1
|
Cheron G, Ristori D, Petieau M, Simar C, Zarka D, Cebolla AM. Effects of Pulsed-Wave Chromotherapy and Guided Relaxation on the Theta-Alpha Oscillation During Arrest Reaction. Front Psychol 2022; 13:792872. [PMID: 35310269 PMCID: PMC8929400 DOI: 10.3389/fpsyg.2022.792872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/13/2022] [Indexed: 12/31/2022] Open
Abstract
The search for the best wellness practice has promoted the development of devices integrating different technologies and guided meditation. However, the final effects on the electrical activity of the brain remain relatively sparse. Here, we have analyzed of the alpha and theta electroencephalographic oscillations during the realization of the arrest reaction (AR; eyes close/eyes open transition) when a chromotherapy session performed in a dedicated room [Rebalance (RB) device], with an ergonomic bed integrating pulsed-wave light (PWL) stimulation, guided breathing, and body scan exercises. We demonstrated that the PWL induced an evoked-related potential characterized by the N2-P3 components maximally recorded on the fronto-central areas and accompanied by an event-related synchronization (ERS) of the delta–theta–alpha oscillations. The power of the alpha and theta oscillations was analyzed during repeated ARs testing realized along with the whole RB session. We showed that the power of the alpha and theta oscillations was significantly increased during the session in comparison to their values recorded before. Of the 14 participants, 11 and 6 showed a significant power increase of the alpha and theta oscillations, respectively. These increased powers were not observed in two different control groups (n = 28) who stayed passively outside or inside the RB room but without any type of stimulation. These preliminary results suggest that PWL chromotherapy and guided relaxation induce measurable electrical brain changes that could be beneficial under neuropsychiatric perspectives.
Collapse
Affiliation(s)
- Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium.,Laboratory of Neuroscience, Université de Mons, Mons, Belgium
| | - Dominique Ristori
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Mathieu Petieau
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Cédric Simar
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium.,Machine Learning Group, Computer Science Department, Université Libre de Bruxelles, Brussels, Belgium
| | - David Zarka
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Ana-Maria Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
2
|
Bermeitinger C, Eckert D. Moving distractors and moving targets: combining a response priming task with moving prime stimuli and a flanker task. JOURNAL OF COGNITIVE PSYCHOLOGY 2022. [DOI: 10.1080/20445911.2022.2029458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - David Eckert
- Department of Psychology, University of Hildesheim, Hildesheim, Germany
| |
Collapse
|
3
|
Benassi M, Giovagnoli S, Pansell T, Mandolesi L, Bolzani R, Magri S, Forsman L, Hellgren K. Developmental trajectories of global motion and global form perception from 4 years to adulthood. J Exp Child Psychol 2021; 207:105092. [PMID: 33676115 DOI: 10.1016/j.jecp.2021.105092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 12/27/2020] [Accepted: 01/07/2021] [Indexed: 11/15/2022]
Abstract
Literature on the development of global motion and global form perception demonstrated their asynchronous developmental trajectories. However, former studies have failed to clearly establish the critical period of maturation for these specific abilities. This study aimed to analyze the developmental trajectories of global motion and global form discrimination abilities by controlling for basic visual functions and general cognitive ability and to present the global motion and global form normative scores. A sample of 456 children and adolescents (4-17 years of age) and 76 adults recruited from the Italian and Swedish general population participated in the study. Motion and form perception were evaluated by the motion coherence test and form coherence test, respectively. Raven's matrices were used to assess general cognitive ability, the Lea Hyvärinen chart test was used for full- and low-contrast visual acuity, and the TNO test was used for stereopsis. General cognitive ability and basic visual functions were strongly related to motion and form perception development. Global motion perception had an accelerated maturation compared with global form perception. For motion perception, an analysis of the oblique effect's development showed that it is present at 4 years of age. The standardized scores of global motion and form coherence tests can be used for clinical purposes.
