1
|
Selvaraj S, Weerasinghe L. The Role of Nanotechnology in Understanding the Pathophysiology of Traumatic Brain Injury. Cent Nerv Syst Agents Med Chem 2025; 25:20-38. [PMID: 38676493 DOI: 10.2174/0118715249291999240418112531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024]
Abstract
Recently, traumatic brain injury (TBI) has been a growing disorder due to frequent brain dysfunction. The Glasgow Coma Scale expresses TBI as classified as having mild, moderate, or severe brain effects, according to the effects on the brain. Brain receptors undergo various modifications in their pathology through chemical synaptic pathways, leading to depression, Alzheimer's, and Parkinson's disease. These brain disorders can be controlled using central receptors such as dopamine, glutamate, and γ-aminobutyric acid, which are clearly explained in this review. Furthermore, there are many complications in TBI's clinical trials and diagnostics, leading to insignificant treatment, causing permanent neuro-damage, physical disability, and even death. Bio-screening and conventional molecular-based therapies are inappropriate due to poor preclinical testing and delayed recovery. Hence, modern nanotechnology utilizing nanopulsed laser therapy and advanced nanoparticle insertion will be suitable for TBI's diagnostics and treatment. In recent days, nanotechnology has an important role in TBI control and provides a higher success rate than conventional therapies. This review highlights the pathophysiology of TBI by comprising the drawbacks of conventional techniques and supports suitable modern alternates for treating TBI.
Collapse
Affiliation(s)
- Saranya Selvaraj
- Department of Chemistry, Faculty of Applied sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Laksiri Weerasinghe
- Department of Chemistry, Faculty of Applied sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| |
Collapse
|
2
|
M. Sheta N, A. El-Gazar A, M. Ragab G, A. Essa M, M. Abdel-Haleem K, El-Dahmy RM. Transcending Traditional Treatment: The Therapeutical Potential of Nanovesicles for Transdermal Baclofen Delivery in Repeated Traumatic Brain Injury. Adv Pharm Bull 2024; 14:346-363. [PMID: 39206406 PMCID: PMC11347745 DOI: 10.34172/apb.2024.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/25/2024] [Accepted: 03/03/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose The repositioning of previously approved drugs is occupying the researchers' plans. Baclofen (Bac) was our candidate for its established neuroprotective capacity, with a proposal of efficient drug delivery as non-ionic surfactant-based nanovesicles (NISNV) formulae against mild repetitive traumatic brain injury (mRTBI) in rats, thus reducing the number of orally or injected medications, especially in severely comatose patients or pediatrics. Methods A (23) factorial design was implemented for confining Bac-loaded NISNV formulae, where a bunch of variables were inspected. An in-vivo experiment was done to test the prepared formula's efficacy transdermally. The following parameters were measured: brain expression of gamma amino butyric acid B (GABAB), protein kinase C- α (PKC-α), focal adhesion kinase (FAK), TNF-α and nuclear factor kappa B (NF-κB) p65, malondialdehyde (MDA), superoxide dismutase (SOD), and histopathology. Results The particle size (PS) and entrapment efficiency percent (EE%) speckled from 60.40±0.28% to 88.02±0.01% for the former and 174.64±0.93 to 1174.50±3.54 nm for the latter. In vitro release% after 8 hours ranged from 63.25±5.47% to 84.79±3.75%. The optimized formula (F4) illustrated desirability=1, with 630.09±3.53 µg/cm2 of Bac permeated over 8 hours, which equates to 100% of Bac. Bac post-trauma treatment restored brain expression of GABAB and PKC-α, while decreasing FAK. Besides enhancing the histological findings, the anti-inflammatory effect was clear by decreasing TNF-α and NF-κB p65. Consequently, significant antioxidant sequelae were revealed herein by diminishing MDA levels and restoring SOD activity. Conclusion Transdermal delivery of Bac-loaded niosomes confirmed neuroprotection and succeeded in surpassing skin-to-brain barriers, which makes it a promising therapeutic option for repeated traumas.
