1
|
Gigliotti A, Pereira HM. Emerging evidence on the effects of electrode arrangements and other parameters on the application of transcutaneous spinal direct current stimulation. J Neurophysiol 2025; 133:709-721. [PMID: 39819139 DOI: 10.1152/jn.00441.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/16/2024] [Accepted: 01/14/2025] [Indexed: 01/19/2025] Open
Abstract
Transcutaneous spinal direct current stimulation (TSDCS) has the potential to modulate spinal circuits and induce functional changes in humans. Nevertheless, differences across studies on basic parameters used and obtained metrics represent a confounding factor. Computer simulations are instrumental in improving the application of the TSDCS technique. Their findings allow a better interpretation of the tissue conductivities heterogeneity. Emerging findings indicate the electric field is maximal in the segments located between the electrodes, and that factors such as the depth of the targeted area, and location of the electrodes on low conductive points, such as the spinous processes, may impact the electric field generated in the spinal cord, with consequences for thoracic versus lumbar or cervical applications. Recently, growing attention has been directed toward the importance of the TSDCS reference electrode's position and its influence on the current field properties at the targeted site. This review highlights the influence of dosage, polarity, and electrode position on the variety of TSDCS results in healthy and some clinical populations. Based on the available evidence, we suggest that although the current dosage appears to have a negligible effect, the variety of electrode montages and configurations of TSDCS can significantly impact the electric field distributions and potentially explain the conflicting results of experimental studies. Future human trials should systematically and thoughtfully evaluate the location of TSDCS electrodes based on the targeted neural structures.
Collapse
Affiliation(s)
- Andrea Gigliotti
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, United States
| | - Hugo M Pereira
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, United States
| |
Collapse
|
2
|
da Cunha PHM, Lapa JDDS, Hosomi K, de Andrade DC. Neuromodulation for neuropathic pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:471-502. [PMID: 39580221 DOI: 10.1016/bs.irn.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
The treatment of neuropathic pain (NeP) often leads to partial or incomplete pain relief, with up to 40 % of patients being pharmaco-resistant. In this chapter the efficacy of neuromodulation techniques in treating NeP is reviewed. It presents a detailed evaluation of the mechanisms of action and evidence supporting the clinical use of the most common approaches like transcutaneous electrical nerve stimulation (TENS), transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), deep brain stimulation (DBS), invasive motor cortex stimulation (iMCS), spinal cord stimulation (SCS), dorsal root ganglion stimulation (DRG-S), and peripheral nerve stimulation (PNS). Current literature suggests that motor cortex rTMS is effective for peripheral and central NeP, and TENS for peripheral NeP. Evidence for tDCS is inconclusive. DBS is reserved for research settings due to heterogeneous results, while iMSC has shown efficacy in a small randomized trial in neuropathic pain due to stroke and brachial plexus avulsion. SCS has moderate evidence for painful diabetic neuropathy and failed back surgery syndrome, but trials were not controlled with sham. DRG-S and PNS have shown positive results for complex regional pain syndrome and post-surgical neuropathic pain, respectively. Adverse effects vary, with non-invasive techniques showing local discomfort, dizziness and headache, and DBS and SCS hardware-related issues. To date, non-invasive techniques have been more extensively studied and some are included in international guidelines, while the evidence level for invasive techniques are less robust, potentially suggesting their use in a case-by-case indication considering patient´s preferences, costs and expected benefits.
Collapse
Affiliation(s)
| | | | - Koichi Hosomi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daniel Ciampi de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
3
|
Sahu M, Ambasta RK, Das SR, Mishra MK, Shanker A, Kumar P. Harnessing Brainwave Entrainment: A Non-invasive Strategy To Alleviate Neurological Disorder Symptoms. Ageing Res Rev 2024; 101:102547. [PMID: 39419401 DOI: 10.1016/j.arr.2024.102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
From 1990-2019, the burden of neurological disorders varied considerably across countries and regions. Psychiatric disorders, often emerging in early to mid-adulthood, are linked to late-life neurodegenerative diseases like Alzheimer's disease and Parkinson's disease. Individuals with conditions such as Major Depressive Disorder, Anxiety Disorder, Schizophrenia, and Bipolar Disorder face up to four times higher risk of developing neurodegenerative disorders. Contrarily, 65 % of those with neurodegenerative conditions experience severe psychiatric symptoms during their illness. Further, the limitation of medical resources continues to make this burden a significant global and local challenge. Therefore, brainwave entrainment provides therapeutic avenues for improving the symptoms of diseases. Brainwaves are rhythmic oscillations produced either spontaneously or in response to stimuli. Key brainwave patterns include gamma, beta, alpha, theta, and delta waves, yet the underlying physiological mechanisms and the brain's ability to shift between these dynamic states remain areas for further exploration. In neurological disorders, brainwaves are often disrupted, a phenomenon termed "oscillopathy". However, distinguishing these impaired oscillations from the natural variability in brainwave activity across different regions and functional states poses significant challenges. Brainwave-mediated therapeutics represents a promising research field aimed at correcting dysfunctional oscillations. Herein, we discuss a range of non-invasive techniques such as non-invasive brain stimulation (NIBS), neurologic music therapy (NMT), gamma stimulation, and somatosensory interventions using light, sound, and visual stimuli. These approaches, with their minimal side effects and cost-effectiveness, offer potential therapeutic benefits. When integrated, they may not only help in delaying disease progression but also contribute to the development of innovative medical devices for neurological care.
Collapse
Affiliation(s)
- Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Suman R Das
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Manoj K Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, and The Office for Research and Innovation, Meharry Medical College, Nashville, TN 37208, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
4
|
Fernández-Pérez JJ, Serrano-Muñoz D, Beltran-Alacreu H, Avendaño-Coy J, Gómez-Soriano J. Trans-Spinal Direct Current Stimulation in Neurological Disorders: A systematic review. J Neurol Phys Ther 2024; 48:66-74. [PMID: 38015051 DOI: 10.1097/npt.0000000000000463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
BACKGROUND AND PURPOSE Trans-spinal direct current stimulation (tsDCS) is a noninvasive stimulation technique that applies direct current stimulation over spinal levels. However, the effectiveness and feasibility of this stimulation are still unclear. This systematic review summarizes the effectiveness of tsDCS in clinical and neurophysiological outcomes in neurological patients, as well as its feasibility and safety. METHODS The search was conducted using the following databases: PEDro, Scopus, Web of Science, CINAHL, SPORTDiscus, and PubMed. The inclusion criteria were: Participants : people with central nervous system diseases; Interventions : tsDCS alone or in combination with locomotion training; Comparators : sham tsDCS, transcranial direct current stimulation, or locomotion training; Outcomes : clinical and neurophysiological measures; and Studies : randomized clinical trials. RESULTS Eight studies with a total of 143 subjects were included. Anodal tsDCS led to a reduction in hypertonia, neuropathic pain intensity, and balance deficits in people with hereditary spastic paraplegia, multiple sclerosis, and primary orthostatic tremor, respectively. In contrast, cathodal tsDCS only had positive effects on balance and tremor in people with primary orthostatic tremor. No severe adverse effects were reported during and after anodal or cathodal tsDCS. DISCUSSION AND CONCLUSIONS Although certain studies have found an effect of anodal tsDCS on specific clinical outcomes in people with central nervous system diseases, its effectiveness cannot be established since these findings have not been replicated and the results were heterogeneous. This stimulation was feasible and safe to apply. Further studies are needed to replicate the obtained results of tsDCS when applied in populations with neurological diseases.
