1
|
Benkirane O, Simor P, Mairesse O, Peigneux P. Sleep Fragmentation Modulates the Neurophysiological Correlates of Cognitive Fatigue. Clocks Sleep 2024; 6:602-618. [PMID: 39449315 PMCID: PMC11503390 DOI: 10.3390/clockssleep6040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Cognitive fatigue (CF) is a critical factor affecting performance and well-being. It can be altered in suboptimal sleep quality conditions, e.g., in patients suffering from obstructive sleep apnea who experience both intermittent hypoxia and sleep fragmentation (SF). Understanding the neurophysiological basis of SF in healthy individuals can provide insights to improve cognitive functioning in disrupted sleep conditions. In this electroencephalographical (EEG) study, we investigated in 16 healthy young participants the impact of experimentally induced SF on the neurophysiological correlates of CF measured before, during, and after practice on the TloadDback, a working memory task tailored to each individual's maximal cognitive resources. The participants spent three consecutive nights in the laboratory two times, once in an undisrupted sleep (UdS) condition and once in an SF condition induced by non-awakening auditory stimulations, counterbalanced and performed the TloadDback task both in a high (HCL) and a low (LCL) cognitive load condition. EEG activity was recorded during wakefulness in the 5 min resting state immediately before and after, as well as during the 16 min of the TloadDback task practice. In the high cognitive load under a sleep-fragmentation (HCL/SF) condition, high beta power increased during the TloadDback, indicating heightened cognitive effort, and the beta and alpha power increased in the post- vs. pre-task resting state, suggesting a relaxation rebound. In the low cognitive load/undisturbed sleep (LCL/UdS) condition, low beta activity increased, suggesting a relaxed focus, as well as mid beta activity associated with active thinking. These findings highlight the dynamic impact of SF on the neurophysiological correlates of CF and underscore the importance of sleep quality and continuity to maintain optimal cognitive functioning.
Collapse
Affiliation(s)
- Oumaïma Benkirane
- UR2NF—Neuropsychology and Functional Neuroimaging Research Unit, at CRCN—Centre for Research in Cognition and Neurosciences and UNI—ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (O.B.); (P.S.)
- BBCO—Brain, Body and Cognition, Department of Psychology, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, 1050 Brussel, Belgium;
| | - Peter Simor
- UR2NF—Neuropsychology and Functional Neuroimaging Research Unit, at CRCN—Centre for Research in Cognition and Neurosciences and UNI—ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (O.B.); (P.S.)
- Institute of Psychology, ELTE, Eötvös Loránd University, 1053 Budapest, Hungary
- Institute of Behavioural Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Olivier Mairesse
- BBCO—Brain, Body and Cognition, Department of Psychology, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, 1050 Brussel, Belgium;
| | - Philippe Peigneux
- UR2NF—Neuropsychology and Functional Neuroimaging Research Unit, at CRCN—Centre for Research in Cognition and Neurosciences and UNI—ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (O.B.); (P.S.)
| |
Collapse
|
2
|
Baldasso BD, Raza SZ, Islam SS, Burry IB, Newell CJ, Hillier SR, Ploughman M. Disrupted hemodynamic response within dorsolateral prefrontal cortex during cognitive tasks among people with multiple sclerosis-related fatigue. PLoS One 2024; 19:e0303211. [PMID: 38837991 DOI: 10.1371/journal.pone.0303211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/21/2024] [Indexed: 06/07/2024] Open
Abstract
INTRODUCTION Mental fatigue is an early and enduring symptom in persons with autoimmune disease particularly multiple sclerosis (MS). Neuromodulation has emerged as a potential treatment although optimal cortical targets have yet to be determined. We aimed to examine cortical hemodynamic responses within bilateral dorsolateral prefrontal cortex (dlPFC) and frontopolar areas during single and dual cognitive tasks in persons with MS-related fatigue compared to matched controls. METHODS We recruited persons (15 MS and 12 age- and sex-matched controls) who did not have physical or cognitive impairment and were free from depressive symptoms. Functional near infrared spectroscopy (fNIRS) registered hemodynamic responses during the tasks. We calculated oxyhemoglobin peak, time-to-peak, coherence between channels (a potential marker of neurovascular coupling) and functional connectivity (z-score). RESULTS In MS, dlPFC demonstrated disrupted hemodynamic coherence during both single and dual tasks, as evidenced by non-significant and negative correlations between fNIRS channels. In MS, reduced coherence occurred in left dorsolateral PFC during the single task but occurred bilaterally as the task became more challenging. Functional connectivity was lower during dual compared to single tasks in the right dorsolateral PFC in both groups. Lower z-score was related to greater feelings of fatigue. Peak and time-to-peak hemodynamic response did not differ between groups or tasks. CONCLUSIONS Hemodynamic responses were inconsistent and disrupted in people with MS experiencing mental fatigue, which worsened as the task became more challenging. Our findings point to dlPFC, but not frontopolar areas, as a potential target for neuromodulation to treat cognitive fatigue.
