1
|
Martínez-Suárez PC, Valdevila Figueira JA, Luna-Cambi JM, Guerrero-Granda CE, Santiesteban RV. Memory Monitoring Recognition Test (MMRT), a new measurement of stimular source monitoring: Software and comprehension. PLoS One 2025; 20:e0321991. [PMID: 40294007 PMCID: PMC12036938 DOI: 10.1371/journal.pone.0321991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/14/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Reality monitoring allows the evaluation and monitoring of reality through the assignment of information to internal or external sources, which is crucial to differentiate real events from imaginary ones. In schizophrenics, monitoring seems to be related to an error in the allocation processes, giving rise to false perceptions such as visual hallucinations, which are associated with a poor prognosis. This error can appear almost imperceptibly at an early age in life, making carrying out predictive or evaluation tests with paper and pencil unattractive. The computerization of technical resources that allow the monitoring of reality offers a new tool to evaluate the attribution process, in an effective and agile way and with easy understanding of cognitive deficits in a friendly environment. OBJECTIVE Computerize the Memory Monitoring and Recognition Test (MMRT) evaluate reality monitoring through verbal memory tasks, improving its implementation, optimizing interaction with the user and perfecting the recording of memory errors that could indicate psychotic symptoms. METHOD The MMRT was developed using Python and Kivy, facilitating the creation of cross-platform user interfaces. The test is structured in stages, allows voice accessibility for people with visual disabilities and provides comprehensive user management. The test data is stored in the cloud using MongoDB as the database system. Additionally, the software incorporates speech recognition using the gTTS library and generates a performance report in PDF format, documenting external, internal and global attribution errors. RESULT The computerized version of the MMRT allowed the detection of specific errors in memory monitoring, as well as the performance of repeated measurements to evaluate long-term memory and working memory. CONCLUSION Preliminary applications suggest its usefulness in identifying early cognitive markers of schizophrenia, facilitating the measurement of reality monitoring through attribution errors. Developed with open-source technology and an interface adaptable to various platforms, the MMRT represents an accessible and efficient tool for psychological evaluation, with innovative potential in the study of reality monitoring.
Collapse
Affiliation(s)
- Pedro C. Martínez-Suárez
- Catholic University of Cuenca, Cuenca-Ecuador
- Psychology and Psychiatry Research Group (GIPSI), Ecuador
| | - José Alejandro Valdevila Figueira
- Psychology and Psychiatry Research Group (GIPSI), Ecuador
- Institute of Neurosciences of Guayaquil, Guayaquil-Ecuador
- Ecotec University, Guayaquil-Ecuador
| | | | | | | |
Collapse
|
2
|
Jia Y, Kudo K, Jariwala N, Tarapore P, Nagarajan S, Subramaniam K. Causal role of medial superior frontal cortex on enhancing neural information flow and self-agency judgments in the self-agency network. Neuroimage 2025; 313:121245. [PMID: 40306346 DOI: 10.1016/j.neuroimage.2025.121245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/28/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025] Open
Abstract
Self-agency is being aware of oneself as the agent of one's thoughts and actions. Self-agency is necessary for successful interactions with the outside world (reality-monitoring). Prior research has shown that the medial superior prefrontal gyri (mPFC/SFG) may represent one neural correlate underlying self-agency judgments. However, the causal relationship remains unknown. Here, we applied high-frequency 10 Hz repetitive transcranial magnetic stimulation (rTMS) to modulate the excitability of the mPFC/SFG site that we have previously shown to mediate self-agency. For the first time, we delineate causal neural mechanisms, revealing precisely how rTMS modulates SFG excitability and impacts directional neural information flow in the self-agency network by implementing innovative magnetoencephalography (MEG) phase-transfer entropy (PTE) metrics, measured from pre-to-post rTMS. We found that, compared to control rTMS, enhancing SFG excitability by rTMS induced significant increases in information flow between SFG and specific cingulate and paracentral regions in the self-agency network in delta-theta, alpha, and gamma bands, which predicted improved self-agency judgments. This is the first multimodal imaging study in which we implement MEG PTE metrics of 5D imaging of space, frequency and time, to provide cutting-edge analyses of the causal neural mechanisms of how rTMS enhances SFG excitability and improves neural information flow between distinct regions in the self-agency network to potentiate improved self-agency judgments. Our findings provide a novel perspective for investigating causal neural mechanisms underlying self-agency and create a path towards developing novel neuromodulation interventions to improve self-agency that will be particularly useful for patients with psychosis who exhibit severe impairments in self-agency.
Collapse
Affiliation(s)
- Yingxin Jia
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Kiwamu Kudo
- Medical Imaging Center, Ricoh Company Ltd., Kanazawa, Japan
| | - Namasvi Jariwala
- Department of Clinical Psychology, Palo Alto University, Palo Alto, CA, USA
| | - Phiroz Tarapore
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Srikantan Nagarajan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Karuna Subramaniam
- Department of Psychiatry, University of California, San Francisco, CA, USA.
| |
Collapse
|
3
|
Rathcke T. The timing of speech-to-speech synchronization is governed by the P-center. Commun Biol 2025; 8:107. [PMID: 39843616 PMCID: PMC11754750 DOI: 10.1038/s42003-025-07544-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Affiliation(s)
- Tamara Rathcke
- Department of Linguistics, University of Konstanz, Universitätsstraße 10, Konstanz, 78464, Germany.
| |
Collapse
|
4
|
Ranjan S, Odegaard B. Reality monitoring and metacognitive judgments in a false-memory paradigm. Neurosci Res 2024; 201:3-17. [PMID: 38007192 DOI: 10.1016/j.neures.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 10/19/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
How well do we distinguish between different memory sources when the information from imagination and perception is similar? And how do metacognitive (confidence) judgments differ across different sources of experiences? To study these questions, we developed a reality monitoring task using semantically related words from the Deese-Roediger-McDermott (DRM) paradigm of false memories. In an orientation phase, participants either perceived word pairs or had to voluntarily imagine the second word of a word pair. In a test phase, participants viewed words and had to judge whether the paired word was previously perceived, imagined, or new. Results revealed an interaction between memory source and judgment type on both response rates and confidence judgments: reality monitoring was better for new and perceived (compared to imagined) sources, and participants often incorrectly reported imagined experiences to be perceived. Individuals exhibited similar confidence between correct imagined source judgments and incorrect imagined sources reported to be perceived. Modeling results indicated that the observed judgments were likely due to an externalizing bias (i.e., a bias to judge the memory source as perceived). Additionally, we found that overall metacognitive ability was best in the perceived source. Together, these results reveal a source-dependent effect on response rates and confidence ratings, and provide evidence that observers are surprisingly prone to externalizing biases when monitoring their own memories.