Collapse
Affiliation(s)
- Nermin M. Sheta
- Pharmaceutics Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Amira A. El-Gazar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Ghada M. Ragab
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr University for Science & Technology (MUST), Giza, Egypt
| | - Marwa A. Essa
- Biochemistry Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | | | | |
Collapse
|
3
|
Verma S, Singh V, Nagampalli V, Ponsky LE, Li CSR, Chao H, Gupta S. Ligand-gated ion channels as potential biomarkers for ADT-mediated cognitive decline in prostate cancer patients. Mol Carcinog 2024; 63:1051-1063. [PMID: 38482990 PMCID: PMC11096008 DOI: 10.1002/mc.23708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 05/16/2024]
Abstract
Men with prostate cancer are at increased risk of developing cognitive decline by the use of second-generation androgen signaling inhibitors. To date, reliable and sensitive biomarkers that could distinguish men at high risk of cognitive dysfunction under androgen deprivation therapy (ADT) have not been characterized. We used high-throughput transcriptional profiling utilizing human prostate cancer cell culture models mimicking ADT, biomarker selection using minimal common oncology data elements-cytoscape, and bioinformatic analyses employing Advaita® iPathwayGuide and DisGeNET for identification of disease-related gene associations. Validation analysis of genes was performed on brain neuronal and glial cells by quantitative real-time polymerase chain reaction assay. Our systematic analysis of androgen deprivation-associated genes involved multiple biological processes, including neuroactive ligand-receptor interaction, axon guidance, cytokine-cytokine receptor interaction, and metabolic and cancer signaling pathways. Genes associated with neuroreceptor ligand interaction, including gamma-aminobutyric acid (GABA) A and B receptors and nuclear core proteins, were identified as top upstream regulators. Functional enrichment and protein-protein interaction network analysis highlighted the role of ligand-gated ion channels (LGICs) and their receptors in cognitive dysfunction. Gene-disease association assigned forgetfulness, intellectual disability, visuospatial deficit, bipolar disorder, and other neurocognitive impairment with upregulation of type-1 angiotensin II receptor, brain-derived neurotrophic factor, GABA type B receptor subunit 2 (GABBR2), GABRA3, GABRA5, GABRB1, glycine receptor beta, glutamate ionotropic receptor N-methyl-D-aspartate receptor (NMDA) type subunit 1, glutamate ionotropic receptor NMDA type subunit 2D, 5-hydroxytryptamine receptor 1D, interferon beta 1, and nuclear receptor subfamily 3 group C member 1 as top differentially expressed genes. Validation studies of brain glial cells, neurons, and patients on ADT demonstrated the association of these genes with cognitive decline. Our findings highlight LGICs as potential biomarkers for ADT-mediated cognitive decline. Further validation of these biomarkers may lead to future practical clinical use.
Collapse
Affiliation(s)
- Shiv Verma
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106 USA
| | - Vaibhav Singh
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | | | - Lee E Ponsky
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106 USA
| | - Chiang-Shan R Li
- Department of Psychiatry and of Neuroscience, Yale University School of Medicine, New Haven, CT 06519
| | - Herta Chao
- Department of Medicine & Yale Comprehensive Cancer Center, Yale University, New Haven, CT 06510, USA
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106 USA
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- Department of Nutrition, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106 USA
| |
Collapse
|
4
|
Gudmundson AT, Koo A, Virovka A, Amirault AL, Soo M, Cho JH, Oeltzschner G, Edden RAE, Stark CEL. Meta-analysis and open-source database for in vivo brain Magnetic Resonance spectroscopy in health and disease. Anal Biochem 2023; 676:115227. [PMID: 37423487 PMCID: PMC10561665 DOI: 10.1016/j.ab.2023.115227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
Proton (1H) Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool capable of quantifying brain metabolite concentrations in vivo. Prioritization of standardization and accessibility in the field has led to the development of universal pulse sequences, methodological consensus recommendations, and the development of open-source analysis software packages. One on-going challenge is methodological validation with ground-truth data. As ground-truths are rarely available for in vivo measurements, data simulations have become an important tool. The diverse literature of metabolite measurements has made it challenging to define ranges to be used within simulations. Especially for the development of deep learning and machine learning algorithms, simulations must be able to produce accurate spectra capturing all the nuances of in vivo data. Therefore, we sought to determine the physiological ranges and relaxation rates of brain metabolites which can be used both in data simulations and as reference estimates. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we've identified relevant MRS research articles and created an open-source database containing methods, results, and other article information as a resource. Using this database, expectation values and ranges for metabolite concentrations and T2 relaxation times are established based upon a meta-analyses of healthy and diseased brains.
