1
|
Uno T, Takano K, Nakamura K. Dissecting the Causal Role of Early Inferior Frontal Activation in Reading. J Neurosci 2025; 45:e0194242024. [PMID: 39542729 PMCID: PMC11713856 DOI: 10.1523/jneurosci.0194-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Cognitive models of reading assume that speech production occurs after visual and phonological processing of written words. This traditional view is at odds with more recent magnetoencephalography studies showing that the left posterior inferior frontal cortex (pIFC) classically associated with spoken production responds to print at 100-150 ms after word-onset, almost simultaneously with posterior brain regions for visual and phonological processing. Yet the theoretical significance of this fast neural response remains open to date. We used transcranial magnetic stimulation (TMS) to investigate how the left pIFC contributes to the early stage of reading. In Experiment 1, 23 adult participants (14 females) performed three different tasks about written words (oral reading, semantic judgment, and perceptual judgment) while single-pulse TMS was delivered to the left pIFC, fusiform gyrus or supramarginal gyrus at different time points (50-200 ms after word-onset). A robust double dissociation was found between tasks and stimulation sites-oral reading, but not other control tasks, was disrupted only when TMS was delivered to pIFC at 100 ms. This task-specific impact of pIFC stimulation was further corroborated in Experiment 2, which revealed another double dissociation between oral reading and picture naming. These results demonstrate that the left pIFC specifically and causally mediates rapid computation of speech motor codes at the earliest stage of reading and suggest that this fast sublexical neural pathway for pronunciation, although seemingly dormant, is fully functioning in literate adults. Our results further suggest that these left-hemisphere systems for reading overall act faster than known previously.
Collapse
Affiliation(s)
- Tomoki Uno
- Section of Systems Neuroscience, National Rehabilitation Center for Persons with Disabilities, Tokorozawa 359-8555, Japan
| | - Kouji Takano
- Section of Systems Neuroscience, National Rehabilitation Center for Persons with Disabilities, Tokorozawa 359-8555, Japan
| | - Kimihiro Nakamura
- Section of Systems Neuroscience, National Rehabilitation Center for Persons with Disabilities, Tokorozawa 359-8555, Japan
| |
Collapse
|
2
|
Qu X, Wang Z, Cheng Y, Xue Q, Li Z, Li L, Feng L, Hartwigsen G, Chen L. Neuromodulatory effects of transcranial magnetic stimulation on language performance in healthy participants: Systematic review and meta-analysis. Front Hum Neurosci 2022; 16:1027446. [PMID: 36545349 PMCID: PMC9760723 DOI: 10.3389/fnhum.2022.1027446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Background The causal relationships between neural substrates and human language have been investigated by transcranial magnetic stimulation (TMS). However, the robustness of TMS neuromodulatory effects is still largely unspecified. This study aims to systematically examine the efficacy of TMS on healthy participants' language performance. Methods For this meta-analysis, we searched PubMed, Web of Science, PsycINFO, Scopus, and Google Scholar from database inception until October 15, 2022 for eligible TMS studies on language comprehension and production in healthy adults published in English. The quality of the included studies was assessed with the Cochrane risk of bias tool. Potential publication biases were assessed by funnel plots and the Egger Test. We conducted overall as well as moderator meta-analyses. Effect sizes were estimated using Hedges'g (g) and entered into a three-level random effects model. Results Thirty-seven studies (797 participants) with 77 effect sizes were included. The three-level random effects model revealed significant overall TMS effects on language performance in healthy participants (RT: g = 0.16, 95% CI: 0.04-0.29; ACC: g = 0.14, 95% CI: 0.04-0.24). Further moderator analyses indicated that (a) for language tasks, TMS induced significant neuromodulatory effects on semantic and phonological tasks, but didn't show significance for syntactic tasks; (b) for cortical targets, TMS effects were not significant in left frontal, temporal or parietal regions, but were marginally significant in the inferior frontal gyrus in a finer-scale analysis; (c) for stimulation parameters, stimulation sites extracted from previous studies, rTMS, and intensities calibrated to the individual resting motor threshold are more prone to induce robust TMS effects. As for stimulation frequencies and timing, both high and low frequencies, online and offline stimulation elicited significant effects; (d) for experimental designs, studies adopting sham TMS or no TMS as the control condition and within-subject design obtained more significant effects. Discussion Overall, the results show that TMS may robustly modulate healthy adults' language performance and scrutinize the brain-and-language relation in a profound fashion. However, due to limited sample size and constraints in the current meta-analysis approach, analyses at a more comprehensive level were not conducted and results need to be confirmed by future studies. Systematic review registration [https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=366481], identifier [CRD42022366481].