Collapse
Affiliation(s)
- Bruna D Baldasso
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Syed Z Raza
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sadman S Islam
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
- Computer Science, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Isabella B Burry
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Caitlin J Newell
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sydney R Hillier
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michelle Ploughman
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
3
|
Abou L, Peters J, Freire B, Sosnoff JJ. Fear of falling and common symptoms of multiple sclerosis: Physical function, cognition, fatigue, depression, and sleep - A systematic review. Mult Scler Relat Disord 2024; 84:105506. [PMID: 38422635 DOI: 10.1016/j.msard.2024.105506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/03/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Fear of falling (FOF) is a common concern among persons with multiple sclerosis (MS) and affects the performance of their daily living activities. Falls may result in FOF, leading to worsening of symptoms of MS, physical deconditioning, and exposure to future falls. This may trigger a vicious cycle between FOF and falls. A better understanding of the relationship between FOF and symptoms of MS may be helpful to develop a conceptual model to guide fall prevention interventions. OBJECTIVE To synthesize the correlational and predictive relationships between FOF and common symptoms of MS. METHODS Databases including PubMed, Embase, Web of Science, Scopus, CINHAL, PsycINFO, and SPORTDiscuss were searched from inception to October 2023. Studies examining correlations and/or predictions between FOF and common MS symptoms that include measures of gait, postural control, fatigue, cognition, pain, sleep, depression, and anxiety were identified by two independent reviewers. Both reviewers also conducted the methodological quality assessment of the included studies. RESULTS Twenty-three studies with a total of 2819 participants were included in the review. Correlational findings indicated that increased FOF was significantly associated with greater walking deficits (lower gait speed, smaller steps), reduced mobility, and poorer balance. Increased FOF was also significantly correlated with higher cognitive impairments, more fatigue, sleep disturbances, and depression. Decreased gait parameters, reduced balance, lower physical functions, cognitive impairments, and sleep deficits were found as significant predictors of increased FOF. CONCLUSION Evidence indicates significant correlational and bidirectional predictive relationships exist between FOF and common MS symptoms. A comprehensive conceptual framework accounting for the interaction between FOF and MS symptoms is needed to develop effective falls prevention strategies.
Collapse
Affiliation(s)
- Libak Abou
- Department of Physical Medicine & Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, MI, USA.
| | - Joseph Peters
- Kansas City University College of Osteopathic Medicine, Kansas City University of Medicine and Bioscience, Kansas City, MO, USA
| | - Bruno Freire
- Health and Sports Sciences Center, Santa Catarina State University, Florianópolis, SC, Brazil
| | - Jacob J Sosnoff
- Department of Physical Therapy, Rehabilitation Science, & Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
4
|
Hejazi S, Karwowski W, Farahani FV, Marek T, Hancock PA. Graph-Based Analysis of Brain Connectivity in Multiple Sclerosis Using Functional MRI: A Systematic Review. Brain Sci 2023; 13:brainsci13020246. [PMID: 36831789 PMCID: PMC9953947 DOI: 10.3390/brainsci13020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Multiple sclerosis (MS) is an immune system disease in which myelin in the nervous system is affected. This abnormal immune system mechanism causes physical disabilities and cognitive impairment. Functional magnetic resonance imaging (fMRI) is a common neuroimaging technique used in studying MS. Computational methods have recently been applied for disease detection, notably graph theory, which helps researchers understand the entire brain network and functional connectivity. (2) Methods: Relevant databases were searched to identify articles published since 2000 that applied graph theory to study functional brain connectivity in patients with MS based on fMRI. (3) Results: A total of 24 articles were included in the review. In recent years, the application of graph theory in the MS field received increased attention from computational scientists. The graph-theoretical approach was frequently combined with fMRI in studies of functional brain connectivity in MS. Lower EDSSs of MS stage were the criteria for most of the studies (4) Conclusions: This review provides insights into the role of graph theory as a computational method for studying functional brain connectivity in MS. Graph theory is useful in the detection and prediction of MS and can play a significant role in identifying cognitive impairment associated with MS.