Collapse
|
5
|
Tan S, Jia Y, Jariwala N, Zhang Z, Brent K, Houde J, Nagarajan S, Subramaniam K. A randomised controlled trial investigating the causal role of the medial prefrontal cortex in mediating self-agency during speech monitoring and reality monitoring. Sci Rep 2024; 14:5108. [PMID: 38429404 PMCID: PMC10907680 DOI: 10.1038/s41598-024-55275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
Self-agency is the awareness of being the agent of one's own thoughts and actions. Self-agency is essential for interacting with the outside world (reality-monitoring). The medial prefrontal cortex (mPFC) is thought to be one neural correlate of self-agency. We investigated whether mPFC activity can causally modulate self-agency on two different tasks of speech-monitoring and reality-monitoring. The experience of self-agency is thought to result from making reliable predictions about the expected outcomes of one's own actions. This self-prediction ability is necessary for the encoding and memory retrieval of one's own thoughts during reality-monitoring to enable accurate judgments of self-agency. This self-prediction ability is also necessary for speech-monitoring where speakers consistently compare auditory feedback (what we hear ourselves say) with what we expect to hear while speaking. In this study, 30 healthy participants are assigned to either 10 Hz repetitive transcranial magnetic stimulation (rTMS) to enhance mPFC excitability (N = 15) or 10 Hz rTMS targeting a distal temporoparietal site (N = 15). High-frequency rTMS to mPFC enhanced self-predictions during speech-monitoring that predicted improved self-agency judgments during reality-monitoring. This is the first study to provide robust evidence for mPFC underlying a causal role in self-agency, that results from the fundamental ability of improving self-predictions across two different tasks.
Collapse
Affiliation(s)
- Songyuan Tan
- Department of Psychiatry, University of California, 513 Parnassus Avenue, HSE604, San Francisco, CA, 94143, USA
| | - Yingxin Jia
- Department of Psychiatry, University of California, 513 Parnassus Avenue, HSE604, San Francisco, CA, 94143, USA
| | - Namasvi Jariwala
- Department of Psychology, Palo Alto University, Palo Alto, CA, USA
| | - Zoey Zhang
- Department of Otolaryngology, University of California, San Francisco, San Francisco, CA, USA
| | - Kurtis Brent
- Department of Otolaryngology, University of California, San Francisco, San Francisco, CA, USA
| | - John Houde
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Srikantan Nagarajan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Karuna Subramaniam
- Department of Psychiatry, University of California, 513 Parnassus Avenue, HSE604, San Francisco, CA, 94143, USA.
| |
Collapse
|
6
|
Jia Y, Kudo K, Jariwala N, Tarapore P, Nagarajan S, Subramaniam K. Causal role of medial superior frontal cortex on enhancing neural information flow and self-agency judgments in the self-agency network. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.13.24302764. [PMID: 38405834 PMCID: PMC10888992 DOI: 10.1101/2024.02.13.24302764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Self-agency is being aware of oneself as the agent of one's thoughts and actions. Self-agency is necessary for successful interactions with the outside world (reality-monitoring). Prior research has shown that the medial superior prefrontal gyri (mPFC/SFG) may represent one neural correlate underlying self-agency judgments. However, the causal relationship remains unknown. Here, we applied high-frequency 10Hz repetitive transcranial magnetic stimulation (rTMS) to modulate the excitability of the mPFC/SFG site that we have previously shown to mediate self-agency. For the first time, we delineate causal neural mechanisms, revealing precisely how rTMS modulates SFG excitability and impacts directional neural information flow in the self-agency network by implementing innovative magnetoencephalography (MEG) phase-transfer entropy (PTE) metrics, measured from pre-to-post rTMS. We found that, compared to control rTMS, enhancing SFG excitability by rTMS induced significant increases in information flow between SFG and specific cingulate and paracentral regions in the self-agency network in delta-theta, alpha, and gamma bands, which predicted improved self-agency judgments. This is the first multimodal imaging study in which we implement MEG PTE metrics of 5D imaging of space, frequency and time, to provide cutting-edge analyses of the causal neural mechanisms of how rTMS enhances SFG excitability and improves neural information flow between distinct regions in the self-agency network to potentiate improved self-agency judgments. Our findings provide a novel perspective for investigating causal neural mechanisms underlying self-agency and create a path towards developing novel neuromodulation interventions to improve self-agency that will be particularly useful for patients with psychosis who exhibit severe impairments in self-agency.
Collapse
|
7
|
Hinkley LBN, Haas SS, Cheung SW, Nagarajan SS, Subramaniam K. Reduced neural connectivity in the caudate anterior head predicts hallucination severity in schizophrenia. Schizophr Res 2023; 261:1-5. [PMID: 37678144 PMCID: PMC10878029 DOI: 10.1016/j.schres.2023.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/13/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Caudate functional abnormalities have been identified as one critical neural substrate underlying sensory gating impairments that lead to auditory phantom hallucinations in both patients with schizophrenia (SZ) and tinnitus, characterized by the perception of internally generated sounds in the absence of external environmental auditory stimuli. In this study, we tested the hypothesis as to whether functional connectivity abnormalities in distinct caudate subdivisions implicated in sensory gating and auditory phantom percepts in tinnitus, which are currently being localized for neuromodulation targeting using deep brain stimulation techniques, would be associated with auditory phantom hallucination severity in SZ. METHODS Twenty five SZ and twenty eight demographically-matched healthy control (HC) participants, completed this fMRI resting-state study and clinical assessments. RESULTS Between-group seed-to-voxel analyses revealed only one region, the caudate anterior head, which showed reduced functional connectivity with the thalamus that survived whole-brain multiple comparison corrections. Importantly, connectivity between the caudate anterior head with thalamus negatively correlated with hallucination severity. CONCLUSIONS In the present study, we deliver the first evidence of caudate subdivision specificity for the neural pathophysiology underlying hallucinations in schizophrenia within a sensory gating framework that has been developed for auditory phantoms in patients with tinnitus. Our findings provide transdiagnostic convergent evidence for the role of the caudate in the gating of auditory phantom hallucinations, observed across patients with SZ and tinnitus by specifying the anterior caudate division is key to mediation of hallucinations, and creating a path towards personalized treatment approaches to arrest auditory phantom hallucinations from reaching perceptual awareness.