Collapse
Affiliation(s)
- Aaron T Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Annie Koo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Anna Virovka
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Alyssa L Amirault
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Madelene Soo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Jocelyn H Cho
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Craig E L Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
5
|
Gudmundson AT, Koo A, Virovka A, Amirault AL, Soo M, Cho JH, Oeltzschner G, Edden RA, Stark C. Meta-analysis and Open-source Database for In Vivo Brain Magnetic Resonance Spectroscopy in Health and Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528046. [PMID: 37205343 PMCID: PMC10187197 DOI: 10.1101/2023.02.10.528046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Proton ( 1 H) Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool capable of quantifying brain metabolite concentrations in vivo . Prioritization of standardization and accessibility in the field has led to the development of universal pulse sequences, methodological consensus recommendations, and the development of open-source analysis software packages. One on-going challenge is methodological validation with ground-truth data. As ground-truths are rarely available for in vivo measurements, data simulations have become an important tool. The diverse literature of metabolite measurements has made it challenging to define ranges to be used within simulations. Especially for the development of deep learning and machine learning algorithms, simulations must be able to produce accurate spectra capturing all the nuances of in vivo data. Therefore, we sought to determine the physiological ranges and relaxation rates of brain metabolites which can be used both in data simulations and as reference estimates. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we've identified relevant MRS research articles and created an open-source database containing methods, results, and other article information as a resource. Using this database, expectation values and ranges for metabolite concentrations and T 2 relaxation times are established based upon a meta-analyses of healthy and diseased brains.
Collapse
Affiliation(s)
- Aaron T. Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Annie Koo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Anna Virovka
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Alyssa L. Amirault
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Madelene Soo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Jocelyn H. Cho
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Craig Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| |
Collapse
|
6
|
Glutamate, GABA and glutathione in adults with persistent post-concussive symptoms. Neuroimage Clin 2022; 36:103152. [PMID: 36007438 PMCID: PMC9424629 DOI: 10.1016/j.nicl.2022.103152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/23/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022]
Abstract
Persistent post-concussive symptoms (PPCS) are debilitating and endure beyond the usual recovery period after mild traumatic brain injury (mTBI). Altered neurotransmission, impaired energy metabolism and oxidative stress have been examined acutely post-injury but have not been explored extensively in those with persistent symptoms. Specifically, the antioxidant glutathione (GSH) and the excitatory and inhibitory metabolites, glutamate (Glu) and γ-aminobutyric acid (GABA), are seldom studied together in the clinical mTBI literature. While Glu can be measured using conventional magnetic resonance spectroscopy (MRS) methods at 3 Tesla, GABA and GSH require the use of advanced MRS methods. Here, we used the recently established Hadamard Encoding and Reconstruction of MEGA-Edited Spectroscopy (HERMES) to simultaneously measure GSH and GABA and short-echo time point resolved spectroscopy (PRESS) to measure Glu to gain new insight into the pathophysiology of PPCS. Twenty-nine adults with PPCS (mean age: 45.69 years, s.d.: 10.73, 22 females, 7 males) and 29 age- and sex-matched controls (mean age: 43.69 years, s.d.: 11.00) completed magnetic resonance spectroscopy scans with voxels placed in the anterior cingulate and right sensorimotor cortex. Relative to controls, anterior cingulate Glu was significantly reduced in PPCS. Higher anterior cingulate GABA was significantly associated with a higher number of lifetime mTBIs, suggesting GABA may be upregulated with repeated incidence of mTBI. Furthermore, GSH in both regions of interest was positively associated with symptoms of sleepiness and headache burden. Collectively, our findings suggest that the antioxidant defense system is active in participants with PPCS, however this may be at the expense of other glutamatergic functions such as cortical excitation and energy metabolism.
Collapse
|
7
|
Joyce JM, La PL, Walker R, Harris A. Magnetic resonance spectroscopy of traumatic brain injury and subconcussive hits: A systematic review and meta-analysis. J Neurotrauma 2022; 39:1455-1476. [PMID: 35838132 DOI: 10.1089/neu.2022.0125] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) is a non-invasive technique used to study metabolites in the brain. MRS findings in traumatic brain injury (TBI) and subconcussive hit literature have been mixed. The most common observation is a decrease in N-acetyl-aspartate (NAA), traditionally considered a marker of neuronal integrity. Other metabolites, however, such as creatine (Cr), choline (Cho), glutamate+glutamine (Glx) and myo-inositol (mI) have shown inconsistent changes in these populations. The objective of this systematic review and meta-analysis was to synthesize MRS literature in head injury and explore factors (brain region, injury severity, time since injury, demographic, technical imaging factors, etc.) that may contribute to differential findings. One hundred and thirty-eight studies met inclusion criteria for the systematic review and of those, 62 NAA, 24 Cr, 49 Cho, 18 Glx and 21 mI studies met inclusion criteria for meta-analysis. A random effects model was used for meta-analyses with brain region as a subgroup for each of the five metabolites studied. Meta-regression was used to examine the influence of potential moderators including injury severity, time since injury, age, sex, tissue composition and methodological factors. In this analysis of 1428 unique head-injured subjects and 1132 controls, the corpus callosum was identified as a brain region highly susceptible to metabolite alteration. NAA was consistently decreased in TBI of all severity, but not in subconcussive hits. Cho and mI were found to be increased in moderate-to-severe TBI but not mild TBI. Glx and Cr were largely unaffected, however did show alterations in certain conditions.