Collapse
Affiliation(s)
- Sara Hejazi
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
- Correspondence:
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
| | - Farzad V. Farahani
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tadeusz Marek
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, 30-348 Kraków, Poland
| | - P. A. Hancock
- Department of Psychology, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
5
|
Salihu AT, Hill KD, Jaberzadeh S. Neural mechanisms underlying state mental fatigue: a systematic review and activation likelihood estimation meta-analysis. Rev Neurosci 2022; 33:889-917. [PMID: 35700454 DOI: 10.1515/revneuro-2022-0023] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022]
Abstract
Sustained performance of cognitive tasks could lead to the development of state mental fatigue characterized by subjective sensation of mental weariness and decrease in cognitive performance. In addition to the occupational hazards associated with mental fatigue, it can also affect physical performance reducing endurance, balance, and sport-specific technical skills. Similarly, mental fatigue is a common symptom in certain chronic health conditions such as multiple sclerosis affecting quality of life of the patients. Despite its widely acknowledged negative impact, the neural mechanisms underlining this phenomenon are still not fully understood. We conducted a systematic review and activation likelihood estimation (ALE) meta-analysis of functional neuroimaging studies investigating the effect of mental fatigue due to time-on-task (TOT) on brain activity to elucidate the possible underlying mechanisms. Studies were included if they examined change in brain activity induced by experimental mental fatigue (TOT effect) or investigated the relationship between brain activity and subjective mental fatigue due to TOT. A total of 33 studies met the review's inclusion criteria, 13 of which were included in meta-analyses. Results of the meta-analyses revealed a decrease in activity with TOT in brain areas that constitute the cognitive control network. Additionally, an increased activity with TOT, as well as negative relationship with subjective mental fatigue was found in parts of the default mode network of the brain. The changes in cognitive control and the default mode networks of the brain due to state mental fatigue observed in this study were discussed in relation to the existing theories of mental fatigue.
Collapse
Affiliation(s)
- Abubakar Tijjani Salihu
- Monash Neuromodulation Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Keith D Hill
- Rehabilitation, Ageing and Independent Living (RAIL) Research Centre, School of Primary and Allied Health Care, Monash University, Frankston, Australia
| | - Shapour Jaberzadeh
- Monash Neuromodulation Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| |
Collapse
|
6
|
Benkirane O, Delwiche B, Mairesse O, Peigneux P. Impact of Sleep Fragmentation on Cognition and Fatigue. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15485. [PMID: 36497559 PMCID: PMC9740245 DOI: 10.3390/ijerph192315485] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Sleep continuity and efficacy are essential for optimal cognitive functions. How sleep fragmentation (SF) impairs cognitive functioning, and especially cognitive fatigue (CF), remains elusive. We investigated the impact of induced SF on CF through the TloadDback task, measuring interindividual variability in working memory capacity. Sixteen participants underwent an adaptation polysomnography night and three consecutive nights, once in a SF condition induced by non-awakening auditory stimulations, once under restorative sleep (RS) condition, counterbalanced within-subject. In both conditions, participants were administered memory, vigilance, inhibition and verbal fluency testing, and for CF the TloadDback, as well as sleep questionnaires and fatigue and sleepiness visual analog scales were administered. Subjective fatigue increased and sleep architecture was altered after SF (reduced sleep efficiency, percentage of N3 and REM, number of NREM and REM phases) despite similar total sleep time. At the behavioral level, only inhibition deteriorated after SF, and CF similarly evolved in RS and SF conditions. In line with prior research, we show that SF disrupts sleep architecture and exerts a deleterious impact on subjective fatigue and inhibition. However, young healthy participants appear able to compensate for CF induced by three consecutive SF nights. Further studies should investigate SF effects in extended and/or pathological disruption settings.