Collapse
Affiliation(s)
- Leighton B N Hinkley
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| | - Shalaila S Haas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Steven W Cheung
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA 94143, USA; Surgical Services, San Francisco Veterans Health Care System, San Francisco, CA 94121, USA
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| | - Karuna Subramaniam
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
8
|
Tan S, Jia Y, Jariwala N, Zhang Z, Brent K, Houde J, Nagarajan S, Subramaniam K. A randomised controlled trial investigating the causal role of the medial prefrontal cortex in mediating self-agency during speech monitoring and reality monitoring. RESEARCH SQUARE 2023:rs.3.rs-3280599. [PMID: 37790323 PMCID: PMC10543504 DOI: 10.21203/rs.3.rs-3280599/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Self-agency is being aware of oneself as the agent of one's thoughts and actions. Self agency is necessary for successful interactions with the external world (reality-monitoring). The medial prefrontal cortex (mPFC) is considered to represent one neural correlate underlying self-agency. We investigated whether mPFC activity can causally modulate self-agency on two different tasks involving speech-monitoring and reality-monitoring. The experience of self-agency is thought to result from being able to reliably predict the sensory outcomes of one's own actions. This self-prediction ability is necessary for successfully encoding and recalling one's own thoughts to enable accurate self-agency judgments during reality-monitoring tasks. This self-prediction ability is also necessary during speech-monitoring tasks where speakers compare what we hear ourselves say in auditory feedback with what we predict we will hear while speaking. In this randomised-controlled study, heathy controls (HC) are assigned to either high-frequency transcranial magnetic stimulation (TMS) to enhance mPFC excitability or TMS targeting a control site. After TMS to mPFC, HC improved self-predictions during speech-monitoring tasks that predicted improved self-agency judgments during different reality-monitoring tasks. These first-in-kind findings demonstrate the mechanisms of how mPFC plays a causal role in self-agency that results from the fundamental ability of improving self-predictions across two different tasks.
Collapse
Affiliation(s)
- Songyuan Tan
- University of California San Francisco Medical Center
| | - Yingxin Jia
- University of California San Francisco Medical Center
| | | | - Zoey Zhang
- University of California San Francisco Medical Center
| | - Kurtis Brent
- University of California San Francisco Medical Center
| | - John Houde
- University of California San Francisco Medical Center
| | | | | |
Collapse
|
9
|
Lavallé L, Brunelin J, Jardri R, Haesebaert F, Mondino M. The neural signature of reality-monitoring: A meta-analysis of functional neuroimaging studies. Hum Brain Mapp 2023; 44:4372-4389. [PMID: 37246722 PMCID: PMC10318245 DOI: 10.1002/hbm.26387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/21/2023] [Accepted: 05/11/2023] [Indexed: 05/30/2023] Open
Abstract
Distinguishing imagination and thoughts from information we perceived from the environment, a process called reality-monitoring, is important in everyday situations. Although reality monitoring seems to overlap with the concept of self-monitoring, which allows one to distinguish self-generated actions or thoughts from those generated by others, the two concepts remain largely separate cognitive domains and their common brain substrates have received little attention. We investigated the brain regions involved in these two cognitive processes and explored the common brain regions they share. To do this, we conducted two separate coordinate-based meta-analyses of functional magnetic resonance imaging studies assessing the brain regions involved in reality- and self-monitoring. Few brain regions survived threshold-free cluster enhancement family-wise multiple comparison correction (p < .05), likely owing to the small number of studies identified. Using uncorrected statistical thresholds recommended by Signed Differential Mapping with Permutation of Subject Images, the meta-analysis of reality-monitoring studies (k = 9 studies including 172 healthy subjects) revealed clusters in the lobule VI of the cerebellum, the right anterior medial prefrontal cortex and anterior thalamic projections. The meta-analysis of self-monitoring studies (k = 12 studies including 192 healthy subjects) highlighted the involvement of a set of brain regions including the lobule VI of the left cerebellum and fronto-temporo-parietal regions. We showed with a conjunction analysis that the lobule VI of the cerebellum was consistently engaged in both reality- and self-monitoring. The current findings offer new insights into the common brain regions underlying reality-monitoring and self-monitoring, and suggest that the neural signature of the self that may occur during self-production should persist in memories.
