1
|
Hua A, Guillaume M, Rodrigues ST, Barbieri FA, Bonnet CT. Benefits of swaying while standing to higher selective attention in goal-directed visual tasks. Hum Mov Sci 2025; 99:103318. [PMID: 39721412 DOI: 10.1016/j.humov.2024.103318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND AND AIM Sit-stand desks allow individuals to work in either sitting or standing position. While previous studies have reported better performance on the attention network test (ANT) while standing compared to sitting, the relationship between body sway induced by these positions and ANT performance remains unclear. In this study, we aimed to test and expect benefits of body sway (in terms of magnitude and complexity) and improvements in ANT performance when standing (e.g. shorter reaction time) but not when sitting. METHODS Seventeen young adults (mean age = 21) performed reading tasks, questionnaires and ANTs sequentially in both standing and sitting positions. We measured body kinematics from the head, upper back and lower back during the study. We calculated the linear (i.e., velocity) and nonlinear (i.e., fractal dimension) variables of body sway, reaction times and alerting scores from the ANT. Our results showed that when standing, the complexity of sway was significantly negatively correlated with ANT reaction times (shorter reaction time indicating better performance) and significantly positively correlated with the scores of alerting from ANT. Hence, consistent with our expectation, ANT performance was higher when standing potentially because participants adjusted their sway. In contrast, while sitting, there was no significant correlation between body sway and ANT performance. Overall, the complexity of body sway in the standing position may increase alertness levels, potentially leading to better visual task performance. Practically, these findings suggest that working occasionally in the standing position is beneficial, as dynamic postural sway can enhance visual task performance.
Collapse
Affiliation(s)
- Anke Hua
- Univ. Lille, CNRS, UMR 9193 - SCALab, Sciences Cognitives et Sciences Affectives, F-59000 Lille, France
| | - Mélen Guillaume
- Univ. Lille, CNRS, UMR 9193 - SCALab, Sciences Cognitives et Sciences Affectives, F-59000 Lille, France; Univ. Grenoble Alpes, CNRS, LPNC UMR 5105, F-38000 Grenoble, France
| | - Sergio T Rodrigues
- Sao Paulo State University (UNESP), Department of Physical Education, Faculty of Sciences, Laboratory of Information, Vision and Action (LIVIA), Bauru, São Paulo, Brazil
| | - Fabio A Barbieri
- Human Movement Research Laboratory, Department of Physical Education, School of Sciences, São Paulo State University, Bauru, São Paulo, Brazil
| | - Cédrick T Bonnet
- Univ. Lille, CNRS, UMR 9193 - SCALab, Sciences Cognitives et Sciences Affectives, F-59000 Lille, France.
| |
Collapse
|
2
|
Ball JD, Davies A, Gurung D, Mankoo A, Panerai R, Minhas JS, Robinson T, Beishon L. The effect of posture on the age dependence of neurovascular coupling. Physiol Rep 2024; 12:e70031. [PMID: 39218618 PMCID: PMC11366444 DOI: 10.14814/phy2.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Previous studies report contradicting age-related neurovascular coupling (NVC). Few studies assess postural effects, but less investigate relationships between age and NVC within different postures. Therefore, this study investigated the effect of age on NVC in different postures with varying cognitive stimuli. Beat-to-beat blood pressure, heart rate and end-tidal carbon dioxide were assessed alongside middle and posterior cerebral artery velocities (MCAv and PCAv, respectively) using transcranial Doppler ultrasonography in 78 participants (31 young-, 23 middle- and 24 older-aged) with visuospatial (VST) and attention tasks (AT) in various postures at two timepoints (T2 and T3). Between-group significance testing utilized one-way analysis-of-variance (ANOVA) (Tukey post-hoc). Mixed three-way/one-way ANOVAs explored task, posture, and age interactions. Significant effects of posture on NVC were driven by a 3.8% increase from seated to supine. For AT, mean supine %MCAv increase was greatest in younger (5.44%) versus middle (0.12%) and older-age (0.09%) at T3 (p = 0.005). For VST, mean supine %PCAv increase was greatest at T2 and T3 in middle (10.99%/10.12%) and older-age (17.36%/17.26%) versus younger (9.44%/8.89%) (p = 0.004/p = 0.002). We identified significant age-related NVC effects with VST-induced hyperactivation. This may reflect age-related compensatory processes in supine. Further work is required, using complex stimuli while standing/walking, examining NVC, aging and falls.