Collapse
Affiliation(s)
- Xingfang Qu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Zichao Wang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Yao Cheng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Qingwei Xue
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Zimu Li
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Lu Li
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Liping Feng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| |
Collapse
|
3
|
Cheng S, Qiu X, Li S, Mo L, Xu F, Zhang D. Different Roles of the Left and Right Ventrolateral Prefrontal Cortex in Cognitive Reappraisal: An Online Transcranial Magnetic Stimulation Study. Front Hum Neurosci 2022; 16:928077. [PMID: 35754771 PMCID: PMC9226322 DOI: 10.3389/fnhum.2022.928077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
The ventrolateral prefrontal cortex (VLPFC) plays a pivotal role in cognitive reappraisal. Previous studies suggested a functional asymmetry of the bilateral VLPFC, but the evidence is still insufficient during cognitive reappraisal. In this study, we conducted an online single-pulse transcranial magnetic stimulation (spTMS) to investigate the causal and distinct roles of the left and right VLPFC in reappraisal. Participants were instructed to reappraise (down-regulate) or attend to pictures depicting social exclusion scenarios while the spTMS was applied over the left or right VLPFC of the participants’ brains. The results showed that spTMS of either the left or the right VLPFC would increase reappraisal difficulty. Meanwhile, the outcome of reappraisal (measured by self-reported negative feelings) significantly deteriorated when the right (but not the left) VLPFC was temporally interrupted by spTMS, while the verbal fluency during oral reporting of the reappraisal strategy was significantly reduced when the left VLPFC was interrupted by spTMS. Taken together, these findings provide causal evidence for the involvement of left and right VLPFC with distinct roles: while the left VLPFC is responsible for the linguistic especially semantic process of generating and selecting appraisals according to the goal of emotion regulation, the right VLPFC plays a critical role in inhibiting inappropriate negative emotions and thoughts generated by the effective scenarios. These findings deepen our understanding of the neurocognitive mechanism of emotion regulation.
Collapse
Affiliation(s)
- Si Cheng
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China.,School of Psychology, Shenzhen University, Shenzhen, China
| | - Xiufu Qiu
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Sijin Li
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Licheng Mo
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Feng Xu
- Shenzhen Yingchi Technology Co., Ltd., Shenzhen, China
| | - Dandan Zhang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China.,Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
| |
Collapse
|
4
|
Feng C, Damian MF, Qu Q. Parallel Processing of Semantics and Phonology in Spoken Production: Evidence from Blocked Cyclic Picture Naming and EEG. J Cogn Neurosci 2021; 33:725-738. [PMID: 33475451 DOI: 10.1162/jocn_a_01675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Spoken language production involves lexical-semantic access and phonological encoding. A theoretically important question concerns the relative time course of these two cognitive processes. The predominant view has been that semantic and phonological codes are accessed in successive stages. However, recent evidence seems difficult to reconcile with a sequential view but rather suggests that both types of codes are accessed in parallel. Here, we used ERPs combined with the "blocked cyclic naming paradigm" in which items overlapped either semantically or phonologically. Behaviorally, both semantic and phonological overlap caused interference relative to unrelated baseline conditions. Crucially, ERP data demonstrated that the semantic and phonological effects emerged at a similar latency (∼180 msec after picture onset) and within a similar time window (180-380 msec). These findings suggest that access to phonological information takes place at a relatively early stage during spoken planning, largely in parallel with semantic processing.
Collapse
Affiliation(s)
- Chen Feng
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | | | - Qingqing Qu
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Zhang Q, Wang H, Luo C, Zhang J, Jin Z, Li L. The neural basis of semantic cognition in Mandarin Chinese: A combined fMRI and TMS study. Hum Brain Mapp 2019; 40:5412-5423. [PMID: 31507031 PMCID: PMC6864898 DOI: 10.1002/hbm.24781] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/10/2019] [Accepted: 08/20/2019] [Indexed: 02/04/2023] Open
Abstract
While converging sources of evidence point to the possibility of a large‐scale distributed network for semantic cognition, a consensus regarding the underlying subregions and their specific function in this network has not been reached. In the current study, we combined functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) methodology to investigate the neural basis of semantic cognition in Mandarin Chinese. In the fMRI experiment, strong activations were observed in left inferior frontal gyrus (IFG) and left middle temporal gyrus (MTG) for semantic judgment task. Moreover, functional connectivity was found from seed region left IFG to left MTG. Meanwhile, negative correlation between performance and extracted parameter estimates from left IFG to left MTG was detected in semantic task. Subsequent TMS stimulation over left IFG resulted in performance deficits in semantic judgment task, in contrast to other three sites: left MTG, right intraparietal sulcus (IPS) and a control site. We concluded that the neural basis of semantic processing for Mandarin Chinese closely resembled that for alphabetic languages such as English, supporting a language‐universal view on semantic cognition.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,School of Foreign Languages, Southwest Petroleum University, Chengdu, China
| | - Hui Wang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Cimei Luo
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Junjun Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenlan Jin
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Li
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Klaus J, Hartwigsen G. Dissociating semantic and phonological contributions of the left inferior frontal gyrus to language production. Hum Brain Mapp 2019; 40:3279-3287. [PMID: 30969004 DOI: 10.1002/hbm.24597] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 11/09/2022] Open
Abstract
While the involvement of the left inferior frontal gyrus (IFG) in language production is undisputed, the role of specific subregions at different representational levels remains unclear. Some studies suggest a division of anterior and posterior regions for semantic and phonological processing, respectively. Crucially, evidence thus far only comes from correlative neuroimaging studies, but the functional relevance of the involvement of these subregions during a given task remains elusive. We applied repetitive transcranial magnetic stimulation (rTMS) over anterior and posterior IFG (aIFG/pIFG), and vertex as a control site, while participants performed a category member and a rhyme generation task. We found a functional-anatomical double dissociation between tasks and subregions. Naming latencies were significantly delayed in the semantic task when rTMS was applied to aIFG (relative to pIFG and vertex). In contrast, we observed a facilitation of naming latencies in the phonological task when rTMS was applied to pIFG (relative to aIFG and vertex). The results provide first causal evidence for the notion that anterior portions of the IFG are selectively recruited for semantic processing while posterior regions are functionally specific for phonological processing during word production. These findings shed light on the functional parcellation of the left IFG in language production.
Collapse
Affiliation(s)
- Jana Klaus
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany.,Research Group Modulation of Language Networks, Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany.,Research Group Modulation of Language Networks, Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany
| |
Collapse
|