Collapse
Affiliation(s)
- Oumaïma Benkirane
- UR2NF—Neuropsychology and Functional Neuroimaging Research Unit, at CRCN—Centre for Research in Cognition and Neurosciences and UNI—ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
- Brugmann University Hospital, Sleep Laboratory & Unit for Chronobiology U78, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Bérénice Delwiche
- Brugmann University Hospital, Sleep Laboratory & Unit for Chronobiology U78, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Olivier Mairesse
- Brugmann University Hospital, Sleep Laboratory & Unit for Chronobiology U78, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Philippe Peigneux
- UR2NF—Neuropsychology and Functional Neuroimaging Research Unit, at CRCN—Centre for Research in Cognition and Neurosciences and UNI—ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| |
Collapse
|
7
|
Davenport L, Cogley C, Monaghan R, Gaughan M, Yap M, Bramham J, Tubridy N, McGuigan C, O'Keeffe F. Investigating the association of mood and fatigue with objective and subjective cognitive impairment in multiple sclerosis. J Neuropsychol 2022; 16:537-554. [PMID: 35765743 DOI: 10.1111/jnp.12283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/01/2022] [Indexed: 12/01/2022]
Abstract
Discrepancies between subjective cognitive difficulties and objective measures of cognitive function in people with MS have been identified and may be related to mood and fatigue. The aim of the present study was to examine associations of depression and fatigue with discrepancies between subjective and objective cognitive functioning in pwMS. 177 participants with MS attending a University Hospital Department of Neurology MS Outpatient clinic completed the Brief International Cognitive Assessment for MS (BICAMS), MS Neuropsychological Questionnaire (MSNQ), Hospital Anxiety and Depression Scale (HADS) and Modified Fatigue Impact Scale (MFIS). To quantify the discrepancy between objective (BICAMS) and subjective (MSNQ) cognitive functioning, discrepancy scores were calculated by subtracting MSNQ z-score from composite BICAMS z-score. Based on their discrepancy score, participants were grouped as 'Underestimated', 'Overestimated' and 'Non-discrepant'. 39% of the total sample demonstrated poorer subjective cognitive functioning than their objective cognitive performance suggested ('Underestimated'). 23% of the total sample indicated lower objective scores than their subjective report suggests ('Overestimated'). 38% participants indicated relatively no discrepancy between objective and subjective cognitive measures ('Non-discrepant'). Significant differences were observed between the discrepancy groups in terms of depression and fatigue, with the 'Underestimated' group demonstrating greater levels of depression and fatigue (ps < .01). Regression analysis indicated that cognitive fatigue and depression significantly contributed to variance in subjective cognitive functioning. Our findings suggest that subjective reports of cognitive function may be influenced by depression and fatigue, emphasising the importance of cognitive, mood and fatigue screening as part of routine clinical care.
Collapse
Affiliation(s)
- Laura Davenport
- University College Dublin, Dublin, Ireland.,St. Vincent's University Hospital, Dublin, Ireland
| | - Clodagh Cogley
- University College Dublin, Dublin, Ireland.,St. Vincent's University Hospital, Dublin, Ireland
| | | | | | - Mei Yap
- St. Vincent's University Hospital, Dublin, Ireland
| | - Jessica Bramham
- University College Dublin, Dublin, Ireland.,St. Vincent's University Hospital, Dublin, Ireland
| | | | | | - Fiadhnait O'Keeffe
- University College Dublin, Dublin, Ireland.,St. Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
8
|
Guillemin C, Hammad G, Read J, Requier F, Charonitis M, Delrue G, Vandeleene N, Lommers E, Maquet P, Collette F. Pupil response speed as a marker of cognitive fatigue in early Multiple Sclerosis. Mult Scler Relat Disord 2022; 65:104001. [DOI: 10.1016/j.msard.2022.104001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
|
9
|
The Complex Interplay Between Trait Fatigue and Cognition in Multiple Sclerosis. Psychol Belg 2022; 62:108-122. [PMID: 35414944 PMCID: PMC8932362 DOI: 10.5334/pb.1125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/21/2022] [Indexed: 11/20/2022] Open
Abstract
Cognitive impairments are frequent in patients with Multiple Sclerosis (MS). Yet, the influence of MS-related symptoms on cognitive status is not clear. Studies investigating the impact of trait fatigue along with anxio-depressive symptoms on cognition are seldom, and even less considered fatigue as multidimensional. Moreover, these studies provided conflicting results. Twenty-nine MS patients and 28 healthy controls, matched on age, gender and education underwent a full comprehensive neuropsychological assessment. Anxio-depressive and fatigue symptoms were assessed using the HAD scale and the MFIS, respectively. Six composite scores were derived from the neuropsychological assessment, reflecting the cognitive domains of working memory, verbal and visual learning, executive functions, attention and processing speed. Stepwise regression analyses were conducted in each group to investigate if trait cognitive and physical fatigue, depression and anxiety are relevant predictors of performance in each cognitive domain. In order to control for disease progression, patient’s EDSS score was also entered as predictor variable. In the MS group, trait physical fatigue was the only significant predictor of working memory score. Cognitive fatigue was a predictor for executive functioning performance and for processing speed (as well as EDSS score for processing speed). In the healthy controls group, only an association between executive functioning and depression was observed. Fatigue predicted cognition in MS patients only, beyond anxio-depressive symptoms and disease progression. Considering fatigue as a multidimensional symptom is paramount to better understand its association with cognition, as physical and cognitive fatigue are predictors of different cognitive processes.