Collapse
Affiliation(s)
- Layla Lavallé
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2BronFrance
- CH le VinatierBronFrance
| | - Jérôme Brunelin
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2BronFrance
- CH le VinatierBronFrance
| | - Renaud Jardri
- Université de Lille, INSERM U‐1172, Lille Neurosciences & Cognition, Plasticity & Subjectivity TeamLilleFrance
| | - Frédéric Haesebaert
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2BronFrance
- CH le VinatierBronFrance
| | - Marine Mondino
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2BronFrance
- CH le VinatierBronFrance
| |
Collapse
|
10
|
Kim KX, Dale CL, Ranasinghe KG, Kothare H, Beagle AJ, Lerner H, Mizuiri D, Gorno-Tempini ML, Vossel K, Nagarajan SS, Houde JF. Impaired Speaking-Induced Suppression in Alzheimer's Disease. eNeuro 2023; 10:ENEURO.0056-23.2023. [PMID: 37221089 PMCID: PMC10249944 DOI: 10.1523/eneuro.0056-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 05/25/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease involving cognitive impairment and abnormalities in speech and language. Here, we examine how AD affects the fidelity of auditory feedback predictions during speaking. We focus on the phenomenon of speaking-induced suppression (SIS), the auditory cortical responses' suppression during auditory feedback processing. SIS is determined by subtracting the magnitude of auditory cortical responses during speaking from listening to playback of the same speech. Our state feedback control (SFC) model of speech motor control explains SIS as arising from the onset of auditory feedback matching a prediction of that feedback onset during speaking, a prediction that is absent during passive listening to playback of the auditory feedback. Our model hypothesizes that the auditory cortical response to auditory feedback reflects the mismatch with the prediction: small during speaking, large during listening, with the difference being SIS. Normally, during speaking, auditory feedback matches its predictions, then SIS will be large. Any reductions in SIS will indicate inaccuracy in auditory feedback prediction not matching the actual feedback. We investigated SIS in AD patients [n = 20; mean (SD) age, 60.77 (10.04); female (%), 55.00] and healthy controls [n = 12; mean (SD) age, 63.68 (6.07); female (%), 83.33] through magnetoencephalography (MEG)-based functional imaging. We found a significant reduction in SIS at ∼100 ms in AD patients compared with healthy controls (linear mixed effects model, F (1,57.5) = 6.849, p = 0.011). The results suggest that AD patients generate inaccurate auditory feedback predictions, contributing to abnormalities in AD speech.
Collapse
Affiliation(s)
- Kyunghee X Kim
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA 94117
| | - Corby L Dale
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94117
| | - Kamalini G Ranasinghe
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158
| | - Hardik Kothare
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94117
| | - Alexander J Beagle
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158
| | - Hannah Lerner
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158
| | - Danielle Mizuiri
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94117
| | | | - Keith Vossel
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94117
| | - John F Houde
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA 94117
| |
Collapse
|
11
|
Chao SC, Daliri A. Effects of Gradual and Sudden Introduction of Perturbations on Adaptive Responses to Formant-Shift and Formant-Clamp Perturbations. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:1588-1599. [PMID: 37059081 PMCID: PMC10457088 DOI: 10.1044/2023_jslhr-21-00435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/30/2022] [Accepted: 01/31/2023] [Indexed: 05/11/2023]
Abstract
PURPOSE When the speech motor system encounters errors, it generates adaptive responses to compensate for the errors. Unlike errors induced by formant-shift perturbations, errors induced by formant-clamp perturbations do not correspond with the speaker's speech (i.e., degraded motor-to-auditory correspondence). We previously showed that adaptive responses to formant-clamp perturbations are smaller than responses to formant-shift perturbations when perturbations are introduced gradually. This study examined responses to formant-clamp and formant-shift perturbations when perturbations are introduced suddenly. METHOD One group of participants (n = 30) experienced gradually introduced formant-clamp and formant-shift perturbations, and another group (n = 30) experienced suddenly introduced formant-clamp and formant-shift perturbations. We designed the perturbations based on participant-specific vowel configurations such that a participant's first and second formants of /ɛ/ were perturbed toward their /æ/. To estimate adaptive responses, we measured formant changes (0-100 ms of the vowel) in response to the formant perturbations. RESULTS We found that (a) the difference between responses to formant-clamp and formant-shift perturbations was smaller when the perturbations were introduced suddenly and (b) responses to suddenly introduced (but not gradually introduced) formant-shift perturbations positively correlated with responses to formant-clamp perturbations. CONCLUSIONS These results showed that the speech motor system responds to errors induced by formant-shift and formant-clamp perturbations more differently when perturbations are introduced gradually than suddenly. Overall, the quality of errors (formant-shift vs. formant-clamp) and the manner of introducing errors (gradually vs. suddenly) modulate the speech motor system's evaluations of and responses to errors. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.22406422.
Collapse
Affiliation(s)
- Sara-Ching Chao
- College of Health Solutions, Arizona State University, Tempe
| | - Ayoub Daliri
- College of Health Solutions, Arizona State University, Tempe
| |
Collapse
|
12
|
Jia Y, Jariwala N, Hinkley LBN, Nagarajan S, Subramaniam K. Abnormal resting-state functional connectivity underlies cognitive and clinical symptoms in patients with schizophrenia. Front Hum Neurosci 2023; 17:1077923. [PMID: 36875232 PMCID: PMC9976937 DOI: 10.3389/fnhum.2023.1077923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Introduction The cognitive and psychotic symptoms in patients with schizophrenia (SZ) are thought to result from disrupted brain network connectivity. Methods We capitalize on the high spatiotemporal resolution of magnetoencephalography imaging (MEG) to record spontaneous neuronal activity in resting state networks in 21 SZ compared with 21 healthy controls (HC). Results We found that SZ showed significant global disrupted functional connectivity in delta-theta (2-8 Hz), alpha (8-12 Hz), and beta (12-30 Hz) frequencies, compared to HC. Disrupted global connectivity in alpha frequencies with bilateral frontal cortices was associated with more severe clinical psychopathology (i.e., positive psychotic symptoms). Specifically, aberrant connectivity in beta frequencies between the left primary auditory cortex and cerebellum, was linked to greater hallucination severity in SZ. Disrupted connectivity in delta-theta frequencies between the medial frontal and left inferior frontal cortex was associated with impaired cognition. Discussion The multivariate techniques employed in the present study highlight the importance of applying our source reconstruction techniques which leverage the high spatial localization abilities of MEG for estimating neural source activity using beamforming methods such as SAM (synthetic aperture morphometry) to reconstruct the source of brain activity, together with functional connectivity assessments, assayed with imaginary coherence metrics, to delineate how neurophysiological dysconnectivity in specific oscillatory frequencies between distinct regions underlie the cognitive and psychotic symptoms in SZ. The present findings employ powerful techniques in spatial and time-frequency domains to provide potential neural biomarkers underlying neuronal network dysconnectivity in SZ that will inform the development of innovations in future neuromodulation treatment development.
