1
|
Watanabe H, Shibuya S, Masuda Y, Sugi T, Saito K, Nagashima K. Spatial and temporal patterns of brain neural activity mediating human thermal sensations. Neuroscience 2025; 564:260-270. [PMID: 39586420 DOI: 10.1016/j.neuroscience.2024.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/14/2024] [Accepted: 11/16/2024] [Indexed: 11/27/2024]
Abstract
This study aimed to elucidate the spatial and temporal patterns of brain neural activity that are associated with cold and hot sensations. Participants (n = 20) sat in a controlled room with their eyes closed and received local thermal stimuli to the right fingers using a Peltier apparatus. The thermal stimuli were repeated 40 times using a paired-thermal stimulus paradigm, comprising a 15 s-reference stimulus (32 °C), followed by 10 s-conditioned stimuli (24 °C and 40 °C, cold and hot conditions, respectively), for which 15-channel electroencephalography (EEG) signals were continuously monitored. To identify the patterns of brain neural activity, an independent component (IC) analysis was applied to the preprocessed EEG data. The equivalent current dipole locations were estimated, followed by clustering of the ICs with a dipole residual variance of <15 %. Subsequently, event-related spectral perturbations were analyzed in each identified cluster to calculate the power changes across specific frequency ranges. The right precentral gyrus, precuneus, medial frontal gyrus, middle frontal gyrus, superior frontal gyrus, cuneus, cingulate gyrus, left precentral gyrus, middle occipital gyrus, and cingulate gyrus were activated in both cold and hot conditions. In most activated regions, EEG power temporal changes were observed across the frequency ranges and were different between the two conditions. These results may suggest that cold and hot sensations are processed through different temporal brain neural activity patterns in overlapping brain regions.
Collapse
Affiliation(s)
- Hironori Watanabe
- Institute for Energy and Environmental System, Sustainable Energy and Environmental Society Open Innovation Research Organization, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 1698555, Japan; Advanced Research Center for Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 3591192, Japan; Body Temperature and Fluid Laboratory, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 3591192, Japan
| | - Satoshi Shibuya
- Department of Integrative Physiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 1818611, Japan
| | - Yuta Masuda
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5, Shimogamohangi, Kyoto, Kyoto 6068522, Japan
| | - Taisuke Sugi
- Body Temperature and Fluid Laboratory, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 3591192, Japan
| | - Kiyoshi Saito
- Institute for Energy and Environmental System, Sustainable Energy and Environmental Society Open Innovation Research Organization, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 1698555, Japan; Department of Applied Mechanics and Aerospace Engineering, School of Fundamental Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 1698555, Japan
| | - Kei Nagashima
- Institute for Energy and Environmental System, Sustainable Energy and Environmental Society Open Innovation Research Organization, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 1698555, Japan; Body Temperature and Fluid Laboratory, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 3591192, Japan.
| |
Collapse
|
2
|
Shibuya S, Ohki Y. Body ownership and tactile processing: Effects of bilateral rubber hand illusion on tactile temporal order judgment. Iperception 2024; 15:20416695241308146. [PMID: 39735731 PMCID: PMC11672382 DOI: 10.1177/20416695241308146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/03/2024] [Indexed: 12/31/2024] Open
Abstract
In the rubber hand illusion (RHI), individuals perceive a fake hand as their own if an unseen hand and a visible fake hand are stroked simultaneously. We examined how the RHI on either hand influenced the temporal order judgment (TOJ) of bimanual stimulation. In Experiment 1, participants performed TOJ during RHI or non-RHI conditions. When the fake hand was oriented in an anatomically incongruent position (non-RHI condition), the point of subjective simultaneity (PSS) from TOJ showed no difference between the stroke sides. However, during the RHI condition, the PSS tended to shift in the opposite direction to the stroke, resulting in a significant difference between the sides. This implies slower tactile processing in the illusion-affected hand. When participants performed an identical TOJ while watching the fake hand without stroking (Experiment 2), no PSS modulation was found. Our findings suggest the possibility that the RHI attenuates tactile processing, but its magnitude is small.