Collapse
|
10
|
Borragán G, Benoit CE, Schul N, Strauss M, De Schepper M, Roekens V, Peigneux P. Impaired sequential but preserved motor memory consolidation in multiple sclerosis disease. Neuroscience 2022; 487:99-106. [DOI: 10.1016/j.neuroscience.2021.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022]
|
11
|
González LM, Ospina LN, Sperling LE, Chaparro O, Cucarián JD. Therapeutic Effects of Physical Exercise and the Mesenchymal Stem Cell Secretome by Modulating Neuroinflammatory Response in Multiple Sclerosis. Curr Stem Cell Res Ther 2021; 17:621-632. [PMID: 34886779 DOI: 10.2174/1574888x16666211209155333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/14/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022]
Abstract
Multiple sclerosis (MS) is a neurodegenerative, demyelinating, and chronic inflammatory disease characterized by central nervous system (CNS) lesions that lead to high levels of disability and severe physical and cognitive disturbances. Conventional therapies are not enough to control the neuroinflammatory process in MS and are not able to inhibit ongoing damage to the CNS. Thus, the secretome of mesenchymal stem cells (MSC-S) has been postulated as a potential therapy that could mitigate symptoms and disease progression. We considered that its combination with physical exercise (EX) could induce superior effects and increase the MSC-S effectiveness in this condition. Recent studies have revealed that both EX and MSC-S share similar mechanisms of action that mitigate auto-reactive T cell infiltration, regulate the local inflammatory response, modulate the proinflammatory profile of glial cells, and reduce neuronal damage. Clinical and experimental studies have reported that these treatments in an isolated way also improve myelination, regeneration, promote the release of neurotrophic factors, and increase the recruitment of endogenous stem cells. Together, these effects reduce disease progression and improve patient functionality. Despite these results, the combination of these methods has not yet been studied in MS. In this review, we focus on molecular elements and cellular responses induced by these treatments in a separate way, showing their beneficial effects in the control of symptoms and disease progression in MS, as well as indicating their contribution in clinical fields. In addition, we propose the combined use of EX and MSC-S as a strategy to boost their reparative and immunomodulatory effects in this condition, combining their benefits on synaptogenesis, neurogenesis, remyelination, and neuroinflammatory response. The findings here reported are based on the scientific evidence and our professional experience that will bring significant progress to regenerative medicine to deal with this condition.
Collapse
Affiliation(s)
- Lina María González
- Physiotherapy Program, School of Medicine and Health Sciences, Universidad del Rosario AK 24 #63c-69, Bogotá. Colombia
| | - Laura Natalia Ospina
- Physiotherapy Program, School of Medicine and Health Sciences, Universidad del Rosario AK 24 #63c-69, Bogotá. Colombia
| | - Laura Elena Sperling
- Faculty of Pharmacy & Fundamental Health Science Institute, Federal University of Rio Grande do Sul Rua Ramiro Barcelos, 2600-Prédio Anexo - Floresta, Porto Alegre. Brazil
| | - Orlando Chaparro
- Physiology Department, Faculty of Medicine, Universidad Nacional de Colombia Ak 30 #45-03, Bogotá. Colombia
| | - Jaison Daniel Cucarián
- Physiotherapy Program, School of Medicine and Health Sciences, Universidad del Rosario AK 24 #63c-69, Bogotá. Colombia
| |
Collapse
|
12
|