Collapse
Affiliation(s)
- Yingxin Jia
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Namasvi Jariwala
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Leighton B. N. Hinkley
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Srikantan Nagarajan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Karuna Subramaniam
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
13
|
Karlin R, Parrell B. Speakers monitor auditory feedback for temporal alignment and linguistically relevant duration. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:3142. [PMID: 36586849 PMCID: PMC9719414 DOI: 10.1121/10.0015247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/12/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Recent altered auditory feedback studies suggest that speakers adapt to external perturbations to the duration of syllable nuclei and codas, but there is mixed evidence for adaptation of onsets. This study investigates this asymmetry, testing three hypotheses: (1) onsets adapt only if the perturbation produces a categorical error; (2) previously observed increases in vowel duration stem from feedback delays, rather than adaptation to durational perturbations; (3) gestural coordination between onsets and nuclei prevents independent adaptation of each segment. Word-initial consonant targets received shortening perturbations to approximate a different phoneme (cross-category; VOT of /t/ > /d/; duration of /s/ > /z/) or lengthening perturbations to generate a long version of the same phoneme (within-category; /k/ > [khh]; /ʃ/ > [ʃː]). Speakers adapted the duration of both consonants in the cross-category condition; in the within-category condition, only /k/ showed adaptive shortening. Speakers also lengthened all delayed segments while perturbation was active, even when segment duration was not perturbed. Finally, durational changes in syllable onsets and nuclei were not correlated, indicating that speakers can adjust each segment independently. The data suggest that speakers mainly attend to deviations from the predicted timing of motor states but do adjust for durational errors when linguistically relevant.
Collapse
Affiliation(s)
- Robin Karlin
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Benjamin Parrell
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
14
|
Kothare H, Schneider S, Mizuiri D, Hinkley L, Bhutada A, Ranasinghe K, Honma S, Garrett C, Klein D, Naunheim M, Yung K, Cheung S, Rosen C, Courey M, Nagarajan S, Houde J. Temporal specificity of abnormal neural oscillations during phonatory events in laryngeal dystonia. Brain Commun 2022; 4:fcac031. [PMID: 35356032 PMCID: PMC8962453 DOI: 10.1093/braincomms/fcac031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 01/03/2022] [Accepted: 02/09/2022] [Indexed: 11/25/2022] Open
Abstract
Laryngeal dystonia is a debilitating disorder of voicing in which the laryngeal muscles are intermittently in spasm resulting in involuntary interruptions during speech. The central pathophysiology of laryngeal dystonia, underlying computational impairments in vocal motor control, remains poorly understood. Although prior imaging studies have found aberrant activity in the CNS during phonation in patients with laryngeal dystonia, it is not known at what timepoints during phonation these abnormalities emerge and what function may be impaired. To investigate this question, we recruited 22 adductor laryngeal dystonia patients (15 female, age range = 28.83-72.46 years) and 18 controls (eight female, age range = 27.40-71.34 years). We leveraged the fine temporal resolution of magnetoencephalography to monitor neural activity around glottal movement onset, subsequent voice onset and after the onset of pitch feedback perturbations. We examined event-related beta-band (12-30 Hz) and high-gamma-band (65-150 Hz) neural oscillations. Prior to glottal movement onset, we observed abnormal frontoparietal motor preparatory activity. After glottal movement onset, we observed abnormal activity in the somatosensory cortex persisting through voice onset. Prior to voice onset and continuing after, we also observed abnormal activity in the auditory cortex and the cerebellum. After pitch feedback perturbation onset, we observed no differences between controls and patients in their behavioural responses to the perturbation. But in patients, we did find abnormal activity in brain regions thought to be involved in the auditory feedback control of vocal pitch (premotor, motor, somatosensory and auditory cortices). Our study results confirm the abnormal processing of somatosensory feedback that has been seen in other studies. However, there were several remarkable findings in our study. First, patients have impaired vocal motor activity even before glottal movement onset, suggesting abnormal movement preparation. These results are significant because (i) they occur before movement onset, abnormalities in patients cannot be ascribed to deficits in vocal performance and (ii) they show that neural abnormalities in laryngeal dystonia are more than just abnormal responses to sensory feedback during phonation as has been hypothesized in some previous studies. Second, abnormal auditory cortical activity in patients begins even before voice onset, suggesting abnormalities in setting up auditory predictions before the arrival of auditory feedback at voice onset. Generally, activation abnormalities identified in key brain regions within the speech motor network around various phonation events not only provide temporal specificity to neuroimaging phenotypes in laryngeal dystonia but also may serve as potential therapeutic targets for neuromodulation.
Collapse
Affiliation(s)
- Hardik Kothare
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Sarah Schneider
- Department of Otolaryngology—Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Danielle Mizuiri
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Leighton Hinkley
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Abhishek Bhutada
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Kamalini Ranasinghe
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Susanne Honma
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Coleman Garrett
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - David Klein
- Department of Otolaryngology—Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Molly Naunheim
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Katherine Yung
- San Francisco Voice & Swallowing, San Francisco, CA, USA
| | - Steven Cheung
- Department of Otolaryngology—Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Clark Rosen
- Department of Otolaryngology—Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Mark Courey
- Department of Otolaryngology—Head and Neck Surgery, Mount Sinai Health System, New York, NY, USA
| | - Srikantan Nagarajan
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
- Department of Otolaryngology—Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - John Houde
- Department of Otolaryngology—Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
15
|
Drifting pitch awareness after exposure to altered auditory feedback. Atten Percept Psychophys 2022; 84:2027-2039. [PMID: 35088392 DOI: 10.3758/s13414-022-02441-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 11/08/2022]
Abstract
Various studies have claimed that the sense of agency is based on a comparison between an internal estimate of an action's outcome and sensory feedback. With respect to speech, this presumes that speakers have a stable prearticulatory representation of their own speech. However, recent research suggests that the sense of agency is flexible and thus in some contexts we may feel like we produced speech that was not actually produced by us. The current study tested whether the estimated pitch of one's articulation (termed pitch awareness) is affected by manipulated auditory feedback. In four experiments, 56 participants produced isolated vowels while being exposed to pitch-shifted auditory feedback. After every vocalization, participants indicated whether they thought the feedback was higher or lower than their actual production. After exposure to a block of high-pitched auditory feedback (+500 cents pitch shift), participants were more likely to label subsequent auditory feedback as "lower than my actual production," suggesting that prolonged exposure to high-pitched auditory feedback led to a drift in participants' pitch awareness. The opposite pattern was found after exposure to a constant -500 cents pitch shift. This suggests that pitch awareness is not solely based on a prearticulatory representation of intended speech or on a sensory prediction, but also on sensory feedback. We propose that this drift in pitch awareness could be indicative of a sense of agency over the pitch-shifted auditory feedback in the exposure block. If so, this suggests that the sense of agency over vocal output is flexible.
