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/27/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION AND HYPOTHESIS
Stress urinary incontinence (SUI) is the most prevalent form of urinary incontinence, and vaginal delivery is a major risk factor for developing SUI. We evaluated the hypothesis that applying the autologous platelet rich plasma (PRP) to the pelvic floor muscles via injection affects expression of proprioceptors and improves postpartum stress urinary incontinence (PSUI) in rats.
METHODS
Virgin female Sprague-Dawley rats were divided into control (n = 10) and experimental group(n = 20). Vaginal dilation was used to establish PSUI, and the rats in the experimental group were further divided into the PSUI group (n = 10) and PSUI+PRP group (n = 10). Pelvic floor muscles from rats in the PSUI+PRP group were positioned under ultrasound guidance for PRP injection. The morphology and number of pelvic floor muscle spindles were assessed using H&E staining, proprioceptors evaluated by gold chloride staining, and changes in the expression of neurotrophin-3 (NT-3) and skeletal myosin MY-32 determined by immunohistochemistry.
RESULTS
After 28 days,bladder leak point pressure (BLPP) and abdominal leaking-urine point pressure (ALPP) in rats with PSUI were significantly lower than in control animals (P<0.01). Both BLPP and ALPP increased significantly in the PSUI+PRP group (P<0.01). Compared with the control group, muscle spindle morphology and structure in the PSUI and PSUI+PRP groups had different pathological changes,with higher variations in the PSUI group. The positive signals for NT-3/MY-32 expression in control rats were higher than those from PSUI or PSUI+PRP groups, however, the expression for NT-3/MY-32 in PSUI+PRP animals was higher than that seen in the PSUI group (P < 0.01).
CONCLUSIONS
PSUI rats have an abnormal expression of pelvic proprioceptors, which affect proprioceptive function, and further the contractibility of pelvic floor muscles. A PRP injection may restore the sensory function of pelvic proprioceptors, thus improving urine leakage in PSUI rats.
Collapse