Collapse
Affiliation(s)
- Juan José Fernández-Pérez
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing of Toledo, Universidad de Castilla-La Mancha, Toledo, Spain
| | | | | | | | | |
Collapse
|
5
|
Shkodina AD, Bardhan M, Chopra H, Anyagwa OE, Pinchuk VA, Hryn KV, Kryvchun AM, Boiko DI, Suresh V, Verma A, Delva MY. Pharmacological and Non-pharmacological Approaches for the Management of Neuropathic Pain in Multiple Sclerosis. CNS Drugs 2024; 38:205-224. [PMID: 38421578 DOI: 10.1007/s40263-024-01072-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Multiple sclerosis is a chronic inflammatory disease that affects the central nervous system and can cause various types of pain including ongoing extremity pain, Lhermitte's phenomenon, trigeminal neuralgia, and mixed pain. Neuropathic pain is a major concern for individuals with multiple sclerosis as it is directly linked to myelin damage in the central nervous system and the management of neuropathic pain in multiple sclerosis is challenging as the options available have limited efficacy and can cause unpleasant side effects. The literature search was conducted across two databases, PubMed, and Google Scholar. Eligible studies included clinical trials, observational studies, meta-analyses, systematic reviews, and narrative reviews. The objective of this article is to provide an overview of literature on pharmacological and non-pharmacological strategies employed in the management of neuropathic pain in multiple sclerosis. Pharmacological options include cannabinoids, muscle relaxants (tizanidine, baclofen, dantrolene), anticonvulsants (benzodiazepines, gabapentin, phenytoin, carbamazepine, lamotrigine), antidepressants (duloxetine, venlafaxine, tricyclic antidepressants), opioids (naltrexone), and botulinum toxin variants, which have evidence from various clinical trials. Non-pharmacological approaches for trigeminal neuralgia may include neurosurgical methods. Non-invasive methods, physical therapy, and psychotherapy (cognitive behavioral therapy, acceptance and commitment therapy and mindfulness-based stress reduction) may be recommended for patients with neuropathic pain in multiple sclerosis. The choice of treatment depends on the severity and type of pain as well as other factors, such as patient preferences and comorbidities. There is a pressing need for healthcare professionals and researchers to prioritize the development of better strategies for managing multiple sclerosis-induced neuropathic pain.
Collapse
Affiliation(s)
- Anastasiia D Shkodina
- Department of Neurological diseases, Poltava State Medical University, Poltava, Ukraine
| | - Mainak Bardhan
- Neuro Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N. Kendall Drive, Miami, FL, 33176, USA.
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India
| | | | - Viktoriia A Pinchuk
- Department of Neurological diseases, Poltava State Medical University, Poltava, Ukraine
| | - Kateryna V Hryn
- Department of Neurological diseases, Poltava State Medical University, Poltava, Ukraine
| | - Anzhelina M Kryvchun
- Department of Neurological diseases, Poltava State Medical University, Poltava, Ukraine
| | - Dmytro I Boiko
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Vinay Suresh
- King George's Medical University, Lucknow, India
| | - Amogh Verma
- Rama Medical College Hospital and Research Centre, Hapur, India
| | - Mykhailo Yu Delva
- Department of Neurological diseases, Poltava State Medical University, Poltava, Ukraine
| |
Collapse
|
6
|
Wu F, Li X, Liang J, Zhang T, Tao J, Yang X, Zhou X, Du Q. Electrical stimulation therapy for pain and related symptoms in multiple sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord 2023; 80:105114. [PMID: 37944194 DOI: 10.1016/j.msard.2023.105114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/14/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND The effectiveness of electrical stimulation therapy (EST) for pain, depression, fatigue, disability, and quality of life in multiple sclerosis (MS) remains uncertain. This study aims to analyze and discuss the efficacy of various EST treatments in alleviating pain among MS patients. METHODS The primary search was conducted using PubMed, Web of Science, Cochrane Library, Embase, and the Cumulative Index of Nursing and Allied Health Literature databases until September 25, 2023. Randomized controlled trials (RCTs) including patients with MS pain receiving EST compared with other therapies were included. Pain intensity, quality of life, and neuropsychiatric symptoms were reported. The mean difference (MD) with 95 % confidence intervals (CIs) was estimated separately for outcomes to understand the mean effect size. RESULTS Ten RCTs containing 315 participants were included. The pooled data from 8 trials including 267 participants showed that the EST was superior in alleviating pain (MD = -1.75, 95 % CI -2.85--0.64, P = 0.002, I2=73 %) evaluated by the visual analog scale. In subgroup analysis, medium-term EST treatment showed the highest effect size compared to short-term and long-term treatment (MDmedium-term = -2.17, 95 % CI -3.51--0.84, P = 0.001, I2 = 0 %). However, no significant differences were found in terms of pain-related quality of life, depression, fatigue, and pain-related disability. No adverse events related to EST were reported. A high risk of bias was identified in three of the ten included studies. CONCLUSIONS EST is effective and safe for alleviating pain in MS, but it should be noted that limited sample sizes and methodological issues were present in the included studies. More robust assessment criteria and high-quality RCTs are required for patients with MS. TRIAL REGISTRATION CRD42023406787. (https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=406787).
Collapse
Affiliation(s)
- Fan Wu
- Department of Rehabilitation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Juping Liang
- Department of Rehabilitation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tongtong Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jing Tao
- Department of Rehabilitation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Yang
- Department of Rehabilitation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Zhou
- Department of Rehabilitation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qing Du
- Department of Rehabilitation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Chongming Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, China.
| |
Collapse
|
7
|
Eberhardt F, Enax-Krumova E, Tegenthoff M, Höffken O, Özgül ÖS. Anodal transcutaneous spinal direct current stimulation influences the amplitude of pain-related evoked potentials in healthy subjects. Sci Rep 2023; 13:20920. [PMID: 38016967 PMCID: PMC10684856 DOI: 10.1038/s41598-023-47408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023] Open
Abstract
It has already been described that transcutaneous spinal direct current stimulation (tsDCS) can selectively influence nociceptive evoked potentials. This study is the first aiming to prove an influence of tsDCS on pain-related evoked potentials (PREP) using concentric surface electrodes (CE), whose nociceptive specificity is still under discussion. 28 healthy subjects participated in this sham-controlled, double-blind cross-over study. All subjects underwent one session of anodal and one session of sham low-thoracic tsDCS. Before and after the intervention, PREP using CE, PREP-induced pain perception and somatosensory evoked potentials (SEP) were assessed on the right upper and lower limb. We found a decrease in PREP amplitude at the lower limb after sham stimulation, but not after anodal tsDCS, while SEP remained unchanged under all studied conditions. There was no difference between the effects of anodal tsDCS and sham stimulation on the studied parameters assessed at the upper limb. PREP-induced pain of the upper and lower limb increased after anodal tsDCS. The ability of influencing PREP using a CE at the spinal level in contrast to SEP suggests that PREP using CE follows the spinothalamic pathway and supports the assumption that it is specifically nociceptive. However, while mainly inhibitory effects on nociceptive stimuli have already been described, our results rather suggest that anodal tsDCS has a sensitizing effect. This may indicate that the mechanisms underlying the elicitation of PREP with CE are not the same as for the other nociceptive evoked potentials. The effects on the processing of different types of painful stimuli should be directly compared in future studies.