Collapse
|
16
|
Franken MK, Hartsuiker RJ, Johansson P, Hall L, Lind A. EXPRESS: Don't blame yourself: Conscious source monitoring modulates feedback control during speech production. Q J Exp Psychol (Hove) 2022; 76:15-27. [PMID: 35014590 DOI: 10.1177/17470218221075632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sensory feedback plays an important role in speech motor control. One of the main sources of evidence for this are studies where online auditory feedback is perturbed during ongoing speech. In motor control, it is therefore crucial to distinguish between sensory feedback and externally generated sensory events. This is called source monitoring. Previous altered feedback studies have taken non-conscious source monitoring for granted, as automatic responses to altered sensory feedback imply that the feedback changes are processed as self-caused. However, the role of conscious source monitoring is unclear. The current study investigated whether conscious source monitoring modulates responses to unexpected pitch changes in auditory feedback. During a first block, some participants spontaneously attributed the pitch shifts to themselves (self-blamers) while others attributed them to an external source (other-blamers). Before block 2, all participants were informed that the pitch shifts were experimentally induced. The self-blamers then showed a reduction in response magnitude in block 2 compared with block 1, while the other-blamers did not. This suggests that conscious source monitoring modulates responses to altered auditory feedback, such that consciously ascribing feedback to oneself leads to larger compensation responses. These results can be accounted for within the dominant comparator framework, where conscious source monitoring could modulate the gain on sensory feedback. Alternatively, the results can be naturally explained from an inferential framework, where conscious knowledge may bias the priors in a Bayesian process to determine the most likely source of a sensory event.
Collapse
Affiliation(s)
- Matthias K Franken
- Experimental Psychology, Ghent University, Henri Dunantlaan 2, 9000 Ghent, Belgium 26656.,Currently at Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Robert J Hartsuiker
- Experimental Psychology, Ghent University, Henri Dunantlaan 2, 9000 Ghent, Belgium 26656
| | - Petter Johansson
- Department of Philosophy, Lund University Cognitive Science, Lund University, Box 192, 221 00 Lund, Sweden 5193
| | - Lars Hall
- Department of Philosophy, Lund University Cognitive Science, Lund University, Box 192, 221 00 Lund, Sweden 5193
| | - Andreas Lind
- Department of Philosophy, Lund University Cognitive Science, Lund University, Box 192, 221 00 Lund, Sweden 5193
| |
Collapse
|
17
|
The Role of the Medial Prefontal Cortex in Self-Agency in Schizophrenia. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2021; 6. [PMID: 34761121 PMCID: PMC8577427 DOI: 10.20900/jpbs.20210017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Schizophrenia is a disorder of the self. In particular, patients show cardinal deficits in self-agency (i.e., the experience and awareness of being the agent of one’s own thoughts and actions) that directly contribute to positive psychotic symptoms of hallucinations and delusions and distort reality monitoring (defined as distinguishing self-generated information from externally-derived information). Predictive coding models suggest that the experience of self-agency results from a minimal prediction error between the predicted sensory consequence of a self-generated action and the actual outcome. In other words, the experience of self-agency is thought to be driven by making reliable predictions about the expected outcomes of one’s own actions. Most of the agency literature has focused on the motor system; here we present a novel viewpoint that examines agency from a different lens using distinct tasks of reality monitoring and speech monitoring. The self-prediction mechanism that leads to self-agency is necessary for reality monitoring in that self-predictions represent a critical precursor for the successful encoding and memory retrieval of one’s own thoughts and actions during reality monitoring to enable accurate self-agency judgments (i.e., accurate identification of self-generated information). This self-prediction mechanism is also critical for speech monitoring where we continually compare auditory feedback (i.e., what we hear ourselves say) with what we expect to hear. Prior research has shown that the medial prefrontal cortex (mPFC) may represent one potential neural substrate of this self-prediction mechanism. Unfortunately, patients with schizophrenia (SZ) show mPFC hypoactivity associated with self-agency impairments on reality and speech monitoring tasks, as well as aberrant mPFC functional connectivity during intrinsic measures of agency during resting states that predicted worsening psychotic symptoms. Causal neurostimulation and neurofeedback techniques can move the frontiers of schizophrenia research into a new era where we implement techniques to manipulate excitability in key neural regions, such as the mPFC, to modulate patients’ reliance on self-prediction mechanisms on distinct tasks of reality and speech monitoring. We hypothesize these findings will show that mPFC provides a unitary basis for self-agency, driven by reliance on self-prediction mechanisms, which will facilitate the development of new targeted treatments in patients with schizophrenia.
Collapse
|
18
|
Kothare H, Raharjo I, Ramanarayanan V, Ranasinghe K, Parrell B, Johnson K, Houde JF, Nagarajan SS. Sensorimotor adaptation of speech depends on the direction of auditory feedback alteration. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:3682. [PMID: 33379892 PMCID: PMC7738200 DOI: 10.1121/10.0002876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 05/04/2023]
Abstract
A hallmark feature of speech motor control is its ability to learn to anticipate and compensate for persistent feedback alterations, a process referred to as sensorimotor adaptation. Because this process involves adjusting articulation to counter the perceived effects of altering acoustic feedback, there are a number of factors that affect it, including the complex relationship between acoustics and articulation and non-uniformities of speech perception. As a consequence, sensorimotor adaptation is hypothesised to vary as a function of the direction of the applied auditory feedback alteration in vowel formant space. This hypothesis was tested in two experiments where auditory feedback was altered in real time, shifting the frequency values of the first and second formants (F1 and F2) of participants' speech. Shifts were designed on a subject-by-subject basis and sensorimotor adaptation was quantified with respect to the direction of applied shift, normalised for individual speakers. Adaptation was indeed found to depend on the direction of the applied shift in vowel formant space, independent of shift magnitude. These findings have implications for models of sensorimotor adaptation of speech.
