1
|
Kurmanavičiūtė D, Kataja H, Jas M, Välilä A, Parkkonen L. Target of selective auditory attention can be robustly followed with MEG. Sci Rep 2023; 13:10959. [PMID: 37414861 PMCID: PMC10325959 DOI: 10.1038/s41598-023-37959-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
Selective auditory attention enables filtering of relevant acoustic information from irrelevant. Specific auditory responses, measurable by magneto- and electroencephalography (MEG/EEG), are known to be modulated by attention to the evoking stimuli. However, such attention effects have typically been studied in unnatural conditions (e.g. during dichotic listening of pure tones) and have been demonstrated mostly in averaged auditory evoked responses. To test how reliably we can detect the attention target from unaveraged brain responses, we recorded MEG data from 15 healthy subjects that were presented with two human speakers uttering continuously the words "Yes" and "No" in an interleaved manner. The subjects were asked to attend to one speaker. To investigate which temporal and spatial aspects of the responses carry the most information about the target of auditory attention, we performed spatially and temporally resolved classification of the unaveraged MEG responses using a support vector machine. Sensor-level decoding of the responses to attended vs. unattended words resulted in a mean accuracy of [Formula: see text] (N = 14) for both stimulus words. The discriminating information was mostly available 200-400 ms after the stimulus onset. Spatially-resolved source-level decoding indicated that the most informative sources were in the auditory cortices, in both the left and right hemisphere. Our result corroborates attention modulation of auditory evoked responses and shows that such modulations are detectable in unaveraged MEG responses at high accuracy, which could be exploited e.g. in an intuitive brain-computer interface.
Collapse
Affiliation(s)
- Dovilė Kurmanavičiūtė
- Department of Neuroscience and Biomedical Engineering, Aalto University, P.O. Box 12200, 00076, Aalto, Finland.
| | - Hanna Kataja
- Department of Neuroscience and Biomedical Engineering, Aalto University, P.O. Box 12200, 00076, Aalto, Finland
| | - Mainak Jas
- Department of Neuroscience and Biomedical Engineering, Aalto University, P.O. Box 12200, 00076, Aalto, Finland
- Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Charlestown, MA, 02129, USA
| | - Anne Välilä
- Department of Neuroscience and Biomedical Engineering, Aalto University, P.O. Box 12200, 00076, Aalto, Finland
| | - Lauri Parkkonen
- Department of Neuroscience and Biomedical Engineering, Aalto University, P.O. Box 12200, 00076, Aalto, Finland
- Aalto NeuroImaging, Aalto University, 00076, Aalto, Finland
| |
Collapse
|
2
|
Xie YL, Yang YX, Jiang H, Duan XY, Gu LJ, Qing W, Zhang B, Wang YX. Brain-machine interface-based training for improving upper extremity function after stroke: A meta-analysis of randomized controlled trials. Front Neurosci 2022; 16:949575. [PMID: 35992923 PMCID: PMC9381818 DOI: 10.3389/fnins.2022.949575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Upper extremity dysfunction after stroke is an urgent clinical problem that greatly affects patients' daily life and reduces their quality of life. As an emerging rehabilitation method, brain-machine interface (BMI)-based training can extract brain signals and provide feedback to form a closed-loop rehabilitation, which is currently being studied for functional restoration after stroke. However, there is no reliable medical evidence to support the effect of BMI-based training on upper extremity function after stroke. This review aimed to evaluate the efficacy and safety of BMI-based training for improving upper extremity function after stroke, as well as potential differences in efficacy of different external devices. Methods English-language literature published before April 1, 2022, was searched in five electronic databases using search terms including “brain-computer/machine interface”, “stroke” and “upper extremity.” The identified articles were screened, data were extracted, and the methodological quality of the included trials was assessed. Meta-analysis was performed using RevMan 5.4.1 software. The GRADE method was used to assess the quality of the evidence. Results A total of 17 studies with 410 post-stroke patients were included. Meta-analysis showed that BMI-based training significantly improved upper extremity motor function [standardized mean difference (SMD) = 0.62; 95% confidence interval (CI) (0.34, 0.90); I2 = 38%; p < 0.0001; n = 385; random-effects model; moderate-quality evidence]. Subgroup meta-analysis indicated that BMI-based training significantly improves upper extremity motor function in both chronic [SMD = 0.68; 95% CI (0.32, 1.03), I2 = 46%; p = 0.0002, random-effects model] and subacute [SMD = 1.11; 95%CI (0.22, 1.99); I2 = 76%; p = 0.01; random-effects model] stroke patients compared with control interventions, and using functional electrical stimulation (FES) [SMD = 1.11; 95% CI (0.67, 1.54); I2 = 11%; p < 0.00001; random-effects model]or visual feedback [SMD = 0.66; 95% CI (0.2, 1.12); I2 = 4%; p = 0.005; random-effects model;] as the feedback devices in BMI training was more effective than using robot. In addition, BMI-based training was more effective in improving patients' activities of daily living (ADL) than control interventions [SMD = 1.12; 95% CI (0.65, 1.60); I2 = 0%; p < 0.00001; n = 80; random-effects model]. There was no statistical difference in the dropout rate and adverse effects between the BMI-based training group and the control group. Conclusion BMI-based training improved upper limb motor function and ADL in post-stroke patients. BMI combined with FES or visual feedback may be a better combination for functional recovery than robot. BMI-based trainings are well-tolerated and associated with mild adverse effects.