Collapse
Affiliation(s)
- Julie Michele Joyce
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Parker L La
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Robyn Walker
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Ashley Harris
- University of Calgary, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| |
Collapse
|
8
|
Pauhl A, Yasen A, Christie A. Corticospinal Excitability and Inhibition Are Not Different between Concussed Males and Females. Brain Sci 2022; 12:brainsci12070824. [PMID: 35884631 PMCID: PMC9313179 DOI: 10.3390/brainsci12070824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
It has been consistently demonstrated that females report greater numbers of concussions in sex-comparable sports and take longer to recover from concussive symptoms than males. However, it is unknown if the neurophysiological consequences of concussion may contribute to these sex differences in concussion symptoms and recovery. The purpose of this study was to examine potential sex-related differences in neurophysiology in healthy and concussed individuals. Twenty-one (nine F) concussed individuals (20.9 ± 4.1 years; CONC) and twenty-one age-, sex-, height-, weight-, and activity-matched controls (21.2 ± 4.2 years; CONT) participated in the study. The CONC group reported to the lab within 72 h, 1-week, and 2-weeks post-injury and the CONT group followed a similar measurement schedule. Using transcranial magnetic stimulation, motor evoked potential (MEP) amplitude and cortical silent period (CSP) duration were measured from the first dorsal interosseous muscle to assess corticospinal excitability and inhibition, respectively. There were no significant differences across time (p ≥ 0.13) or between the CONC and CONT group in MEP amplitude (p = 0.72) or CSP duration (p = 0.54). Overall, males (119.08 ± 29.91 ms) had significantly longer CSP durations compared with females (101.24 ± 33.43 ms), indicating greater corticospinal inhibition in males, regardless of injury status (p = 0.04). An important and novel finding of this study was the lack of differences in these neurophysiological measures between males and females following concussion. To our knowledge, this is the first study to document greater corticospinal inhibition in males compared with females.
Collapse
Affiliation(s)
- Alexandra Pauhl
- Faculty of Health Sciences, School of Kinesiology, Western University, London, ON N6A 2X2, Canada;
| | - Alia Yasen
- Department of Human Physiology, University of Oregon, Eugene, OR 97403, USA;
| | - Anita Christie
- Faculty of Health Sciences, School of Kinesiology, Western University, London, ON N6A 2X2, Canada;
- Correspondence: ; Tel.: +1-(519)-661-2111 (ext. 80984)
| |
Collapse
|
9
|
Stoby KS, Rafique SA, Oeltzschner G, Steeves JKE. Continuous and intermittent theta burst stimulation to the visual cortex do not alter GABA and glutamate concentrations measured by magnetic resonance spectroscopy. Brain Behav 2022; 12:e2478. [PMID: 35029058 PMCID: PMC8865152 DOI: 10.1002/brb3.2478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Theta burst stimulation (TBS), a form of repetitive transcranial magnetic stimulation (rTMS), uses repeated high-frequency bursts to non-invasively modulate neural processes in the brain. An intermittent TBS (iTBS) protocol is generally considered "excitatory," while continuous TBS (cTBS) is considered "inhibitory." However, the majority of work that has led to these effects being associated with the respective protocols has been done in the motor cortex, and it is well established that TMS can have variable effects across the brain. OBJECTIVES AND METHOD We investigated the effects of iTBS and cTBS to the primary visual cortex (V1) on composite levels of gamma-aminobutyric acid + co-edited macromolecules (GABA+) and glutamate + glutamine (Glx) since these are key inhibitory and excitatory neurotransmitters, respectively. Participants received a single session of cTBS, iTBS, or sham TBS to V1. GABA+ and Glx were quantified in vivo at the stimulation site using spectral-edited proton magnetic resonance spectroscopy (1 H-MRS) at 3T. Baseline pre-TBS GABA+ and Glx levels were compared to immediate post-TBS and 1 h post-TBS levels. RESULTS There were no significant changes in GABA+ or Glx following either of the TBS conditions. Visual cortical excitability, measured using phosphene thresholds, remained unchanged following both cTBS and iTBS conditions. There was no relationship between excitability thresholds and GABA+ or Glx levels. However, TBS did alter the relationship between GABA+ and Glx for up to 1 h following stimulation. CONCLUSIONS These findings demonstrate that a single session of TBS to the visual cortex can be used without significant effects on the tonic levels of these key neurotransmitters; and add to our understanding that TBS has differential effects at visual, motor, and frontal cortices.