Collapse
Affiliation(s)
- Frederic Eberhardt
- Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil GmbH, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| | - Elena Enax-Krumova
- Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil GmbH, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil GmbH, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Oliver Höffken
- Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil GmbH, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Özüm Simal Özgül
- Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil GmbH, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| |
Collapse
|
8
|
Hassan AB, Salihu AT, Masta MA, Gunn H, Marsden J, Abdullahi A, Ahmad RY, Danazumi MS. Effect of transcutaneous spinal direct current stimulation on spasticity in upper motor neuron conditions: a systematic review and meta-analysis. Spinal Cord 2023; 61:587-599. [PMID: 37640926 DOI: 10.1038/s41393-023-00928-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
STUDY DESIGN A systematic review and meta-analysis of clinical trials. OBJECTIVES To determine the effect of non-invasive transcutaneous spinal direct current stimulation (tsDCS) on spasticity, activity limitations and participation restrictions in various upper motor neuron diseases. METHODS Six databases including CINAHL plus, Cochrane CENTRAL, Embase, MEDLINE, SCOPUS and Web of Science were searched for the relevant records from January 2008 to December 2022. Two reviewers independently selected and extracted data on spasticity, activity limitations and participation restrictions. The risk of bias was evaluated using the PEDro scale while the GRADE approach established the certainty of the evidence. RESULTS Eleven studies were identified of which 5 (45.5%) were rated as having a low risk of bias and 8 (72.7%) were meta-analyzed. The meta-analyses did not show any significant differences between cathodal (SMD = -0.67, 95% CI = -1.50 to 0.15, P = 0.11, I2 = 75%, 6 RCTs) or anodal (SMD = 0.11, 95% CI = -0.43 to -0.64, p = 0.69, I2 = 0%, 2 RCTs) and sham tsDCS for spasticity. There was also no significant difference between active and sham tsDCS for activity limitations (SMD = -0.42, 95% CI = -0.04 to 0.21, p = 0.2, I2 = 0%, 2 RCTs) and participation restrictions (MD = -8.10, 95% CI = -18.02 to 1.82, p = 0.11, 1 RCT). CONCLUSIONS The meta-analysis of the available evidence provides an uncertain estimate of the effect of cathodal tsDCS on spasticity, activity limitation and participation restriction. It might be very helpful, or it may make no difference at all. However, considering the level of the evidence and the limitation in the quality of the majority of the included studies, further well-designed research may likely change the estimate of effect. TRIAL REGISTRATION PROSPERO CRD42021245601.
Collapse
Affiliation(s)
- Auwal B Hassan
- Department of Medical Rehabilitation (Physiotherapy), Faculty of Allied Health Sciences, College of Medical Sciences, University of Maiduguri, Maiduguri, Borno State, Nigeria
| | - Abubakar T Salihu
- Department of Physiotherapy, Monash University, Melbourne, VIC, Australia
| | - Mamman A Masta
- Department of Medical Rehabilitation (Physiotherapy), Faculty of Allied Health Sciences, College of Medical Sciences, University of Maiduguri, Maiduguri, Borno State, Nigeria
| | - Hilary Gunn
- Peninsula Allied Health Centre, University of Plymouth, Plymouth, UK
| | - Jonathan Marsden
- Peninsula Allied Health Centre, University of Plymouth, Plymouth, UK
| | - Auwal Abdullahi
- Department of Physiotherapy, Bayero University Kano, Kano, Nigeria
| | - Rufa'i Y Ahmad
- Department of Physiotherapy, Bayero University Kano, Kano, Nigeria
| | - Musa S Danazumi
- Discipline of Physiotherapy, School of Allied Health, Human Services and Sport, College of Sciences, Health and Engineering, La Trobe University, Bundoora, VIC, 3085, Australia.
| |
Collapse
|
9
|
Hodaj H, Payen JF, Hodaj E, Sorel M, Dumolard A, Vercueil L, Delon-Martin C, Lefaucheur JP. Long-term analgesic effect of trans-spinal direct current stimulation compared to non-invasive motor cortex stimulation in complex regional pain syndrome. Brain Commun 2023; 5:fcad191. [PMID: 37545548 PMCID: PMC10400160 DOI: 10.1093/braincomms/fcad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/26/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
The aim of the present study was to compare the analgesic effect of motor cortex stimulation using high-frequency repetitive transcranial magnetic stimulation or transcranial direct current stimulation and transcutaneous spinal direct current stimulation in patients with complex regional pain syndrome. Thirty-three patients with complex regional pain syndrome were randomized to one of the three treatment groups (repetitive transcranial magnetic stimulation, n = 11; transcranial direct current stimulation, n = 10; transcutaneous spinal direct current stimulation, n = 12) and received a series of 12 sessions of stimulation for 3 weeks (induction phase) and 11 sessions for 4 months (maintenance therapy). The primary end-point was the mean pain intensity assessed weekly with a visual numerical scale during the month prior to treatment (baseline), the 5-month stimulation period and 1 month after the treatment. The weekly visual numerical scale pain score was significantly reduced at all time points compared to baseline in the transcutaneous spinal direct current stimulation group, at the last two time points in the repetitive transcranial magnetic stimulation group (end of the 5-month stimulation period and 1 month later), but at no time point in the transcranial direct current stimulation group. A significant pain relief was observed at the end of induction phase using transcutaneous spinal direct current stimulation compared to repetitive transcranial magnetic stimulation (P = 0.008) and to transcranial direct current stimulation (P = 0.003). In this trial, transcutaneous spinal direct current stimulation was more efficient to relieve pain in patients with complex regional pain syndrome compared to motor cortex stimulation techniques (repetitive transcranial magnetic stimulation, transcranial direct current stimulation). This efficacy was found during the induction phase and was maintained thereafter. This study warrants further investigation to confirm the potentiality of transcutaneous spinal direct current stimulation as a therapeutic option in complex regional pain syndrome.