Collapse
Affiliation(s)
- Hardik Kothare
- UC Berkeley - UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, California 94143, USA
| | - Inez Raharjo
- UC Berkeley - UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, California 94143, USA
| | | | - Kamalini Ranasinghe
- Department of Neurology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Benjamin Parrell
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Keith Johnson
- Department of Linguistics, University of California, Berkeley, Berkeley, California 94720, USA
| | - John F Houde
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, California 94143, USA
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
19
|
Franken MK, Hartsuiker RJ, Johansson P, Hall L, Wartenberg T, Lind A. Does passive sound attenuation affect responses to pitch-shifted auditory feedback? THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:4108. [PMID: 31893741 DOI: 10.1121/1.5134449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
The role of auditory feedback in vocal production has mainly been investigated by altered auditory feedback (AAF) in real time. In response, speakers compensate by shifting their speech output in the opposite direction. Current theory suggests this is caused by a mismatch between expected and observed feedback. A methodological issue is the difficulty to fully isolate the speaker's hearing so that only AAF is presented to their ears. As a result, participants may be presented with two simultaneous signals. If this is true, an alternative explanation is that responses to AAF depend on the contrast between the manipulated and the non-manipulated feedback. This hypothesis was tested by varying the passive sound attenuation (PSA). Participants vocalized while auditory feedback was unexpectedly pitch shifted. The feedback was played through three pairs of headphones with varying amounts of PSA. The participants' responses were not affected by the different levels of PSA. This suggests that across all three headphones, PSA is either good enough to make the manipulated feedback dominant, or differences in PSA are too small to affect the contribution of non-manipulated feedback. Overall, the results suggest that it is important to realize that non-manipulated auditory feedback could affect responses to AAF.
Collapse
Affiliation(s)
- Matthias K Franken
- Experimental Psychology, Ghent University, Henri Dunantlaan 2, 9000 Ghent, Belgium
| | - Robert J Hartsuiker
- Experimental Psychology, Ghent University, Henri Dunantlaan 2, 9000 Ghent, Belgium
| | - Petter Johansson
- Department of Philosophy, Lund University Cognitive Science, Lund University, Box 192, 221 00 Lund, Sweden
| | - Lars Hall
- Department of Philosophy, Lund University Cognitive Science, Lund University, Box 192, 221 00 Lund, Sweden
| | - Tijmen Wartenberg
- Hearing Technology at Wireless, acoustics, environment & expert systems (WAVES), Information Technology, Ghent University, Technologiepark-Zwijnaarde 126, 9052 Ghent, Belgium
| | - Andreas Lind
- Department of Philosophy, Lund University Cognitive Science, Lund University, Box 192, 221 00 Lund, Sweden
| |
Collapse
|
20
|
Naunheim ML, Yung KC, Schneider SL, Henderson-Sabes J, Kothare H, Hinkley LB, Mizuiri D, Klein DJ, Houde JF, Nagarajan SS, Cheung SW. Cortical networks for speech motor control in unilateral vocal fold paralysis. Laryngoscope 2019; 129:2125-2130. [PMID: 30570142 DOI: 10.1002/lary.27730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 09/09/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To evaluate brain networks for motor control of voice production in patients with treated unilateral vocal fold paralysis (UVFP). STUDY DESIGN Cross-sectional comparison. METHODS Nine UVFP patients treated by type I thyroplasty, and 11 control subjects were compared using magnetoencephalographic imaging to measure beta band (12-30 Hz) neural oscillations during voice production with perturbation of pitch feedback. Differences in beta band power relative to baseline were analyzed to identify cortical areas with abnormal activity within the 400 ms perturbation period and 125 ms beyond, for a total of 525 ms. RESULTS Whole-brain task-induced beta band activation patterns were qualitatively similar in both treated UVFP patients and healthy controls. Central vocal motor control plasticity in UVFP was expressed within constitutive components of central human communication networks identified in healthy controls. Treated UVFP patients exhibited statistically significant enhancement (P < 0.05) in beta band activity following pitch perturbation onset in left auditory cortex to 525 ms, left premotor cortex to 225 ms, and left and right frontal cortex to 525 ms. CONCLUSION This study further corroborates that a peripheral motor impairment of the larynx can affect central cortical networks engaged in auditory feedback processing, vocal motor control, and judgment of voice-as-self. Future research to dissect functional relationships among constitutive cortical networks could reveal neurophysiological bases of central contributions to voice production impairment in UVFP. Those novel insights would motivate innovative treatments to improve voice production and reduce misalignment of voice-quality judgment between clinicians and patients. LEVEL OF EVIDENCE 3b Laryngoscope, 129:2125-2130, 2019.