Collapse
Affiliation(s)
| | - Sara Giovagnoli
- Department of Psychology, University of Bologna, 40127 Bologna, Italy
| | - Tony Pansell
- Department of Clinical Neuroscience, Eye and Vision, MBC, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Luca Mandolesi
- Department of Psychology, University of Bologna, 40127 Bologna, Italy
| | - Roberto Bolzani
- Department of Psychology, University of Bologna, 40127 Bologna, Italy
| | - Sara Magri
- Department of Psychology, University of Bologna, 40127 Bologna, Italy
| | - Lea Forsman
- Oregon Health Authority, Salem, OR 97301, USA
| | - Kerstin Hellgren
- Department of Clinical Neuroscience, Eye and Vision, MBC, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Neuropediatrics, Karolinska University Hospital, 171 64 Stockholm, Sweden
| |
Collapse
|
4
|
Drechsler R, Brem S, Brandeis D, Grünblatt E, Berger G, Walitza S. ADHD: Current Concepts and Treatments in Children and Adolescents. Neuropediatrics 2020; 51:315-335. [PMID: 32559806 PMCID: PMC7508636 DOI: 10.1055/s-0040-1701658] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/28/2019] [Indexed: 12/17/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is among the most frequent disorders within child and adolescent psychiatry, with a prevalence of over 5%. Nosological systems, such as the Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-5) and the International Classification of Diseases, editions 10 and 11 (ICD-10/11) continue to define ADHD according to behavioral criteria, based on observation and on informant reports. Despite an overwhelming body of research on ADHD over the last 10 to 20 years, valid neurobiological markers or other objective criteria that may lead to unequivocal diagnostic classification are still lacking. On the contrary, the concept of ADHD seems to have become broader and more heterogeneous. Thus, the diagnosis and treatment of ADHD are still challenging for clinicians, necessitating increased reliance on their expertise and experience. The first part of this review presents an overview of the current definitions of the disorder (DSM-5, ICD-10/11). Furthermore, it discusses more controversial aspects of the construct of ADHD, including the dimensional versus categorical approach, alternative ADHD constructs, and aspects pertaining to epidemiology and prevalence. The second part focuses on comorbidities, on the difficulty of distinguishing between "primary" and "secondary" ADHD for purposes of differential diagnosis, and on clinical diagnostic procedures. In the third and most prominent part, an overview of current neurobiological concepts of ADHD is given, including neuropsychological and neurophysiological researches and summaries of current neuroimaging and genetic studies. Finally, treatment options are reviewed, including a discussion of multimodal, pharmacological, and nonpharmacological interventions and their evidence base.
Collapse
Affiliation(s)
- Renate Drechsler
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Gregor Berger
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Uter J, Heldmann M, Rogge B, Obst M, Steinhardt J, Brabant G, Moran C, Chatterjee K, Münte TF. Patients with mutations of the Thyroid hormone beta-receptor show an ADHD-like phenotype for performance monitoring: an electrophysiological study. Neuroimage Clin 2020; 26:102250. [PMID: 32217468 PMCID: PMC7109456 DOI: 10.1016/j.nicl.2020.102250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/18/2020] [Accepted: 03/17/2020] [Indexed: 12/26/2022]
Abstract
Resistance to thyroid hormone beta (RTHβ) is a syndrome of reduced responsiveness of peripheral tissue to thyroid hormone, caused by mutations in the thyroid hormone receptor beta (THRB). Its cognitive phenotype has been reported to be similar to attention deficit hyperactivity disorder (ADHD). This study used electrophysiological biomarkers of performance monitoring in RTHβ to contribute further evidence on its phenotypical similarity to ADHD. Twenty-one participants with RTHβ aged 18-67 years and 21 matched healthy controls performed a modified flanker task during EEG recording. The RTHβ and control groups were compared on behavioural measures and components of event related potentials (ERPs), i.e. the error related negativity (ERN), the error positivity (Pe) and P3 component. There were no significant group differences with regard to behaviour. RTHβ subjects displayed significantly reduced ERN and Pe amplitudes compared to the controls in the response-locked ERPs. In addition, we observed reduced P3 amplitudes in both congruent and incongruent trials, as well as prolonged P3 latencies in RTHβ subjects in the stimulus-locked ERPs. Our findings reveal alterations in error detection and performance monitoring of RTHβ patients, likely indicating reduced error awareness. The electrophysiological phenotype of RTHß subjects with regard to action monitoring is indistinguishable from ADHD.
Collapse
Affiliation(s)
- Jan Uter
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck, Germany; Department of Psychology II, University of Lübeck, Lübeck, Germany
| | - Berenike Rogge
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Martina Obst
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | | | - Georg Brabant
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Carla Moran
- Department of Endocrinology, University of Cambridge, Cambridge, UK
| | | | - Thomas F Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany; Department of Psychology II, University of Lübeck, Lübeck, Germany.
| |
Collapse
|