Holdnack JA, Brennan PF. Usability and Effectiveness of Immersive Virtual Grocery Shopping for Assessing Cognitive Fatigue in Healthy Controls: Protocol for a Randomized Controlled Trial. JMIR Res Protoc 2021; 10:e28073. [PMID: 34346898 PMCID: PMC8374668 DOI: 10.2196/28073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Cognitive fatigue (CF) is a human response to stimulation and stress and is a common comorbidity in many medical conditions that can result in serious consequences; however, studying CF under controlled conditions is difficult. Immersive virtual reality provides an experimental environment that enables the precise measurement of the response of an individual to complex stimuli in a controlled environment. OBJECTIVE We aim to examine the development of an immersive virtual shopping experience to measure subjective and objective indicators of CF induced by instrumental activities of daily living. METHODS We will recruit 84 healthy participants (aged 18-75 years) for a 2-phase study. Phase 1 is a user experience study for testing the software functionality, user interface, and realism of the virtual shopping environment. Phase 2 uses a 3-arm randomized controlled trial to determine the effect that the immersive environment has on fatigue. Participants will be randomized into 1 of 3 conditions exploring fatigue response during a typical human activity (grocery shopping). The level of cognitive and emotional challenges will change during each activity. The primary outcome of phase 1 is the experience of user interface difficulties. The primary outcome of phase 2 is self-reported CF. The core secondary phase 2 outcomes include subjective cognitive load, change in task performance behavior, and eye tracking. Phase 2 uses within-subject repeated measures analysis of variance to compare pre- and postfatigue measures under 3 conditions (control, cognitive challenge, and emotional challenge). RESULTS This study was approved by the scientific review committee of the National Institute of Nursing Research and was identified as an exempt study by the institutional review board of the National Institutes of Health. Data collection will begin in spring 2021. CONCLUSIONS Immersive virtual reality may be a useful research platform for simulating the induction of CF associated with the cognitive and emotional challenges of instrumental activities of daily living. TRIAL REGISTRATION ClinicalTrials.gov NCT04883359; http://clinicaltrials.gov/ct2/show/NCT04883359. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/28073.
Collapse
Affiliation(s)
- James A Holdnack
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Patricia Flatley Brennan
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Arif S, Khan MJ, Naseer N, Hong KS, Sajid H, Ayaz Y. Vector Phase Analysis Approach for Sleep Stage Classification: A Functional Near-Infrared Spectroscopy-Based Passive Brain-Computer Interface. Front Hum Neurosci 2021; 15:658444. [PMID: 33994983 PMCID: PMC8121150 DOI: 10.3389/fnhum.2021.658444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/09/2021] [Indexed: 11/13/2022] Open
Abstract
A passive brain-computer interface (BCI) based upon functional near-infrared spectroscopy (fNIRS) brain signals is used for earlier detection of human drowsiness during driving tasks. This BCI modality acquired hemodynamic signals of 13 healthy subjects from the right dorsolateral prefrontal cortex (DPFC) of the brain. Drowsiness activity is recorded using a continuous-wave fNIRS system and eight channels over the right DPFC. During the experiment, sleep-deprived subjects drove a vehicle in a driving simulator while their cerebral oxygen regulation (CORE) state was continuously measured. Vector phase analysis (VPA) was used as a classifier to detect drowsiness state along with sleep stage-based threshold criteria. Extensive training and testing with various feature sets and classifiers are done to justify the adaptation of threshold criteria for any subject without requiring recalibration. Three statistical features (mean oxyhemoglobin, signal peak, and the sum of peaks) along with six VPA features (trajectory slopes of VPA indices) were used. The average accuracies for the five classifiers are 90.9% for discriminant analysis, 92.5% for support vector machines, 92.3% for nearest neighbors, 92.4% for both decision trees, and ensembles over all subjects' data. Trajectory slopes of CORE vector magnitude and angle: m(|R|) and m(∠R) are the best-performing features, along with ensemble classifier with the highest accuracy of 95.3% and minimum computation time of 40 ms. The statistical significance of the results is validated with a p-value of less than 0.05. The proposed passive BCI scheme demonstrates a promising technique for online drowsiness detection using VPA along with sleep stage classification.