Collapse
Affiliation(s)
- Hasan Hodaj
- Correspondence to: Hasan Hodaj Pôle Anesthésie Réanimation CHU Grenoble Alpes, BP217, 38043 Grenoble, FranceE-mail:
| | - Jean-Francois Payen
- Centre de la Douleur, Pôle Anesthésie Réanimation, CHU Grenoble Alpes, 38000 Grenoble, France
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Enkelejda Hodaj
- Centre d'Investigation Clinique, CHU Grenoble Alpes, 38000, Grenoble, France
| | - Marc Sorel
- Centre d'Evaluation et de Traitement de la Douleur, Hôpital Sud-Seine-et-Marne, site Nemours, Nemours, France
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Faculté de Santé, Univ. Paris Est Créteil, Créteil, France
| | - Anne Dumolard
- Centre de la Douleur, Pôle Anesthésie Réanimation, CHU Grenoble Alpes, 38000 Grenoble, France
| | - Laurent Vercueil
- Service de Neurologie, CHU Grenoble Alpes, 38000, Grenoble, France
| | - Chantal Delon-Martin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Jean-Pascal Lefaucheur
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Faculté de Santé, Univ. Paris Est Créteil, Créteil, France
- Unité de Neurophysiologie Clinique, Service de Physiologie—Explorations Fonctionnelles, Hôpital Henri Mondor, Assistance Publique—Hôpitaux de Paris, Créteil, France
| |
Collapse
|
10
|
Marangolo P, Vasta S, Manfredini A, Caltagirone C. What Else Can Be Done by the Spinal Cord? A Review on the Effectiveness of Transpinal Direct Current Stimulation (tsDCS) in Stroke Recovery. Int J Mol Sci 2023; 24:10173. [PMID: 37373323 DOI: 10.3390/ijms241210173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Since the spinal cord has traditionally been considered a bundle of long fibers connecting the brain to all parts of the body, the study of its role has long been limited to peripheral sensory and motor control. However, in recent years, new studies have challenged this view pointing to the spinal cord's involvement not only in the acquisition and maintenance of new motor skills but also in the modulation of motor and cognitive functions dependent on cortical motor regions. Indeed, several reports to date, which have combined neurophysiological techniques with transpinal direct current stimulation (tsDCS), have shown that tsDCS is effective in promoting local and cortical neuroplasticity changes in animals and humans through the activation of ascending corticospinal pathways that modulate the sensorimotor cortical networks. The aim of this paper is first to report the most prominent tsDCS studies on neuroplasticity and its influence at the cortical level. Then, a comprehensive review of tsDCS literature on motor improvement in animals and healthy subjects and on motor and cognitive recovery in post-stroke populations is presented. We believe that these findings might have an important impact in the future making tsDCS a potential suitable adjunctive approach for post-stroke recovery.
Collapse
Affiliation(s)
- Paola Marangolo
- Department of Humanities Studies, University Federico II, 80133 Naples, Italy
| | - Simona Vasta
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessio Manfredini
- Department of Humanities Studies, University Federico II, 80133 Naples, Italy
| | | |
Collapse
|
11
|
Guidetti M, Giannoni-Luza S, Bocci T, Pacheco-Barrios K, Bianchi AM, Parazzini M, Ionta S, Ferrucci R, Maiorana NV, Verde F, Ticozzi N, Silani V, Priori A. Modeling Electric Fields in Transcutaneous Spinal Direct Current Stimulation: A Clinical Perspective. Biomedicines 2023; 11:1283. [PMID: 37238953 PMCID: PMC10216237 DOI: 10.3390/biomedicines11051283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Clinical findings suggest that transcutaneous spinal direct current stimulation (tsDCS) can modulate ascending sensitive, descending corticospinal, and segmental pathways in the spinal cord (SC). However, several aspects of the stimulation have not been completely understood, and realistic computational models based on MRI are the gold standard to predict the interaction between tsDCS-induced electric fields and anatomy. Here, we review the electric fields distribution in the SC during tsDCS as predicted by MRI-based realistic models, compare such knowledge with clinical findings, and define the role of computational knowledge in optimizing tsDCS protocols. tsDCS-induced electric fields are predicted to be safe and induce both transient and neuroplastic changes. This could support the possibility to explore new clinical applications, such as spinal cord injury. For the most applied protocol (2-3 mA for 20-30 min, active electrode over T10-T12 and the reference on the right shoulder), similar electric field intensities are generated in both ventral and dorsal horns of the SC at the same height. This was confirmed by human studies, in which both motor and sensitive effects were found. Lastly, electric fields are strongly dependent on anatomy and electrodes' placement. Regardless of the montage, inter-individual hotspots of higher values of electric fields were predicted, which could change when the subjects move from a position to another (e.g., from the supine to the lateral position). These characteristics underlines the need for individualized and patient-tailored MRI-based computational models to optimize the stimulation protocol. A detailed modeling approach of the electric field distribution might contribute to optimizing stimulation protocols, tailoring electrodes' configuration, intensities, and duration to the clinical outcome.
Collapse
Affiliation(s)
- Matteo Guidetti
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.G.); (T.B.); (N.V.M.)
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy;
| | - Stefano Giannoni-Luza
- Sensory-Motor Lab (SeMoLa), Department of Ophthalmology—University of Lausanne, Jules Gonin Eye Hospital/Fondation Asile des Aveugles, 1015 Lausanne, Switzerland; (S.G.-L.); (S.I.)
| | - Tommaso Bocci
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.G.); (T.B.); (N.V.M.)
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy;
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, MA 02129, USA;
- Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Lima 15024, Peru
| | - Anna Maria Bianchi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy;
| | - Marta Parazzini
- Istituto di Elettronica e di Ingegneria Dell’Informazione e delle Telecomunicazioni (IEIIT), Consiglio Nazionale delle Ricerche (CNR), 10129 Milan, Italy;
| | - Silvio Ionta
- Sensory-Motor Lab (SeMoLa), Department of Ophthalmology—University of Lausanne, Jules Gonin Eye Hospital/Fondation Asile des Aveugles, 1015 Lausanne, Switzerland; (S.G.-L.); (S.I.)
| | - Roberta Ferrucci
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy;
- Department of Oncology and Hematology, University of Milan, 20122 Milan, Italy
| | - Natale Vincenzo Maiorana
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.G.); (T.B.); (N.V.M.)
| | - Federico Verde
- Department of Neurology, Istituto Auxologico Italiano IRCCS, 20149 Milan, Italy; (F.V.); (N.T.); (V.S.)
- Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ Center, Università degli Studi di Milano, 20122 Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology, Istituto Auxologico Italiano IRCCS, 20149 Milan, Italy; (F.V.); (N.T.); (V.S.)
- Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ Center, Università degli Studi di Milano, 20122 Milan, Italy
| | - Vincenzo Silani
- Department of Neurology, Istituto Auxologico Italiano IRCCS, 20149 Milan, Italy; (F.V.); (N.T.); (V.S.)
- Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ Center, Università degli Studi di Milano, 20122 Milan, Italy
| | - Alberto Priori
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.G.); (T.B.); (N.V.M.)