Collapse
Affiliation(s)
- Molly L Naunheim
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California, U.S.A
| | - Katherine C Yung
- San Francisco Voice & Swallowing, University of California, San Francisco, California, U.S.A
| | - Sarah L Schneider
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California, U.S.A
| | - Jennifer Henderson-Sabes
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California, U.S.A
| | - Hardik Kothare
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, U.S.A
| | - Leighton B Hinkley
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, U.S.A
| | - Danielle Mizuiri
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, U.S.A
| | - David J Klein
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California, U.S.A
| | - John F Houde
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California, U.S.A
| | - Srikantan S Nagarajan
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California, U.S.A
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, U.S.A
| | - Steven W Cheung
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California, U.S.A
| |
Collapse
|
21
|
Perez PL, Cueva KL, Rosen CA, Young VN, Naunheim ML, Yung KC, Schneider SL, Mizuiri D, Klein DJ, Houde JF, Hinkley LB, Nagarajan SS, Cheung SW. Cortical-Basal Ganglia-Cerebellar Networks in Unilateral Vocal Fold Paralysis: A Pilot Study. Laryngoscope 2019; 130:460-464. [PMID: 31070785 DOI: 10.1002/lary.28004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 11/09/2022]
Abstract
OBJECTIVES/HYPOTHESIS To evaluate differences in cortical-basal ganglia-cerebellar functional connectivity between treated unilateral vocal fold paralysis (UVFP) and healthy control cohorts using resting-state functional magnetic resonance imaging (RS-fMRI). STUDY DESIGN Cross-sectional. METHODS Ten UVFP study patients treated by type I thyroplasty and 12 control subjects underwent RS-fMRI on a 3-Tesla scanner to evaluate differences in functional connectivity of whole-brain networks. Spontaneous RS-fMRI data were collected using a gradient echo planar pulse sequence, preprocessed, and analyzed to compare seed-to-voxel maps between the two cohorts. Seeds were placed in the caudate, putamen, and globus pallidus divisions of the basal ganglia in both hemispheres. Group contrasts were tested for statistical significance using two-tailed unpaired t tests corrected for multiple comparisons with a cluster false discovery rate threshold of P < .05. RESULTS UVFP patients demonstrated increased connectivity between both caudate nuclei and the precuneus, a node of the default mode network, compared to healthy controls. Both caudate nuclei also showed decreased connectivity with the left cerebellar hemisphere. The putamen and globus pallidus divisions of the basal ganglia were not abnormally connected to other brain structures. CONCLUSIONS UVFP patients treated by type I thyroplasty exhibited long-term alterations of cortical-basal ganglia-cerebellar networks thought to be important for self-referential voice quality awareness and learning processes that compensate for changes to the paralyzed hemilarynx. This pilot study on relatively small cohorts adds to growing evidence for persistent central nervous system changes in treated UVFP. Replication studies with larger numbers of subjects will be essential to validate and extend findings. LEVEL OF EVIDENCE 3b Laryngoscope, 130:460-464, 2020.
Collapse
Affiliation(s)
- Philip L Perez
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, California, U.S.A
| | - Kristine L Cueva
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, California, U.S.A
| | - Clark A Rosen
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, California, U.S.A
| | - VyVy N Young
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, California, U.S.A
| | - Molly L Naunheim
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, California, U.S.A
| | - Katherine C Yung
- San Francisco Voice and Swallowing, University of California, San Francisco, San Francisco, California, U.S.A
| | - Sarah L Schneider
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, California, U.S.A
| | - Danielle Mizuiri
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, California, U.S.A.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, U.S.A
| | - David J Klein
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, California, U.S.A
| | - John F Houde
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, California, U.S.A
| | - Leighton B Hinkley
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, U.S.A
| | - Srikantan S Nagarajan
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, California, U.S.A.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, U.S.A
| | - Steven W Cheung
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, California, U.S.A
| |
Collapse
|
22
|
Beta-band activity in medial prefrontal cortex predicts source memory encoding and retrieval accuracy. Sci Rep 2019; 9:6814. [PMID: 31048735 PMCID: PMC6497659 DOI: 10.1038/s41598-019-43291-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 04/11/2019] [Indexed: 01/20/2023] Open
Abstract
Reality monitoring is defined as the ability to distinguish internally self-generated information from externally-derived information. The medial prefrontal cortex (mPFC) is a key brain region subserving reality monitoring and has been shown to be activated specifically during the retrieval of self-generated information. However, it is unclear if mPFC is activated during the encoding of self-generated information into memory. If so, it is important to understand whether successful retrieval of self-generated information critically depends on enhanced neural activity within mPFC during initial encoding of this self-generated information. We used magnetoencephalographic imaging (MEGI) to determine the timing and location of cortical activity during a reality-monitoring task involving self generated contextual source memory encoding and retrieval. We found both during encoding and retrieval of self-generated information, when compared to externally-derived information, mPFC showed significant task induced oscillatory power modulation in the beta-band. During initial encoding of self-generated information, greater mPFC beta-band power reductions occurred within a time window of −700 ms to −500 ms prior to vocalization. This increased activity in mPFC was not observed during encoding of externally-derived information. Additionally, increased mPFC activity during encoding of self-generated information predicted subsequent retrieval accuracy of this self-generated information. Beta-band activity in mPFC was also observed during the initial retrieval of self-generated information within a time window of 300 to 500 ms following stimulus onset and correlated with accurate retrieval performance of self-generated information. Together, these results further highlight the importance of mPFC in mediating the initial generation and awareness of participants’ internal thoughts.
Collapse
|
23
|
Houde JF, Gill JS, Agnew Z, Kothare H, Hickok G, Parrell B, Ivry RB, Nagarajan SS. Abnormally increased vocal responses to pitch feedback perturbations in patients with cerebellar degeneration. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:EL372. [PMID: 31153297 PMCID: PMC6517184 DOI: 10.1121/1.5100910] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 05/24/2023]
Abstract
Cerebellar degeneration (CD) has deleterious effects on speech motor behavior. Recently, a dissociation between feedback and feedforward control of speaking was observed in CD: Whereas CD patients exhibited reduced adaptation across trials to consistent formant feedback alterations, they showed enhanced within-trial compensation for unpredictable formant feedback perturbations. In this study, it was found that CD patients exhibit abnormally increased within-trial vocal compensation responses to unpredictable pitch feedback perturbations. Taken together with recent findings, the results indicate that CD is associated with a general hypersensitivity to auditory feedback during speaking.
Collapse
Affiliation(s)
- John F Houde
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California 94143, , ,
| | - Jeevit S Gill
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California 94143, , ,
| | - Zarinah Agnew
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California 94143, , ,
| | - Hardik Kothare
- Program in Bioengineering, University of California San Francisco and University of California Berkeley, San Francisco, California 94143,
| | - Gregory Hickok
- Department of Cognitive Sciences and Department of Language Science, University of California Irvine, Irvine, California 92697,
| | - Benjamin Parrell
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, Wisconsin 53706,
| | - Richard B Ivry
- Department of Psychology, University of California Berkeley, Berkeley, California 94720,
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging and Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California 94143,
| |
Collapse
|