Collapse
Affiliation(s)
- James D. Ball
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
| | - Aaron Davies
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
| | - Dewakar Gurung
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
| | - Alex Mankoo
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
| | - Ronney Panerai
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research CentreGlenfield HospitalLeicesterUK
| | - Jatinder S. Minhas
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research CentreGlenfield HospitalLeicesterUK
| | - Thompson Robinson
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research CentreGlenfield HospitalLeicesterUK
| | - Lucy Beishon
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
| |
Collapse
|
3
|
Xie P, Nie Z, Zhang T, Xu G, Sun A, Chen T, Lv Y. FNIRS based study of brain network characteristics in children with cerebral palsy during bilateral lower limb movement. Med Phys 2024; 51:4434-4446. [PMID: 38683184 DOI: 10.1002/mp.17106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/23/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Motor dysfunctions in children with cerebral palsy (CP) are caused by nonprogressive brain damage. Understanding the functional characteristics of the brain is important for rehabilitation. PURPOSE This paper aimed to study the brain networks of children with CP during bilateral lower limb movement using functional near-infrared spectroscopy (fNIRS) and to explore effective fNIRS indices for reflecting functional brain activity. METHODS Using fNIRS, cerebral oxygenation signals in the bilateral prefrontal cortex (LPFC/RPFC) and motor cortex (LMC/RMC) were recorded from fifteen children with spastic CP and seventeen children with typical development (CTDs) in the resting state and during bilateral lower limb movement. Functional connectivity matrices based on phase-locking values (PLVs) were calculated using Hilbert transformation, and binary networks were constructed at different sparsity levels. Network metrics such as the clustering coefficient, global efficiency, local efficiency, and transitivity were calculated. Furthermore, the time-varying curves of network metrics during movement were obtained by dividing the time window and using sparse inverse covariance matrices. Finally, conditional Granger causality (GC) was used to explore the causal relationships between different brain regions. RESULTS Compared to CTDs, the connectivity between RMC-RPFC (p = 0.017) and RMC-LMC (p = 0.002) in the brain network was decreased in children with CP, and the clustering coefficient (p = 0.003), global efficiency (p = 0.034), local efficiency (p = 0.015), and transitivity (p = 0.009) were significantly lower. The standard deviation of the changes in global efficiency of children with CP during motion was also greater than that of CTDs. Using GC, it was found that there was a significant increase in causal strength from the RMC to the RPFC (p = 0.04) and from the RMC to the LMC (p = 0.042) in children with CP during motion. Additionally, there were significant negative correlations between the PLV of LMC-RMC (p = 0.002) and the Gross Motor Function Classification System (GMFCS) and between the GMFCS and the clustering coefficient (p = 0.01). CONCLUSIONS During rehabilitation training of the lower limbs, there were significant differences in brain network indices between children with CP and CTDs. The indicators proposed in this paper are effective at evaluating motor function and the real-time impact of rehabilitation training on the brain network and have great potential for application in guiding clinical motor function assessment and planning rehabilitation strategies.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Zichao Nie
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, Hebei, China
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Tengyu Zhang
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Gongcheng Xu
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Aiping Sun
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Tiandi Chen
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Nanchang City Key Laboratory of Integrated Medical and Industrial Technology, Nanchang university, Nanchang, China
| | - Yan Lv
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, Hebei, China
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| |
Collapse
|
4
|
Wang Z, Liao M, Li Q, Zhang Y, Liu H, Fan Z, Bu L. Effects of three different rehabilitation games' interaction on brain activation using functional near-infrared spectroscopy. Physiol Meas 2020; 41:125005. [PMID: 33227728 DOI: 10.1088/1361-6579/abcd1f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This study reveals the changes in brain activation due to different game interaction states based on functional near-infrared spectroscopy signals and discusses their significance for stroke rehabilitation. APPROACH The oxygenated hemoglobin concentration (Delta [HbO2]) signals and the deoxygenated hemoglobin (Delta [HbR]) signals were recorded from the prefrontal cortex (PFC), the motor cortex (MC), the occipital lobe (OL) and the temporal lobe of 21 subjects (mean age: 24.6 ± 1.9 years old) in three game interaction states: physical, motion-sensing, and button-push training. The subjects were also asked to complete user-satisfaction survey scales after the experiment. MAIN RESULTS Compared with the button-training state, several channels in the PFC and MC region of the physical-training state were significantly altered as were several channels in the RMC region of the motion-sensing training state (P < 0.05 after adjustment). The motion-sensing state of the PFC had a significant correlation with that of the MC and the OL. The subjective scale results show that the acceptability of the physical and motion-sensing states was greater than the acceptability of the button-push training state. SIGNIFICANCE The results show that the brain regions responded more strongly when activated by the physical and motion-sensing states compared with the button-push training state, and the physical and motion-sensing states are more conducive to the rehabilitation of the nervous system. The design of rehabilitation products for stroke patients is discussed and valuable insights are offered to support the selection of better interactive training methods.