Collapse
Affiliation(s)
- Karlene S Stoby
- Centre for Vision Research and Department of Psychology, York University, Toronto, ON, Canada
| | - Sara A Rafique
- Centre for Vision Research and Department of Psychology, York University, Toronto, ON, Canada
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Jennifer K E Steeves
- Centre for Vision Research and Department of Psychology, York University, Toronto, ON, Canada
| |
Collapse
|
10
|
Acid-Base Balance, Blood Gases Saturation, and Technical Tactical Skills in Kickboxing Bouts According to K1 Rules. BIOLOGY 2022; 11:biology11010065. [PMID: 35053063 PMCID: PMC8773011 DOI: 10.3390/biology11010065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary The aim of our study was to analyze the changes in ABB after a three-round kickboxing fight and the level of technical and tactical skills presented during the fight. Fighting in kickboxing under K1 rules takes place with a high presence of anaerobic metabolism. Kickboxing athletes must have a good tolerance for metabolic acidosis and the ability to conduct an effective duel despite ABB disorders. Properly developed post-workout regeneration also plays an extremely important role. Abstract Background: Acid–base balance (ABB) is a major component of homeostasis, which is determined by the efficient functioning of many organs, including the lungs, kidneys, and liver, and the proper water and electrolyte exchange between these components. The efforts made during competitions by combat sports athletes such as kickboxers require a very good anaerobic capacity, which, as research has shown, can be improved by administering sodium bicarbonate. Combat sports are also characterized by an open task structure, which means that cognitive and executive functions must be maintained at an appropriate level during a fight. The aim of our study was to analyze the changes in ABB in capillary blood, measuring levels of H+, pCO2, pO2, HCO3−, BE and total molar CO2 concentration (TCO2), which were recorded 3 and 20 min after a three-round kickboxing bout, and the level of technical and tactical skills presented during the fight. Methods: The study involved 14 kickboxers with the highest skill level (champion level). Statistical comparison of mentioned variables recorded prior to and after a bout was done with the use of Friedman’s ANOVA. Results: 3 min after a bout, H+ and pO2 were higher by 41% and 11.9%, respectively, while pCO2, HCO3−, BE and TO2 were lower by 14.5%, 39.4%, 45.4% and 34.4%, respectively. Furthermore, 20 min after the bout all variables tended to normalization and they did not differ significantly compared to the baseline values. Scores in activeness of the attack significantly correlated (r = 0.64) with pre–post changes in TCO2. Conclusions: The disturbances in ABB and changes in blood oxygen and carbon dioxide saturation observed immediately after a bout indicate that anaerobic metabolism plays a large part in kickboxing fights. Anaerobic training should be included in strength and conditioning programs for kickboxers to prepare the athletes for the physiological requirements of sports combat.
Collapse
|
11
|
Lockhofen DEL, Mulert C. Neurochemistry of Visual Attention. Front Neurosci 2021; 15:643597. [PMID: 34025339 PMCID: PMC8133366 DOI: 10.3389/fnins.2021.643597] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/12/2021] [Indexed: 11/25/2022] Open
Abstract
Visual attention is the cognitive process that mediates the selection of important information from the environment. This selection is usually controlled by bottom-up and top-down attentional biasing. Since for most humans vision is the dominant sense, visual attention is critically important for higher-order cognitive functions and related deficits are a core symptom of many neuropsychiatric and neurological disorders. Here, we summarize the importance and relative contributions of different neuromodulators and neurotransmitters to the neural mechanisms of top-down and bottom-up attentional control. We will not only review the roles of widely accepted neuromodulators, such as acetylcholine, dopamine and noradrenaline, but also the contributions of other modulatory substances. In doing so, we hope to shed some light on the current understanding of the role of neurochemistry in shaping neuron properties contributing to the allocation of attention in the visual field.