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy;
| |
Collapse
|
12
|
Zhang X, Huai Y, Wei Z, Yang W, Xie Q, Yi L. Non-invasive brain stimulation therapy on neurological symptoms in patients with multiple sclerosis: A network meta analysis. Front Neurol 2022; 13:1007702. [PMID: 36457862 PMCID: PMC9705977 DOI: 10.3389/fneur.2022.1007702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/31/2022] [Indexed: 02/22/2024] Open
Abstract
OBJECTIVE The aim of the study was to evaluate non-invasive brain stimulation (NIBS) [including transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES)] on neurological symptoms in patients with multiple sclerosis (PwMS). METHOD We searched PubMed, Embase, Cochrane Library, Web of Science and Ovid MEDLINE until February 2022. And we evaluated the included studies for methodological quality by the Cochrane bias risk assessment tool and assessed the studies' certainty of evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) framework. We performed network meta analysis (NMA) by using Stata 15 and ranked the results of the NMA by using the surface under the cumulative ranking curve (SUCRA) ranking chart. RESULT Twenty seven clinical trials were finally included (N = 596, 66.4% women). For the immediate effects, rTMS over M1 yielded the most optimal scheme for fatigue reduction among all the interventions compared to the sham stimulation groups [MD = -0.85, 95% CI (-1.57, -0.14)] (SUCRA = 82.6%). iTBS over M1 yielded the most signifcant reduced pain level than the sham groups did [MD = -1.26, 95% CI (-2.40, -0.11)] (SUCRA = 98.4%). tDCS over F3 was the best protocol of NIBS to improve quality of life (QOL) [MD = 1.41, 95% CI = (0.45,2.36)] (SUCRA = 76.7%), and iTBS over M1 may significantly reduce spasticity compared to sham stimulation [MD = -1.20, 95% CI = (-1.99, -0.41)] (SUCRA = 90.3%). Furthermore, rTMS, tRNS, and tDCS on certain areas may improve PwMS accuracy, response time, manual dexterity, pain relief and QOL, but does not show statistically significant differences. The evidence assessed using GRADE is very low. CONCLUSION Based on the NMA and SUCRA ranking, we can conclude that symptoms including fatigue, pain, spasticity, and QOL can be improved by following NIBS protocol after treatment. Nonetheless, most of the included studies lack a good methodology, and more high-quality randomized clinical trials are needed.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Rehabilitation Department, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
- Shenzhen Longhua District Rehabilitation Medical Equipment Development and Transformation Joint Key Laboratory, Shenzhen, Guangdong, China
| | - Yaping Huai
- Rehabilitation Department, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
- Shenzhen Longhua District Rehabilitation Medical Equipment Development and Transformation Joint Key Laboratory, Shenzhen, Guangdong, China
| | - Zhiqiang Wei
- Neurology Department, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Weiwei Yang
- Rehabilitation Department, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Qizhi Xie
- Neurology Department, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Li Yi
- Neurology Department, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Dhondt E, Van Oosterwijck S, Van Branteghem T, Rhudy JL, Danneels L, Van Oosterwijck J. Modulation of the nociceptive flexion reflex by conservative therapy in patients and healthy people: a systematic review and meta-analysis. Pain 2022; 163:1446-1463. [PMID: 34813517 DOI: 10.1097/j.pain.0000000000002499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/15/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT The nociceptive flexion reflex (NFR) is a spinally mediated withdrawal response and is used as an electrophysiological marker of descending modulation of spinal nociception. Chemical and pharmacological modulation of nociceptive neurotransmission at the spinal level has been evidenced by direct effects of neurotransmitters and pharmacological agents on the NFR. Largely unexplored are, however, the effects of nonpharmacological noninvasive conservative interventions on the NFR. Therefore, a systematic review and meta-analysis was performed and reported following the PRISMA guidelines to determine whether and to what extent spinal nociception measured through the assessment of the NFR is modulated by conservative therapy in patients and healthy individuals. Five electronic databases were searched to identify relevant articles. Retrieved articles were screened on eligibility using the predefined inclusion criteria. Risk of bias was investigated according to Version 2 of the Cochrane risk-of-bias assessment tool for randomized trials. The evidence synthesis for this review was conducted in accordance with the Grading of Recommendations Assessment, Development and Evaluation. Thirty-six articles were included. Meta-analyses provided low-quality evidence showing that conservative therapy decreases NFR area and NFR magnitude and moderate-quality evidence for increases in NFR latency. This suggests that conservative interventions can exert immediate central effects by activating descending inhibitory pathways to reduce spinal nociception. Such interventions may help prevent and treat chronic pain characterized by enhanced spinal nociception. Furthermore, given the responsiveness of the NFR to conservative interventions, the NFR assessment seems to be an appropriate tool in empirical evaluations of treatment strategies.PROSPERO registration number: CRD42020164495.
Collapse
Affiliation(s)
- Evy Dhondt
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Pain in Motion International Research Group
| | - Sophie Van Oosterwijck
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Pain in Motion International Research Group
- Research Foundation-Flanders (FWO), Brussels, Belgium
| | - Thomas Van Branteghem
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jamie L Rhudy
- Department of Psychology, University of Tulsa, Tulsa, OK, United States
| | - Lieven Danneels
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jessica Van Oosterwijck
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Pain in Motion International Research Group
- Research Foundation-Flanders (FWO), Brussels, Belgium
| |
Collapse
|
14
|
Hadoush H, Alawneh A, Kassab M, Al-Wardat M, Al-Jarrah M. Effectiveness of non-pharmacological rehabilitation interventions in pain management in patients with multiple sclerosis: Systematic review and meta-analysis. NeuroRehabilitation 2022; 50:347-365. [PMID: 35180138 DOI: 10.3233/nre-210328] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a progressive inflammatory and autoimmune neurological disease caused by inflammation and demyelination of the central nervous system. Pain is a typical symptom of central nervous system demyelination, affecting 63% of adults with MS. Recently, the role of non-pharmacological pain management in patients is growing because the non-pharmacological interventions are considered safe, affordable, easy, and accessible. However, to date, no systematic reviews or meta-analyses have comprehensively examined the therapeutic effects of the variety of non-pharmacological therapeutic interventions in the management of pain in patients with MS. OBJECTIVE The study aimed to conduct a systematic review with meta-analysis to assess the effectiveness of the non-pharmacological rehabilitation interventions in pain management in patients with MS. METHODS A comprehensive search using PubMed, Cochrane, and Science Direct databases was performed and included all randomized controlled trials, randomized cross-over trials, and quasi-experimental trials assessing the effect of non-pharmacological interventions for managing pain in patients with MS. This study was conducted according to PRISMA guidelines of a systematic review and pair-wise meta-analysis. Meta-analyses were performed by calculating the standardized mean difference at a 95% confidence interval using Review Manager software. RESULTS Twenty-nine papers were included in the systematic review, and only 22 of them were included in the meta-analysis. The pooled analysis showed a significant effect of neuromodulation and transcranial direct current stimulation on pain intensity reduction in patients with MS (SMD -0.51, 95% CI -0.51 to -0.09, P = 0.02), (SMD -0.67, 95% CI -1.18 to -0.16 P = 0.01), respectively. The analysis showed significant improvement in pain intensity in patient with MS after mind-body therapies (SMD -0.45, 95% CI -0.82 to -0.7, P = 0.02), mindfulness (SMD -0.55, 95% CI -0.96 to -0.14, P = 0.009), hypnosis (SMD -0.88, 95% CI -1.30 to -0.46, P = 0.0001), trigger point therapies (SMD -0.83, 95% CI -1.65 to -0.01, P = 0.05) and cognitive behavioral therapy (SMD -0.64, 95% CI -1.18 to -0.11, P = 0.02). However, there is no significant effect of relaxation therapy on pain reduction in patients with MS (SMD -0.82, 95% CI -1.94 to 0.31, P = 0.15). CONCLUSIONS The results indicated that the majority of the non-pharmacological rehabilitation interventions showed potential therapeutic effects in reducing pain intensity in patients with MS.