Collapse
Affiliation(s)
- Zilin Wang
- School of Mechanical Engineering, Shandong University, Jinan, 250061, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
5
|
Lund MJ, Alnæs D, Schwab S, van der Meer D, Andreassen OA, Westlye LT, Kaufmann T. Differences in directed functional brain connectivity related to age, sex and mental health. Hum Brain Mapp 2020; 41:4173-4186. [PMID: 32613721 PMCID: PMC7502836 DOI: 10.1002/hbm.25116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/07/2020] [Accepted: 06/16/2020] [Indexed: 01/09/2023] Open
Abstract
Functional interconnections between brain regions define the "connectome" which is of central interest for understanding human brain function. Resting-state functional magnetic resonance (rsfMRI) work has revealed changes in static connectivity related to age, sex, cognitive abilities and psychiatric symptoms, yet little is known how these factors may alter the information flow. The commonly used approach infers functional brain connectivity using stationary coefficients yielding static estimates of the undirected connection strength between brain regions. Dynamic graphical models (DGMs) are a multivariate model with dynamic coefficients reflecting directed temporal associations between nodes, and can yield novel insight into directed functional connectivity. Here, we leveraged this approach to test for associations between edge-wise estimates of direction flow across the functional connectome and age, sex, intellectual abilities and mental health. We applied DGM to investigate patterns of information flow in data from 984 individuals from the Human Connectome Project (HCP) and 10,249 individuals from the UK Biobank. Our analysis yielded patterns of directed connectivity in independent HCP and UK Biobank data similar to those previously reported, including that the cerebellum consistently receives information from other networks. We show robust associations between information flow and age and sex for several connections, with strongest effects of age observed in the sensorimotor network. Visual, auditory and sensorimotor nodes were also linked to mental health. Our findings support the use of DGM as a measure of directed connectivity in rsfMRI data and provide new insight into the shaping of the connectome during aging.
Collapse
Affiliation(s)
- Martina J. Lund
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
- Bjørknes University CollegeOsloNorway
| | - Simon Schwab
- Center for Reproducible Science (CRS) & Epidemiology, Biostatistics and Prevention Institute (EBPI)University of ZürichZurichSwitzerland
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
- KG Jebsen Centre for neurodevelopmental disorders, University of OsloOsloNorway
| | - Lars T. Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
- KG Jebsen Centre for neurodevelopmental disorders, University of OsloOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
| |
Collapse
|
6
|
Yeung MK, Chan AS. A Systematic Review of the Application of Functional Near-Infrared Spectroscopy to the Study of Cerebral Hemodynamics in Healthy Aging. Neuropsychol Rev 2020; 31:139-166. [PMID: 32959167 DOI: 10.1007/s11065-020-09455-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/28/2020] [Indexed: 12/21/2022]
Abstract
Positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies have shown that healthy aging is associated with functional brain deterioration that preferentially affects the prefrontal cortex. This article reviews the application of an alternative method, functional near-infrared spectroscopy (fNIRS), to the study of age-related changes in cerebral hemodynamics and factors that influence cerebral hemodynamics in the elderly population. We conducted literature searches in PudMed and PsycINFO, and selected only English original research articles that used fNIRS to study healthy individuals with a mean age of ≥ 55 years. All articles were published in peer-reviewed journals between 1977 and May 2019. We synthesized 114 fNIRS studies examining hemodynamic changes that occurred in the resting state and during the tasks of sensation and perception, motor control, semantic processing, word retrieval, attentional shifting, inhibitory control, memory, and emotion and motivation in healthy older adults. This review, which was not registered in a registry, reveals an age-related reduction in resting-state cerebral oxygenation and connectivity in the prefrontal cortex. It also shows that aging is associated with a reduction in functional hemispheric asymmetry and increased compensatory activity in the frontal lobe across multiple task domains. In addition, this article describes the beneficial effects of healthy lifestyles and the detrimental effects of cardiovascular disease risk factors on brain functioning among nondemented older adults. Limitations of this review include exclusion of gray and non-English literature and lack of meta-analysis. Altogether, the fNIRS literature provides some support for various neurocognitive aging theories derived from task-based PET and fMRI studies. Because fNIRS is relatively motion-tolerant and environmentally unconstrained, it is a promising tool for fostering the development of aging biomarkers and antiaging interventions.