Collapse
Affiliation(s)
| | - Christoph Mulert
- Center for Psychiatry and Psychotherapy, Justus-Liebig University, Hessen, Germany
| |
Collapse
|
12
|
Reyes ST, Mohajeri S, Krasinska K, Guo SG, Gu M, Pisani L, Rosenberg J, Spielman DM, Chin FT. GABA Measurement in a Neonatal Fragile X Syndrome Mouse Model Using 1H-Magnetic Resonance Spectroscopy and Mass Spectrometry. Front Mol Neurosci 2020; 13:612685. [PMID: 33390902 PMCID: PMC7775297 DOI: 10.3389/fnmol.2020.612685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/20/2020] [Indexed: 11/20/2022] Open
Abstract
Fragile X syndrome (FXS) is the leading monogenetic cause of autism spectrum disorder and inherited cause of intellectual disability that affects approximately one in 7,000 males and one in 11,000 females. In FXS, the Fmr1 gene is silenced and prevents the expression of the fragile X mental retardation protein (FMRP) that directly targets mRNA transcripts of multiple GABAA subunits. Therefore, FMRP loss adversely impacts the neuronal firing of the GABAergic system which creates an imbalance in the excitatory/inhibitory ratio within the brain. Current FXS treatment strategies focus on curing symptoms, such as anxiety or decreased social function. While treating symptoms can be helpful, incorporating non-invasive imaging to evaluate how treatments change the brain's biology may explain what molecular aberrations are associated with disease pathology. Thus, the GABAergic system is suitable to explore developing novel therapeutic strategies for FXS. To understand how the GABAergic system may be affected by this loss-of-function mutation, GABA concentrations were examined within the frontal cortex and thalamus of 5-day-old wild type and Fmr1 knockout mice using both 1H magnetic resonance imaging (1H-MRS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Our objective was to develop a reliable scanning method for neonatal mice in vivo and evaluate whether 1H-MRS is suitable to capture regional GABA concentration differences at the front end of the critical cortical period where abnormal neurodevelopment occurs due to FMRP loss is first detected. 1H-MRS quantified GABA concentrations in both frontal cortex and thalamus of wild type and Fmr1 knockout mice. To substantiate the results of our 1H-MRS studies, in vitro LC-MS/MS was also performed on brain homogenates from age-matched mice. We found significant changes in GABA concentration between the frontal cortex and thalamus within each mouse from both wild type and Fmr1 knockout mice using 1H-MRS and LC-MS/MS. Significant GABA levels were also detected in these same regions between wild type and Fmr1 knockout mice by LC-MS/MS, validating that FMRP loss directly affects the GABAergic system. Thus, these new findings support the need to develop an effective non-invasive imaging method to monitor novel GABAergic strategies aimed at treating patients with FXS.
Collapse
Affiliation(s)
- Samantha T. Reyes
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Sanaz Mohajeri
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Karolina Krasinska
- Stanford University Mass Spectrometry Laboratory, Stanford University, Stanford, CA, United States
| | - Scarlett G. Guo
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Meng Gu
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Laura Pisani
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Jarrett Rosenberg
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Daniel M. Spielman
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Frederick T. Chin
- Department of Radiology, Stanford University, Stanford, CA, United States
| |
Collapse
|
13
|
Ha S, Jeong HS, Park SK, Lee SY. Can Neurocognitive Function Predict Lower Extremity Injuries in Male Collegiate Athletes? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17239061. [PMID: 33291771 PMCID: PMC7731352 DOI: 10.3390/ijerph17239061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
The purpose of this study is to demonstrate whether neurocognitive evaluation can confirm the association between neurocognitive level and postural control and to analyze the relationship between neurocognitive level and acute musculoskeletal injury in male non-net sports athletes. Seventy-seven male non-net sports athletes participated in this study. The Standardized Assessment of Concussion (SAC), Landing Error Scoring System (LESS), Balance Error Scoring System (BESS), and Star Excursion Balance Test (SEBT) were used for testing; we collected data related to injury history for six months after testing. Pearson's correlation analysis, logistic regression, and the independent sample t-test were used for statistical analysis. The correlation between SAC and SEBT results was weak to moderate (p < 0.05). Eleven of the seventy-seven participants experienced acute lower limb injuries. SAC, LESS, BESS, and SEBT results have no effect on the occurrence of acute lower extremity injuries (p > 0.05) and were not statistically different between the injured and non-injured groups (p > 0.05). Therefore, using the SAC score alone to determine the risk factor of lower extremity injuries, except in the use of assessment after a concussion, should be cautioned against.