Collapse
Affiliation(s)
- Hikmat Hadoush
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Anoud Alawneh
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Manal Kassab
- Department of Maternal and Child Health, Faculty of Nursing, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Al-Wardat
- Department of Allied Medical Sciences, Aqaba University of Technology, Aqaba, Jordan
| | - Muhammed Al-Jarrah
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
15
|
Rahman MA, Tharu NS, Gustin SM, Zheng YP, Alam M. Trans-Spinal Electrical Stimulation Therapy for Functional Rehabilitation after Spinal Cord Injury: Review. J Clin Med 2022; 11:1550. [PMID: 35329875 PMCID: PMC8954138 DOI: 10.3390/jcm11061550] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 01/25/2023] Open
Abstract
Spinal cord injury (SCI) is one of the most debilitating injuries in the world. Complications after SCI, such as respiratory issues, bowel/bladder incontinency, pressure ulcers, autonomic dysreflexia, spasticity, pain, etc., lead to immense suffering, a remarkable reduction in life expectancy, and even premature death. Traditional rehabilitations for people with SCI are often insignificant or ineffective due to the severity and complexity of the injury. However, the recent development of noninvasive electrical neuromodulation treatments to the spinal cord have shed a ray of hope for these individuals to regain some of their lost functions, a reduction in secondary complications, and an improvement in their life quality. For this review, 250 articles were screened and about 150 were included to summarize the two most promising noninvasive spinal cord electrical stimulation methods of SCI rehabilitation treatment, namely, trans-spinal direct current stimulation (tsDCS) and trans-spinal pulsed current stimulation (tsPCS). Both treatments have demonstrated good success in not only improving the sensorimotor function, but also autonomic functions. Due to the noninvasive nature and lower costs of these treatments, in the coming years, we expect these treatments to be integrated into regular rehabilitation therapies worldwide.
Collapse
Affiliation(s)
- Md. Akhlasur Rahman
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (M.A.R.); (N.S.T.); (Y.-P.Z.)
- Centre for the Rehabilitation of the Paralysed (CRP), Savar Union 1343, Bangladesh
| | - Niraj Singh Tharu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (M.A.R.); (N.S.T.); (Y.-P.Z.)
| | - Sylvia M. Gustin
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia;
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, NSW 2031, Australia
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (M.A.R.); (N.S.T.); (Y.-P.Z.)
| | - Monzurul Alam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (M.A.R.); (N.S.T.); (Y.-P.Z.)
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia;
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, NSW 2031, Australia
| |
Collapse
|
16
|
Stampanoni Bassi M, Iezzi E, Centonze D. Multiple sclerosis: Inflammation, autoimmunity and plasticity. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:457-470. [PMID: 35034754 DOI: 10.1016/b978-0-12-819410-2.00024-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, experimental studies have clarified that immune system influences the functioning of the central nervous system (CNS) in both physiologic and pathologic conditions. The neuro-immune crosstalk plays a crucial role in neuronal development and may be critically involved in mediating CNS response to neuronal damage. Multiple sclerosis (MS) represents a good model to investigate how the immune system regulates neuronal activity. Accordingly, a growing body of evidence has demonstrated that increased levels of pro-inflammatory mediators may significantly impact synaptic mechanisms, influencing overall neuronal excitability and synaptic plasticity expression. In this chapter, we provide an overview of preclinical data and clinical studies exploring synaptic functioning noninvasively with transcranial magnetic stimulation (TMS) in patients with MS. Moreover, we examine how inflammation-driven synaptic dysfunction could affect synaptic plasticity expression, negatively influencing the MS course. Contrasting CSF inflammation together with pharmacologic enhancement of synaptic plasticity and application of noninvasive brain stimulation, alone or in combination with rehabilitative treatments, could improve the clinical compensation and prevent the accumulating deterioration in MS.
Collapse
Affiliation(s)
| | - Ennio Iezzi
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Diego Centonze
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy; Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy.
| |
Collapse
|
17
|
Mirabelli E, Elkabes S. Neuropathic Pain in Multiple Sclerosis and Its Animal Models: Focus on Mechanisms, Knowledge Gaps and Future Directions. Front Neurol 2022; 12:793745. [PMID: 34975739 PMCID: PMC8716468 DOI: 10.3389/fneur.2021.793745] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is a multifaceted, complex and chronic neurological disease that leads to motor, sensory and cognitive deficits. MS symptoms are unpredictable and exceedingly variable. Pain is a frequent symptom of MS and manifests as nociceptive or neuropathic pain, even at early disease stages. Neuropathic pain is one of the most debilitating symptoms that reduces quality of life and interferes with daily activities, particularly because conventional pharmacotherapies do not adequately alleviate neuropathic pain. Despite advances, the mechanisms underlying neuropathic pain in MS remain elusive. The majority of the studies investigating the pathophysiology of MS-associated neuropathic pain have been performed in animal models that replicate some of the clinical and neuropathological features of MS. Experimental autoimmune encephalomyelitis (EAE) is one of the best-characterized and most commonly used animal models of MS. As in the case of individuals with MS, rodents affected by EAE manifest increased sensitivity to pain which can be assessed by well-established assays. Investigations on EAE provided valuable insights into the pathophysiology of neuropathic pain. Nevertheless, additional investigations are warranted to better understand the events that lead to the onset and maintenance of neuropathic pain in order to identify targets that can facilitate the development of more effective therapeutic interventions. The goal of the present review is to provide an overview of several mechanisms implicated in neuropathic pain in EAE by summarizing published reports. We discuss current knowledge gaps and future research directions, especially based on information obtained by use of other animal models of neuropathic pain such as nerve injury.
Collapse
Affiliation(s)
- Ersilia Mirabelli
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, United States.,Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| | - Stella Elkabes
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
18
|
Bączyk M, Krutki P, Zytnicki D. Is there hope that transpinal direct current stimulation corrects motoneuron excitability and provides neuroprotection in amyotrophic lateral sclerosis? Physiol Rep 2021; 9:e14706. [PMID: 33463907 PMCID: PMC7814489 DOI: 10.14814/phy2.14706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of largely unknown pathophysiology, characterized by the progressive loss of motoneurons (MNs). We review data showing that in presymptomatic ALS mice, MNs display reduced intrinsic excitability and impaired level of excitatory inputs. The loss of repetitive firing specifically affects the large MNs innervating fast contracting muscle fibers, which are the most vulnerable MNs in ALS. Interventions that aimed at restoring either the intrinsic excitability or the synaptic excitation result in a decrease of disease markers in MNs and delayed neuromuscular junction denervation. We then focus on trans‐spinal direct current stimulation (tsDCS), a noninvasive tool, since it modulates the activity of spinal neurons and networks. Effects of tsDCS depend on the polarity of applied current. Recent work shows that anodal tsDCS induces long‐lasting enhancement of MN excitability and synaptic excitation of spinal MNs. Moreover, we show preliminary results indicating that anodal tsDCS enhances the excitatory synaptic inputs to MNs in ALS mice. In conclusion, we suggest that chronic application of anodal tsDCS might be useful as a complementary method in the management of ALS patients.