Collapse
Affiliation(s)
- Saad Arif
- School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Jawad Khan
- School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan.,National Center of Artificial Intelligence (NCAI), Islamabad, Pakistan
| | - Noman Naseer
- Department of Mechatronics Engineering, Air University, Islamabad, Pakistan
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - Hasan Sajid
- School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan.,National Center of Artificial Intelligence (NCAI), Islamabad, Pakistan
| | - Yasar Ayaz
- School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan.,National Center of Artificial Intelligence (NCAI), Islamabad, Pakistan
| |
Collapse
|
14
|
Zaehle T. Frontal Transcranial Direct Current Stimulation as a Potential Treatment of Parkinson's Disease-Related Fatigue. Brain Sci 2021; 11:brainsci11040467. [PMID: 33917684 PMCID: PMC8068015 DOI: 10.3390/brainsci11040467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 12/28/2022] Open
Abstract
In contrast to motor symptoms, non-motor symptoms in Parkinson’s disease (PD) are often poorly recognized and inadequately treated. Fatigue is one of the most common non-motor symptoms in PD and affects a broad range of everyday activities, causes disability, and substantially reduces the quality of life. It occurs at every stage of PD, and once present, it often persists and worsens over time. PD patients attending the 2013 World Parkinson Congress voted fatigue as the leading symptom in need of further research. However, despite its clinical significance, little progress has been made in understanding the causes of Parkinson’s disease-related fatigue (PDRF) and developing effective treatment options, which argues strongly for a greater effort. Transcranial direct current stimulation (tDCS) is a technique to non-invasively modulate cortical excitability by delivering low electrical currents to the cerebral cortex. In the past, it has been consistently evidenced that tDCS has the ability to induce neuromodulatory changes in the motor, sensory, and cognitive domains. Importantly, recent data present tDCS over the frontal cortex as an effective therapeutic option to treat fatigue in patients suffering from multiple sclerosis (MS). The current opinion paper reviews recent data on PDRF and the application of tDCS for the treatment of fatigue in neuropsychiatric disorders to further develop an idea of using frontal anodal tDCS as a potential therapeutic strategy to alleviate one of the most common and severe non-motor symptoms of PD.
Collapse
Affiliation(s)
- Tino Zaehle
- Department of Neurology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany;
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
| |
Collapse
|
15
|
Bonilauri A, Sangiuliano Intra F, Pugnetti L, Baselli G, Baglio F. A Systematic Review of Cerebral Functional Near-Infrared Spectroscopy in Chronic Neurological Diseases-Actual Applications and Future Perspectives. Diagnostics (Basel) 2020; 10:E581. [PMID: 32806516 PMCID: PMC7459924 DOI: 10.3390/diagnostics10080581] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The management of people affected by age-related neurological disorders requires the adoption of targeted and cost-effective interventions to cope with chronicity. Therapy adaptation and rehabilitation represent major targets requiring long-term follow-up of neurodegeneration or, conversely, the promotion of neuroplasticity mechanisms. However, affordable and reliable neurophysiological correlates of cerebral activity to be used throughout treatment stages are often lacking. The aim of this systematic review is to highlight actual applications of functional Near-Infrared Spectroscopy (fNIRS) as a versatile optical neuroimaging technology for investigating cortical hemodynamic activity in the most common chronic neurological conditions. METHODS We reviewed studies investigating fNIRS applications in Parkinson's Disease (PD), Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) as those focusing on motor and cognitive impairment in ageing and Multiple Sclerosis (MS) as the most common chronic neurological disease in young adults. The literature search was conducted on NCBI PubMed and Web of Science databases by PRISMA guidelines. RESULTS We identified a total of 63 peer-reviewed articles. The AD spectrum is the most investigated pathology with 40 articles ranging from the traditional monitoring of tissue oxygenation to the analysis of functional resting-state conditions or cognitive functions by means of memory and verbal fluency tasks. Conversely, applications in PD (12 articles) and MS (11 articles) are mainly focused on the characterization of motor functions and their association with dual-task conditions. The most investigated cortical area is the prefrontal cortex, since reported to play an important role in age-related compensatory mechanism and neurofunctional changes associated to these chronic neurological conditions. Interestingly, only 9 articles applied a longitudinal approach. CONCLUSION The results indicate that fNIRS is mainly employed for the cross-sectional characterization of the clinical phenotypes of these pathologies, whereas data on its utility for longitudinal monitoring as surrogate biomarkers of disease progression and rehabilitation effects are promising but still lacking.
Collapse
Affiliation(s)
- Augusto Bonilauri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; (A.B.); (G.B.)
| | - Francesca Sangiuliano Intra
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy; (L.P.); (F.B.)