Collapse
Affiliation(s)
- Yu-lei Xie
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Yu-xuan Yang
- Department of Rehabilitation Medicine, The Second Clinical Hospital of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Hong Jiang
- Department of Rehabilitation Medicine, Xichong County People's Hospital, Nanchong Central Hospital, Nanchong, China
| | - Xing-Yu Duan
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Li-jing Gu
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Wu Qing
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Bo Zhang
- Department of Rehabilitation Medicine, The Second Clinical Hospital of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
- Bo Zhang
| | - Yin-xu Wang
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- *Correspondence: Yin-xu Wang
| |
Collapse
|
3
|
Design considerations for the auditory brain computer interface speller. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Velasco-Álvarez F, Fernández-Rodríguez Á, Medina-Juliá MT, Ron-Angevin R. Speech stream segregation to control an ERP-based auditory BCI. J Neural Eng 2021; 18. [PMID: 33470970 DOI: 10.1088/1741-2552/abdd44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/19/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The use of natural sounds in auditory Brain-Computer Interfaces (BCI) has been shown to improve classification results and usability. Some auditory BCIs are based on stream segregation, in which the subjects must attend one audio stream and ignore the other(s); these streams include some kind of stimuli to be detected. In this work we focus on Event-Related Potentials (ERP) and study whether providing intelligible content to each audio stream could help the users to better concentrate on the desired stream and so to better attend the target stimuli and to ignore the non-target ones. APPROACH In addition to a control condition, two experimental conditions, based on the selective attention and the cocktail party effect, were tested using two simultaneous and spatialized audio streams: i) the condition A2 consisted of an overlap of auditory stimuli (single syllables) on a background consisting of natural speech for each stream, ii) in condition A3, brief alterations of the natural flow of each speech were used as stimuli. MAIN RESULTS The two experimental proposals improved the results of the control condition (single words as stimuli without a speech background) both in a cross validation analysis of the calibration part and in the online test. The analysis of the ERP responses also presented better discriminability for the two proposals in comparison to the control condition. The results of subjective questionnaires support the better usability of the first experimental condition. SIGNIFICANCE The use of natural speech as background improves the stream segregation in an ERP-based auditory BCI (with significant results in the performance metrics, the ERP waveforms, and in the preference parameter in subjective questionnaires). Future work in the field of ERP-based stream segregation should study the use of natural speech in combination with easily perceived but not distracting stimuli.
Collapse
Affiliation(s)
- Francisco Velasco-Álvarez
- Department of Electronic Technology, Universidad de Malaga, E.T.S.I. Telecomunicación, Campus de Teatinos s/n, Malaga, 29071, SPAIN
| | - Álvaro Fernández-Rodríguez
- Department of Electronic Technology, University of Málaga, E.T.S.I. Telecomunicación, Campus de Teatinos s/n, Málaga, 29071, SPAIN
| | - M Teresa Medina-Juliá
- Department of Electronic Technology, Universidad de Malaga, E.T.S.I. Telecomunicación, Campus de Teatinos s/n, Malaga, 29071, SPAIN
| | - Ricardo Ron-Angevin
- Department of Electronic Technology, Universidad de Malaga, E.T.S.I. Telecomunicación, Campus de Teatinos s/n, Malaga, 29071, SPAIN
| |
Collapse
|
5
|
Fernández-Rodríguez Á, Ron-Angevin R, Sanz-Arigita EJ, Parize A, Esquirol J, Perrier A, Laur S, André JM, Lespinet-Najib V, Garcia L. Effect of Distracting Background Speech in an Auditory Brain-Computer Interface. Brain Sci 2021; 11:brainsci11010039. [PMID: 33401410 PMCID: PMC7823829 DOI: 10.3390/brainsci11010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/12/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022] Open
Abstract
Studies so far have analyzed the effect of distractor stimuli in different types of brain-computer interface (BCI). However, the effect of a background speech has not been studied using an auditory event-related potential (ERP-BCI), a convenient option when the visual path cannot be adopted by users. Thus, the aim of the present work is to examine the impact of a background speech on selection performance and user workload in auditory BCI systems. Eleven participants tested three conditions: (i) auditory BCI control condition, (ii) auditory BCI with a background speech to ignore (non-attentional condition), and (iii) auditory BCI while the user has to pay attention to the background speech (attentional condition). The results demonstrated that, despite no significant differences in performance, shared attention to auditory BCI and background speech required a higher cognitive workload. In addition, the P300 target stimuli in the non-attentional condition were significantly higher than those in the attentional condition for several channels. The non-attentional condition was the only condition that showed significant differences in the amplitude of the P300 between target and non-target stimuli. The present study indicates that background speech, especially when it is attended to, is an important interference that should be avoided while using an auditory BCI.