Collapse
Affiliation(s)
- Michael K Yeung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China.
| | - Agnes S Chan
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, SAR, China. .,Chanwuyi Research Center for Neuropsychological Well-being, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
7
|
Yan W, Zheng K, Weng L, Chen C, Kiartivich S, Jiang X, Su X, Wang Y, Wang X. Bibliometric evaluation of 2000-2019 publications on functional near-infrared spectroscopy. Neuroimage 2020; 220:117121. [PMID: 32619709 DOI: 10.1016/j.neuroimage.2020.117121] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 02/07/2023] Open
Abstract
This study aimed to explore and analyze research trends and frontiers on functional near-infrared spectroscopy (fNIRS) in the past 20 years and identify collaboration networks. fNIRS-related publications from 2000 to 2019 were retrieved from the Web of Science database. A total of 1727 publications satisfied the search criteria. Bibliometric visualization analysis of active authors, journals, institutions, countries, references, and keywords were conducted. The number of annual related publications remarkably increased over the years. Fallgatter published the largest number of fNIRS-related papers (83). Neuroimage not only had the largest number of papers published in the first 10 journals (157 articles) but also had the highest impact factor (IF, 2018 = 5.812). The University of Tubingen had the highest number of fNIRS-related publications in the past 20 years. The United States ranked first in terms of comprehensive influence in this field. In recent years, burst keywords (e.g., infant, social interaction, and older adult) and a series of references with citation burst provided clues on research frontiers.
Collapse
Affiliation(s)
- Wangwang Yan
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; Department of Rehabilitation Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kangyong Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Linman Weng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Changcheng Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Suparata Kiartivich
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue Jiang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; Department of Rehabilitation Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuan Su
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yuling Wang
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Xueqiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China.
| |
Collapse
|
8
|
Urquhart EL, Wang X, Liu H, Fadel PJ, Alexandrakis G. Differences in Net Information Flow and Dynamic Connectivity Metrics Between Physically Active and Inactive Subjects Measured by Functional Near-Infrared Spectroscopy (fNIRS) During a Fatiguing Handgrip Task. Front Neurosci 2020; 14:167. [PMID: 32210748 PMCID: PMC7076120 DOI: 10.3389/fnins.2020.00167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Twenty-three young adults (4 Females, 25.13 ± 3.72 years) performed an intermittent maximal handgrip force task using their dominant hand for 20 min (3.5 s squeeze/6.5 s release, 120 blocks) with concurrent cortical activity imaging by functional Near-Infrared Spectroscopy (fNRIS; OMM-3000, Shimadzu Corp., 111 channels). Subjects were grouped as physically active (n = 10) or inactive (n = 12) based on a questionnaire (active-exercise at least four times a week, inactive- exercise less than two times a week). We explored how motor task fatigue affected the vasomotion-induced oscillations in ΔHbO as measured by fNIRS at each hemodynamic frequency band: endothelial component (0.003–0.02 Hz) associated to microvascular activity, neurogenic component (0.02–0.04 Hz) related to intrinsic neuronal activity, and myogenic component (0.04–0.15 Hz) linked to activity of smooth muscles of arterioles. To help understand how these three neurovascular regulatory mechanisms relate to handgrip task performance we quantified several dynamic fNIRS metrics, including directional phase transfer entropy (dPTE), a computationally efficient and data-driven method used as a marker of information flow between cortical regions, and directional connectivity (DC), a means to compute directionality of information flow between two cortical regions. The relationship between static functional connectivity (SFC) and functional connectivity variability (FCV) was also explored to understand their mutual dependence for each frequency band in the context of handgrip performance as fatigued increased. Our findings ultimately showed differences between subject groups across all fNIRS metrics and hemodynamic frequency bands. These findings imply that physical activity modulates neurovascular control mechanisms at the endogenic, neurogenic, and myogenic frequency bands resulting in delayed fatigue onset and enhanced performance. The dynamic cortical network metrics quantified in this work for young, healthy subjects provides baseline measurements to guide future work on older individuals and persons with impaired cardiovascular health.