- Faculty of Education, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Luigi Pugnetti
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy; (L.P.); (F.B.)
| | - Giuseppe Baselli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; (A.B.); (G.B.)
| | - Francesca Baglio
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy; (L.P.); (F.B.)
| |
Collapse
|
16
|
Applications of Functional Near-Infrared Spectroscopy in Fatigue, Sleep Deprivation, and Social Cognition. Brain Topogr 2019; 32:998-1012. [DOI: 10.1007/s10548-019-00740-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/18/2019] [Indexed: 01/05/2023]
|
17
|
Zielinski MR, Systrom DM, Rose NR. Fatigue, Sleep, and Autoimmune and Related Disorders. Front Immunol 2019; 10:1827. [PMID: 31447842 PMCID: PMC6691096 DOI: 10.3389/fimmu.2019.01827] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Profound and debilitating fatigue is the most common complaint reported among individuals with autoimmune disease, such as systemic lupus erythematosus, multiple sclerosis, type 1 diabetes, celiac disease, chronic fatigue syndrome, and rheumatoid arthritis. Fatigue is multi-faceted and broadly defined, which makes understanding the cause of its manifestations especially difficult in conditions with diverse pathology including autoimmune diseases. In general, fatigue is defined by debilitating periods of exhaustion that interfere with normal activities. The severity and duration of fatigue episodes vary, but fatigue can cause difficulty for even simple tasks like climbing stairs or crossing the room. The exact mechanisms of fatigue are not well-understood, perhaps due to its broad definition. Nevertheless, physiological processes known to play a role in fatigue include oxygen/nutrient supply, metabolism, mood, motivation, and sleepiness-all which are affected by inflammation. Additionally, an important contributing element to fatigue is the central nervous system-a region impacted either directly or indirectly in numerous autoimmune and related disorders. This review describes how inflammation and the central nervous system contribute to fatigue and suggests potential mechanisms involved in fatigue that are likely exhibited in autoimmune and related diseases.
Collapse
Affiliation(s)
- Mark R Zielinski
- Veterans Affairs Boston Healthcare System, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - David M Systrom
- Department of Medicine, Harvard Medical School, Boston, MA, United States.,Department of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Noel R Rose
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Skau S, Bunketorp-Käll L, Kuhn HG, Johansson B. Mental Fatigue and Functional Near-Infrared Spectroscopy (fNIRS) - Based Assessment of Cognitive Performance After Mild Traumatic Brain Injury. Front Hum Neurosci 2019; 13:145. [PMID: 31139065 PMCID: PMC6527600 DOI: 10.3389/fnhum.2019.00145] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/16/2019] [Indexed: 11/30/2022] Open
Abstract
Pathological mental fatigue after mild traumatic brain injury (TBI-MF) is characterized by pronounced mental fatigue after cognitive activity. The neurological origin is unknown, and we aimed in the present study to investigate how prolonged mental activity affects cognitive performance and its neural correlates in individuals with TBI-MF. We recruited individuals with TBI-MF (n = 20) at least 5 months after injury, and age-matched healthy controls (n = 20). We used functional near-infrared spectroscopy (fNIRS) to assess hemodynamic changes in the frontal cortex. The self-assessed mental energy level was measured with a visual analog scale (VAS) before and after the experimental procedure. A battery of six neuropsychological tests including Stroop–Simon, Symbol Search, Digit Span, Parallel Serial Mental Operation (PaSMO), Sustained Attention and Working Memory test, and Digit Symbol Coding (DSC) were used. The sequence was repeated once after an 8 min sustained-attention test. The test procedure lasted 2½ h. The experimental procedure resulted in a decrease in mental energy in the TBI-MF group, compared to controls (interaction, p < 0.001, ηp2 = 0.331). The TBI-MF group performed at a similar level on both DSC tests, whereas the controls improved their performance in the second session (interaction, p < 0.01, ηp2 = 0.268). During the Stroop–Simon test, the fNIRS event-related response showed no time effect. However, the TBI-MF group exhibited lower oxygenated hemoglobin (oxy-Hb) concentrations in the frontal polar area (FPA), ventrolateral motor cortex, and dorsolateral prefrontal cortex (DLPFC) from the beginning of the test session. A Stroop and Group interaction was found in the left ventrolateral prefrontal cortex showing that the TBI-MF group did have the same oxy-Hb concentration for both congruent and incongruent trials, whereas the controls had more oxy-Hb in the incongruent trial compared to the congruent trial (interaction, p < 0.01, ηp2 = 0.227). In sum these results indicate that individuals with TBI-MF have a reduced ability to recruit the frontal cortex, which is correlated with self-reported mental fatigue. This may result both in deterioration of cognitive function and the experience of a mental fatigue after extended mental activity.
Collapse
Affiliation(s)
- Simon Skau
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lina Bunketorp-Käll
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Advanced Reconstruction of Extremities, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Hans Georg Kuhn
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Neurology, Center for Stroke Research, Charité - Universitätsmedizin, Berlin, Germany
| | - Birgitta Johansson
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|