Collapse
Affiliation(s)
| | - Ricardo Ron-Angevin
- UMA-BCI Group, Departamento de Tecnología Electrónica, Universidad de Málaga, 29071 Malaga, Spain;
- Correspondence:
| | - Ernesto J. Sanz-Arigita
- Neuro and Aging and Human Cognition, INCIA-UMR 5287-CNRS, Université de Bordeaux, 33076 Bordeaux, France;
| | - Antoine Parize
- Laboratoire IMS, CNRS UMR 5218, Cognitive Team, Bordeaux INP-ENSC, 33400 Talence, France; (A.P.); (J.E.); (A.P.); (S.L.); (J.M.-A.); (V.L.-N.); (L.G.)
| | - Juliette Esquirol
- Laboratoire IMS, CNRS UMR 5218, Cognitive Team, Bordeaux INP-ENSC, 33400 Talence, France; (A.P.); (J.E.); (A.P.); (S.L.); (J.M.-A.); (V.L.-N.); (L.G.)
| | - Alban Perrier
- Laboratoire IMS, CNRS UMR 5218, Cognitive Team, Bordeaux INP-ENSC, 33400 Talence, France; (A.P.); (J.E.); (A.P.); (S.L.); (J.M.-A.); (V.L.-N.); (L.G.)
| | - Simon Laur
- Laboratoire IMS, CNRS UMR 5218, Cognitive Team, Bordeaux INP-ENSC, 33400 Talence, France; (A.P.); (J.E.); (A.P.); (S.L.); (J.M.-A.); (V.L.-N.); (L.G.)
| | - Jean-Marc André
- Laboratoire IMS, CNRS UMR 5218, Cognitive Team, Bordeaux INP-ENSC, 33400 Talence, France; (A.P.); (J.E.); (A.P.); (S.L.); (J.M.-A.); (V.L.-N.); (L.G.)
| | - Véronique Lespinet-Najib
- Laboratoire IMS, CNRS UMR 5218, Cognitive Team, Bordeaux INP-ENSC, 33400 Talence, France; (A.P.); (J.E.); (A.P.); (S.L.); (J.M.-A.); (V.L.-N.); (L.G.)
| | - Liliana Garcia
- Laboratoire IMS, CNRS UMR 5218, Cognitive Team, Bordeaux INP-ENSC, 33400 Talence, France; (A.P.); (J.E.); (A.P.); (S.L.); (J.M.-A.); (V.L.-N.); (L.G.)
| |
Collapse
|
6
|
Ogino M, Kanoga S, Muto M, Mitsukura Y. Analysis of Prefrontal Single-Channel EEG Data for Portable Auditory ERP-Based Brain-Computer Interfaces. Front Hum Neurosci 2019; 13:250. [PMID: 31404255 PMCID: PMC6669913 DOI: 10.3389/fnhum.2019.00250] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/04/2019] [Indexed: 11/13/2022] Open
Abstract
An electroencephalogram (EEG)-based brain-computer interface (BCI) is a tool to non-invasively control computers by translating the electrical activity of the brain. This technology has the potential to provide patients who have severe generalized myopathy, such as those suffering from amyotrophic lateral sclerosis (ALS), with the ability to communicate. Recently, auditory oddball paradigms have been developed to implement more practical event-related potential (ERP)-based BCIs because they can operate without ocular activities. These paradigms generally make use of clinical (over 16-channel) EEG devices and natural sound stimuli to maintain the user's motivation during the BCI operation; however, most ALS patients who have taken part in auditory ERP-based BCIs tend to complain about the following factors: (i) total device cost and (ii) setup time. The development of a portable auditory ERP-based BCI could overcome considerable obstacles that prevent the use of this technology in communication in everyday life. To address this issue, we analyzed prefrontal single-channel EEG data acquired from a consumer-grade single-channel EEG device using a natural sound-based auditory oddball paradigm. In our experiments, EEG data was gathered from nine healthy subjects and one ALS patient. The performance of auditory ERP-based BCI was quantified under an offline condition and two online conditions. The offline analysis indicated that our paradigm maintained a high level of detection accuracy (%) and ITR (bits/min) across all subjects through a cross-validation procedure (for five commands: 70.0 ± 16.1 and 1.29 ± 0.93, for four commands: 73.8 ± 14.2 and 1.16 ± 0.78, for three commands: 78.7 ± 11.8 and 0.95 ± 0.61, and for two commands: 85.7 ± 8.6 and 0.63 ± 0.38). Furthermore, the first online analysis demonstrated that our paradigm also achieved high performance for new data in an online data acquisition stream (for three commands: 80.0 ± 19.4 and 1.16 ± 0.83). The second online analysis measured online performances on the different day of offline and first online analyses on a different day (for three commands: 62.5 ± 14.3 and 0.43 ± 0.36). These results indicate that prefrontal single-channel EEGs have the potential to contribute to the development of a user-friendly portable auditory ERP-based BCI.
Collapse
Affiliation(s)
| | - Suguru Kanoga
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Masatane Muto
- WITH ALS General Incorporated Foundation, Tokyo, Japan
| | - Yasue Mitsukura
- School of Integrated Design Engineering, Keio University, Kanagawa, Japan
| |
Collapse
|