Collapse
Affiliation(s)
- Marcin Bączyk
- Department of Neurobiology, Poznan University of Physical Education, Poznań, Poland
| | - Piotr Krutki
- Department of Neurobiology, Poznan University of Physical Education, Poznań, Poland
| | - Daniel Zytnicki
- Université de Paris, Centre National de la Recherche Scientifique (CNRS), Saints-Pères Paris Institute for the Neurosciences (SPPIN), Paris, France
| |
Collapse
|
19
|
Zucchella C, Mantovani E, De Icco R, Tassorelli C, Sandrini G, Tamburin S. Non-invasive Brain and Spinal Stimulation for Pain and Related Symptoms in Multiple Sclerosis: A Systematic Review. Front Neurosci 2020; 14:547069. [PMID: 33328843 PMCID: PMC7715002 DOI: 10.3389/fnins.2020.547069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Neuropathic and nociceptive pain frequently affect patients with multiple sclerosis (MS), with a prevalence close to 90% and significant impact on general health and quality of life. Pharmacological strategies are widely used to treat pain in MS, but their effectiveness and side-effects are controversial. Among non-pharmacological treatments for pain, non-invasive brain and spinal stimulation (NIBSS) has shown promising preliminary results in MS. Objective: Systematic review to investigate the effect of NIBSS for the management of pain in MS. Methods: A literature search using Pubmed, Science Direct and Web of Science was conducted from databases inception to February 21, 2020 for studies assessing the analgesic effect of NIBSS on pain in MS. Results: A total of 279 records were title- and abstract-screened, nine were assessed for full text and included. The NIBSS techniques explored were transcranial direct current stimulation (N = 5), transcranial magnetic stimulation (N = 2), transcranial random noise stimulation (N =1), transcutaneous spinal direct current stimulation (N = 1). The targets were the primary motor cortex (M1; N = 4), the left dorsolateral pre-frontal cortex (DLPFC; N = 3), the spinal cord (N = 1), unspecified brain target (N = 1). The study designs were randomized (N = 7), open label (N = 1), single case report (N = 1). Despite the differences in study design, target and NIBSS technique that impeded a meta-analysis, all the studies converge in showing a significant improvement of pain after active NIBSS with less consistent effects on other symptoms of the pain-related cluster (depression, fatigue, cognition) and quality of life. Conclusions: Excitatory NIBSS over M1, left DLPFC and spinal cord appear to be the most effective protocols for pain in MS. Open questions include the use of neurophysiological or neuroimaging surrogate outcome measures, the stratification of patients according to the clinical profiles and underlying pathogenetic mechanisms and the combination of NIBSS to pharmacological treatment, neurorehabilitation, or psychotherapy to improve the clinical effect. The duration of the effect to NIBSS and the feasibility and efficacy of telemedicine NIBSS protocols are other open key questions.
Collapse
Affiliation(s)
- Chiara Zucchella
- Section of Neurology, Department of Neurosciences, Verona University Hospital, Verona, Italy
| | - Elisa Mantovani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Roberto De Icco
- Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Cristina Tassorelli
- Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Giorgio Sandrini
- Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Stefano Tamburin
- Section of Neurology, Department of Neurosciences, Verona University Hospital, Verona, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
20
|
Pacheco-Barrios K, Cardenas-Rojas A, Thibaut A, Costa B, Ferreira I, Caumo W, Fregni F. Methods and strategies of tDCS for the treatment of pain: current status and future directions. Expert Rev Med Devices 2020; 17:879-898. [PMID: 32845195 PMCID: PMC7674241 DOI: 10.1080/17434440.2020.1816168] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation technique that has been widely studied for the treatment of chronic pain. It is considered a promising and safe alternative pain therapy. Different targets have been tested, each having their own particular mechanisms for modulating pain perception. AREAS COVERED We discuss the current state of the art of tDCS to manage pain and future strategies to optimize tDCS' effects. Current strategies include primary motor cortex tDCS, prefrontal tDCS and tDCS combined with behavioral interventions while future strategies, on the other hand, include high-intensity tDCS, transcutaneous spinal direct current stimulation, cerebellar tDCS, home-based tDCS, and tDCS with extended number of sessions. EXPERT COMMENTARY It has been shown that the stimulation of the prefrontal and primary motor cortex is efficient for pain reduction while a few other new strategies, such as high-intensity tDCS and network-based tDCS, are believed to induce strong neuroplastic effects, although the underlying neural mechanisms still need to be fully uncovered. Hence, conventional tDCS approaches demonstrated promising effects to manage pain and new strategies are under development to enhance tDCS effects and make this approach more easily available by using, for instance, home-based devices.
Collapse
Affiliation(s)
- Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud. Lima, Peru
| | - Alejandra Cardenas-Rojas
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Aurore Thibaut
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
- Coma Science Group, GIGA Consciousness, University of Liege, Liège, Belgium
| | - Beatriz Costa
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Isadora Ferreira
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wolnei Caumo
- Pain and Palliative Care Service at Hospital de Clínicas de Porto Alegre (HCPA), Laboratory of Pain and Neuromodulation at UFRGS, Porto Alegre, Brazil
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Effect of transspinal direct current stimulation on afferent pain signalling in humans. J Clin Neurosci 2020; 77:163-167. [DOI: 10.1016/j.jocn.2020.04.116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 02/03/2023]
|
22
|
|
23
|
Chisari CG, Sgarlata E, Arena S, D’Amico E, Toscano S, Patti F. An update on the pharmacological management of pain in patients with multiple sclerosis. Expert Opin Pharmacother 2020; 21:2249-2263. [DOI: 10.1080/14656566.2020.1757649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Clara G. Chisari
- Department “GF Ingrassia”, Section of Neurosciences, University of Catania, Catania, Italy
| | - Eleonora Sgarlata
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
- Stroke Unit, Department of Medicine, Umberto I Hospital, Siracusa, Italy
| | - Sebastiano Arena
- Department “GF Ingrassia”, Section of Neurosciences, University of Catania, Catania, Italy
| | - Emanuele D’Amico
- Department “GF Ingrassia”, Section of Neurosciences, University of Catania, Catania, Italy
| | - Simona Toscano
- Department “GF Ingrassia”, Section of Neurosciences, University of Catania, Catania, Italy
| | - Francesco Patti
- Department “GF Ingrassia”, Section of Neurosciences, University of Catania, Catania, Italy
| |
Collapse
|
24
|
Moisset X, Bouhassira D, Avez Couturier J, Alchaar H, Conradi S, Delmotte MH, Lanteri-Minet M, Lefaucheur JP, Mick G, Piano V, Pickering G, Piquet E, Regis C, Salvat E, Attal N. Pharmacological and non-pharmacological treatments for neuropathic pain: Systematic review and French recommendations. Rev Neurol (Paris) 2020; 176:325-352. [PMID: 32276788 DOI: 10.1016/j.neurol.2020.01.361] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/07/2020] [Indexed: 02/08/2023]
Abstract
Neuropathic pain remains a significant unmet medical need. Several recommendations have recently been proposed concerning pharmacotherapy, neurostimulation techniques and interventional management, but no comprehensive guideline encompassing all these treatments has yet been issued. We performed a systematic review of pharmacotherapy, neurostimulation, surgery, psychotherapies and other types of therapy for peripheral or central neuropathic pain, based on studies published in peer-reviewed journals before January 2018. The main inclusion criteria were chronic neuropathic pain for at least three months, a randomized controlled methodology, at least three weeks of follow-up, at least 10 patients per group, and a double-blind design for drug therapy. Based on the GRADE system, we provide weak-to-strong recommendations for use and proposal as a first-line treatment for SNRIs (duloxetine and venlafaxine), gabapentin and tricyclic antidepressants and, for topical lidocaine and transcutaneous electrical nerve stimulation specifically for peripheral neuropathic pain; a weak recommendation for use and proposal as a second-line treatment for pregabalin, tramadol, combination therapy (antidepressant combined with gabapentinoids), and for high-concentration capsaicin patches and botulinum toxin A specifically for peripheral neuropathic pain; a weak recommendation for use and proposal as a third-line treatment for high-frequency rTMS of the motor cortex, spinal cord stimulation (failed back surgery syndrome and painful diabetic polyneuropathy) and strong opioids (in the absence of an alternative). Psychotherapy (cognitive behavioral therapy and mindfulness) is recommended as a second-line therapy, as an add-on to other therapies. An algorithm encompassing all the recommended treatments is proposed.