Collapse
Affiliation(s)
- Elizabeth L Urquhart
- Bioengineering Department, University of Texas at Arlington, Arlington, TX, United States
| | - Xinlong Wang
- Bioengineering Department, University of Texas at Arlington, Arlington, TX, United States
| | - Hanli Liu
- Bioengineering Department, University of Texas at Arlington, Arlington, TX, United States
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, United States
| | - George Alexandrakis
- Bioengineering Department, University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
9
|
Teo WP, Goodwill AM, Hendy AM, Muthalib M, Macpherson H. Sensory manipulation results in increased dorsolateral prefrontal cortex activation during static postural balance in sedentary older adults: An fNIRS study. Brain Behav 2018; 8:e01109. [PMID: 30230687 PMCID: PMC6192391 DOI: 10.1002/brb3.1109] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/30/2018] [Accepted: 08/03/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The dorsolateral prefrontal cortex (DLPFC) is involved with allocating attentional resources to maintain postural control. However, it is unknown whether age-related structural and functional declines of the DLPFC may impair postural control during sensory manipulation. In this study, we aim to understand the effects of aging on the DLPFC when sensory cues were removed or presented inaccurately (i.e., increased sensory complexity) during the sensory orientation test (SOT). METHODS Twenty young (18-25 years) and 18 older (66-73 years) healthy adults were recruited to undertake the SOT, which consisted of six conditions aimed at removing or disrupting the visual, vestibular, and proprioceptive senses. During these six SOT conditions, functional near-infrared spectroscopy (fNIRS), consisting of eight transmitter-receiver optode pairs (four channels over the left and right DLPFC), was used to measure hemodynamic responses (i.e., changes in oxy- [O2 Hb] and deoxyhemoglobin [HHb]) from the bilateral DLPFC. RESULTS Our results show an increase in bilateral DLPFC activation (i.e., increase in O2 Hb and concomitant smaller decrease in HHb) with increasing sensory complexity in both young and older adults. The increase in left and right DLPFC activation during more complex sensory conditions was greater, which was concomitant with reduced balance performance in older adults compared to younger adults. Furthermore, we observed a right lateralized DLPFC activation in younger adults. Finally, a significant positive association was observed between balance performance and increased bilateral DLPFC activation particularly for SOT conditions with greater sensory disruptions. CONCLUSION Our findings highlight the involvement of the DLPFC in maintaining postural control, particularly during complex sensory tasks, and provide direct evidence for the role of the DLPFC during postural control of a clinically relevant measure of balance.
Collapse
Affiliation(s)
- Wei-Peng Teo
- Institute for Physical Activity and Nutrition (IPAN), Deakin University, Burwood, Vic., Australia
| | - Alicia M Goodwill
- School of Psychology, Australian Catholic University, Melbourne, Vic., Australia
| | - Ashlee M Hendy
- Institute for Physical Activity and Nutrition (IPAN), Deakin University, Burwood, Vic., Australia
| | | | - Helen Macpherson
- Institute for Physical Activity and Nutrition (IPAN), Deakin University, Burwood, Vic., Australia
| |
Collapse
|