Collapse
Affiliation(s)
- Sunghe Ha
- Department of Physical Education, College of Sciences in Education, Yonsei University, Seoul 03722, Korea; (S.H.); (H.S.J.)
- International Olympic Committee Research Centre Korea, Yonsei University, Seoul 03722, Korea
| | - Hee Seong Jeong
- Department of Physical Education, College of Sciences in Education, Yonsei University, Seoul 03722, Korea; (S.H.); (H.S.J.)
- International Olympic Committee Research Centre Korea, Yonsei University, Seoul 03722, Korea
| | - Sang-Kyoon Park
- School of Physical Education, Korea National Sport University, Seoul 05541, Korea
- Correspondence: (S.-K.P.); (S.Y.L.); Tel.: +82-2-410-6952 (S.-K.P.); +82-2-2123-6189 (S.Y.L.); Fax: +82-2-410-6952 (S.-K.P.); +82-2-2123-8375 (S.Y.L.)
| | - Sae Yong Lee
- Department of Physical Education, College of Sciences in Education, Yonsei University, Seoul 03722, Korea; (S.H.); (H.S.J.)
- International Olympic Committee Research Centre Korea, Yonsei University, Seoul 03722, Korea
- Institute of Convergence Science, Yonsei University, Seoul 03722, Korea
- Correspondence: (S.-K.P.); (S.Y.L.); Tel.: +82-2-410-6952 (S.-K.P.); +82-2-2123-6189 (S.Y.L.); Fax: +82-2-410-6952 (S.-K.P.); +82-2-2123-8375 (S.Y.L.)
| |
Collapse
|
14
|
Stenberg J, Karr JE, Terry DP, Saksvik SB, Vik A, Skandsen T, Silverberg ND, Iverson GL. Developing Cognition Endpoints for the CENTER-TBI Neuropsychological Test Battery. Front Neurol 2020; 11:670. [PMID: 32765400 PMCID: PMC7379151 DOI: 10.3389/fneur.2020.00670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Measuring cognitive functioning is common in traumatic brain injury (TBI) research, but no universally accepted method for combining several neuropsychological test scores into composite, or summary, scores exists. This study examined several possible composite scores for the test battery used in the large-scale study Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI). Methods: Participants with mild traumatic brain injury (MTBI; n = 140), orthopedic trauma (n = 72), and healthy community controls (n = 70) from the Trondheim MTBI follow-up study completed the CENTER-TBI test battery at 2 weeks after injury, which includes both traditional paper-and-pencil tests and tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB). Seven composite scores were calculated for the paper and pencil tests, the CANTAB tests, and all tests combined (i.e., 21 composites): the overall test battery mean (OTBM); global deficit score (GDS); neuropsychological deficit score-weighted (NDS-W); low score composite (LSC); and the number of scores ≤5th percentile, ≤16th percentile, or <50th percentile. Results: The OTBM and the number of scores <50th percentile composites had distributional characteristics approaching a normal distribution. The other composites were in general highly skewed and zero-inflated. When the MTBI group, the trauma control group, and the community control group were compared, effect sizes were negligible to small for all composites. Subgroups with vs. without loss of consciousness at the time of injury did not differ on the composite scores and neither did subgroups with complicated vs. uncomplicated MTBIs. Intercorrelations were high within the paper-and-pencil composites, the CANTAB composites, and the combined composites and lower between the paper-and-pencil composites and the CANTAB composites. Conclusion: None of the composites revealed significant differences between participants with MTBI and the two control groups. Some of the composite scores were highly correlated and may be redundant. Additional research on patients with moderate to severe TBIs is needed to determine which scores are most appropriate for TBI clinical trials.