Collapse
Affiliation(s)
- X Moisset
- Université Clermont Auvergne, Inserm, Neuro-Dol, 63000 Clermont-Ferrand, France; CHU de Clermont-Ferrand, 63000 Clermont-Ferrand, France.
| | - D Bouhassira
- INSERM U987, CETD, Ambroise-Paré Hospital, AP-HP, Boulogne-Billancourt, France; Université Versailles - Saint-Quentin-en-Yvelines, Versailles, France
| | - J Avez Couturier
- Service de Neuropédiatrie, Consultation Douleur Enfant, CIC-IT 1403, CHU de Lille, Lille, France
| | - H Alchaar
- 73, boulevard de Cimiez, Nice, France
| | - S Conradi
- CETD, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - M H Delmotte
- GHU, Paris site Ste-Anne, Structure Douleurs, 1, rue Cabanis, Paris 14, France
| | - M Lanteri-Minet
- Université Clermont Auvergne, Inserm, Neuro-Dol, 63000 Clermont-Ferrand, France; Département d'Évaluation et Traitement de la Douleur, Centre Hospitalier Universitaire (CHU) de Nice, Fédération Hospitalo-Universitaire InovPain, Université Côte d'Azur, Nice, France
| | - J P Lefaucheur
- EA 4391, Faculté de Médecine, Université Paris Est Créteil, Créteil, France; Service de Physiologie, Explorations Fonctionnelles, Hôpital Henri-Mondor, Assistance publique-Hôpitaux de Paris, Créteil, France
| | - G Mick
- Centre d'Évaluation et Traitement de la Douleur du Voironnais, Centre Hospitalier de Voiron, Laboratoire P2S, Université de Lyon, Lyon, France
| | - V Piano
- Centre Hospitalier de Draguignan, Service Algologie 4(e), route de Montferrat, 83007 Draguignan cedex, France
| | - G Pickering
- Université Clermont Auvergne, Inserm, Neuro-Dol, 63000 Clermont-Ferrand, France; Clinical Pharmacology Department, CPC/CIC Inserm 1405, University Hospital CHU, Clermont-Ferrand, France
| | - E Piquet
- Département d'Évaluation et Traitement de la Douleur, Centre Hospitalier Universitaire (CHU) de Nice, Fédération Hospitalo-Universitaire InovPain, Université Côte d'Azur, Nice, France
| | - C Regis
- CETD, CHU Montpellier, Montpellier, France
| | - E Salvat
- Centre d'Évaluation et de Traitement de la Douleur, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - N Attal
- INSERM U987, CETD, Ambroise-Paré Hospital, AP-HP, Boulogne-Billancourt, France; Université Versailles - Saint-Quentin-en-Yvelines, Versailles, France
| |
Collapse
|
25
|
Workman CD, Ponto LLB, Kamholz J, Rudroff T. No Immediate Effects of Transcranial Direct Current Stimulation at Various Intensities on Cerebral Blood Flow in People with Multiple Sclerosis. Brain Sci 2020; 10:brainsci10020082. [PMID: 32033094 PMCID: PMC7071720 DOI: 10.3390/brainsci10020082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/29/2020] [Accepted: 02/02/2020] [Indexed: 12/03/2022] Open
Abstract
Animal and transcranial magnetic stimulation motors have evoked potential studies suggesting that the currently used transcranial direct current stimulation (tDCS) intensities produce measurable physiological changes. However, the validity, mechanisms, and general efficacy of this stimulation modality are currently being scrutinized. The purpose of this pilot study was to investigate the effects of dorsolateral prefrontal cortex tDCS on cerebral blood flow. A sample of three people with multiple sclerosis underwent two blocks of five randomly assigned tDCS intensities (1, 2, 3, 4 mA, and sham; 5 min each) and [15O]water positron emission tomography imaging. The relative regional (i.e., areas under the electrodes) and global cerebral blood flow were calculated. The results revealed no notable differences in regional or global cerebral blood flow from the different tDCS intensities. Thus, 5 min of tDCS at 1, 2, 3, and 4 mA did not result in immediate changes in cerebral blood flow. To achieve sufficient magnitudes of intracranial electrical fields without direct peripheral side effects, novel methods may be required.
Collapse
Affiliation(s)
- Craig D. Workman
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA;
| | - Laura L. Boles Ponto
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - John Kamholz
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Thorsten Rudroff
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA;
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
- Correspondence: ; Tel.: +1-319-467-0363
| |
Collapse
|
26
|
Leocani L, Chieffo R, Gentile A, Centonze D. Beyond rehabilitation in MS: Insights from non-invasive brain stimulation. Mult Scler 2019; 25:1363-1371. [PMID: 31469356 DOI: 10.1177/1352458519865734] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although the number of disease-modifying treatments for people with multiple sclerosis (pwMS) has meaningfully increased in the past years, targeting repair or compensation for central nervous system damage associated with the disease process remains an important clinical goal. With this aim, neurorehabilitation is a powerful approach targeting central nervous system plasticity. Another driver of brain plasticity is non-invasive brain stimulation (NIBS), receiving recent attention in neurology, particularly for its potential synergy with neurorehabilitation and as add-on treatment for several neurological conditions, from pain to fatigue to sensorimotor and cognitive deficits. In this review, we will resume the evidence exploring the neurobiological basis of NIBS and its applications to MS-related conditions.
Collapse
Affiliation(s)
- Letizia Leocani
- Neurorehabilitation Unit and INSPE-Institute of Experimental Neurology, San Raffaele Hospital, Milan, Italy/Vita-Salute San Raffaele University, Milan, Italy
| | - Raffaella Chieffo
- Neurorehabilitation Unit and INSPE-Institute of Experimental Neurology, San Raffaele Hospital, Milan, Italy
| | - Antonietta Gentile
- Synaptic Immunopathology Lab, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Diego Centonze
- Synaptic Immunopathology Lab, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy/Neurology Unit, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|