Collapse
Affiliation(s)
- Jonas Stenberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Justin E Karr
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,Spaulding Rehabilitation Hospital, Charlestown, MA, United States.,Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Charlestown, MA, United States.,Spaulding Research Institute, Charlestown, MA, United States
| | - Douglas P Terry
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States.,Spaulding Rehabilitation Hospital, Charlestown, MA, United States.,Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Charlestown, MA, United States
| | - Simen B Saksvik
- Department of Psychology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Anne Vik
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Toril Skandsen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Noah D Silverberg
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.,Division of Physical Medicine & Rehabilitation, University of British Columbia, Vancouver, BC, Canada.,Rehabilitation Research Program, GF Strong Rehabilitation Centre, Vancouver, BC, Canada
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States.,Spaulding Rehabilitation Hospital, Charlestown, MA, United States.,Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Charlestown, MA, United States.,Spaulding Research Institute, Charlestown, MA, United States
| |
Collapse
|
15
|
Krishna G, Beitchman JA, Bromberg CE, Currier Thomas T. Approaches to Monitor Circuit Disruption after Traumatic Brain Injury: Frontiers in Preclinical Research. Int J Mol Sci 2020; 21:ijms21020588. [PMID: 31963314 PMCID: PMC7014469 DOI: 10.3390/ijms21020588] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/03/2020] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Mild traumatic brain injury (TBI) often results in pathophysiological damage that can manifest as both acute and chronic neurological deficits. In an attempt to repair and reconnect disrupted circuits to compensate for loss of afferent and efferent connections, maladaptive circuitry is created and contributes to neurological deficits, including post-concussive symptoms. The TBI-induced pathology physically and metabolically changes the structure and function of neurons associated with behaviorally relevant circuit function. Complex neurological processing is governed, in part, by circuitry mediated by primary and modulatory neurotransmitter systems, where signaling is disrupted acutely and chronically after injury, and therefore serves as a primary target for treatment. Monitoring of neurotransmitter signaling in experimental models with technology empowered with improved temporal and spatial resolution is capable of recording in vivo extracellular neurotransmitter signaling in behaviorally relevant circuits. Here, we review preclinical evidence in TBI literature that implicates the role of neurotransmitter changes mediating circuit function that contributes to neurological deficits in the post-acute and chronic phases and methods developed for in vivo neurochemical monitoring. Coupling TBI models demonstrating chronic behavioral deficits with in vivo technologies capable of real-time monitoring of neurotransmitters provides an innovative approach to directly quantify and characterize neurotransmitter signaling as a universal consequence of TBI and the direct influence of pharmacological approaches on both behavior and signaling.
Collapse
Affiliation(s)
- Gokul Krishna
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (G.K.); (J.A.B.); (C.E.B.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Joshua A. Beitchman
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (G.K.); (J.A.B.); (C.E.B.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Caitlin E. Bromberg
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (G.K.); (J.A.B.); (C.E.B.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Theresa Currier Thomas
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (G.K.); (J.A.B.); (C.E.B.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- Phoenix VA Healthcare System, Phoenix, AZ 85012, USA
- Correspondence: ; Tel.: +1-602-827-2348
| |
Collapse
|
16
|
Di Virgilio TG, Ietswaart M, Wilson L, Donaldson DI, Hunter AM. Understanding the Consequences of Repetitive Subconcussive Head Impacts in Sport: Brain Changes and Dampened Motor Control Are Seen After Boxing Practice. Front Hum Neurosci 2019; 13:294. [PMID: 31551732 PMCID: PMC6746992 DOI: 10.3389/fnhum.2019.00294] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/12/2019] [Indexed: 01/24/2023] Open
Abstract
Objectives The potential effects of exposure to repetitive subconcussive head impacts through routine participation in sport are not understood. To investigate the effects of repetitive subconcussive head impacts we studied boxers following customary training (sparring) using transcranial magnetic stimulation (TMS), decomposition electromyographic (EMG) and tests of memory. Methods Twenty amateur boxers performed three 3-min sparring bouts. Parameters of brain function and motor control were assessed prior to sparring and again immediately, 1 h and 24 h post-sparring. Twenty control participants were assessed following mock-sparring. Results One hour after sparring boxers showed increased corticomotor inhibition, altered motor unit recruitment strategies, and decreased memory performance relative to controls, with values returning to baseline by the 24 h follow up. Conclusion Repetitive subconcussive head impacts associated with sparring resulted in acute and transient brain changes similar to those previously reported in soccer heading, providing convergent evidence that sport-related head impacts produce a GABAergic response. These acute changes in brain health are reminiscent of effects seen following brain injury, and suggest a potential mechanism underlying the damaging long-term effects of routine repetitive head impacts in sport.
Collapse
Affiliation(s)
- Thomas G Di Virgilio
- Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, United Kingdom
| | - Magdalena Ietswaart
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Lindsay Wilson
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - David I Donaldson
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Angus M Hunter
- Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, United Kingdom
| |
Collapse
|