Collapse
Affiliation(s)
- Satoshi Shibuya
- Department of Integrative Physiology, School of Medicine, Kyorin University, Tokyo, Japan
| | - Yukari Ohki
- Department of Integrative Physiology, School of Medicine, Kyorin University, Tokyo, Japan
| |
Collapse
|
3
|
Shibuya S, Ohki Y. Mu Rhythm Desynchronization while Observing Rubber Hand Movement in the Mirror: The Interaction of Body Representation with Visuo-Tactile Stimulation. Brain Sci 2023; 13:969. [PMID: 37371446 DOI: 10.3390/brainsci13060969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
During rubber hand illusion (RHI), participants feel that a rubber (fake) hand is their own (i.e., embodiment of the rubber hand) if the unseen real hand and seen rubber hand are stroked synchronously (i.e., visuo-tactile stimuli). The RHI is also evoked if the real and rubber hands are placed in the same position (i.e., visual-proprioceptive congruency), which can be performed using a mirror setting. Using electroencephalography (EEG) and mirror settings, we compared μ rhythm (8-13 Hz) event-related desynchronization (ERD; an index of sensorimotor activation) while watching the movements of embodied or non-embodied rubber hands, which was preceded by an observation of the rubber hand with or without synchronous visuo-tactile stimuli. The illusory ownership of the fake hand was manipulated using visual continuity with (RHI) and without (non-RHI) a fake forearm. Resultantly, an ownership-dependent μ rhythm ERD was found when delivering visuo-tactile stimuli; a greater and more persistent μ rhythm ERD during the rubber hand movement was identified in the RHI in comparison to the non-RHI condition. However, no difference was observed between the two when observing the fake hand alone. These findings suggest the possibility that a self-related multisensory interaction between body representation (top-down processing) and visuo-tactile inputs (bottom-up processing) before a fake hand movement produces ownership-dependent sensorimotor activations during subsequent movement observations.
Collapse
Affiliation(s)
- Satoshi Shibuya
- Department of Integrative Physiology, School of Medicine, Kyorin University, Tokyo 181-8611, Japan
| | - Yukari Ohki
- Department of Integrative Physiology, School of Medicine, Kyorin University, Tokyo 181-8611, Japan
| |
Collapse
|
4
|
Porssut T, Iwane F, Chavarriaga R, Blanke O, Millán JDR, Boulic R, Herbelin B. EEG signature of breaks in embodiment in VR. PLoS One 2023; 18:e0282967. [PMID: 37167243 PMCID: PMC10174550 DOI: 10.1371/journal.pone.0282967] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/28/2023] [Indexed: 05/13/2023] Open
Abstract
The brain mechanism of embodiment in a virtual body has grown a scientific interest recently, with a particular focus on providing optimal virtual reality (VR) experiences. Disruptions from an embodied state to a less- or non-embodied state, denominated Breaks in Embodiment (BiE), are however rarely studied despite their importance for designing interactions in VR. Here we use electroencephalography (EEG) to monitor the brain's reaction to a BiE, and investigate how this reaction depends on previous embodiment conditions. The experimental protocol consisted of two sequential steps; an induction step where participants were either embodied or non-embodied in an avatar, and a monitoring step where, in some cases, participants saw the avatar's hand move while their hand remained still. Our results show the occurrence of error-related potentials linked to observation of the BiE event in the monitoring step. Importantly, this EEG signature shows amplified potentials following the non-embodied condition, which is indicative of an accumulation of errors across steps. These results provide neurophysiological indications on how progressive disruptions impact the expectation of embodiment for a virtual body.
Collapse
Affiliation(s)
- Thibault Porssut
- Immersive Interaction Research Group (IIG), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory of Cognitive Neuroscience (LNCO), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Altran Lab, Capgemini Engineering, Paris, France
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Fumiaki Iwane
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, United States of America
| | - Ricardo Chavarriaga
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Center for Artificial Intelligence, School of Engineering, Zurich University of Applied Sciences (ZHAW), Winterthur, Switzerland
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience (LNCO), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Neurology, Geneva University Hospitals, Geneva, Switzerland
| | - José Del R Millán
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, United States of America
- Department of Neurology, University of Texas at Austin, Austin, TX, United States of America
| | - Ronan Boulic
- Laboratory of Cognitive Neuroscience (LNCO), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bruno Herbelin
- Immersive Interaction Research Group (IIG), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory of Cognitive Neuroscience (LNCO), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
5
|
Choi DH, Lee S, Lee IS, Chae Y. The role of visual expectations in acupuncture analgesia: A quantitative electroencephalography study. Mol Pain 2022; 18:17448069221128667. [PMID: 36196847 PMCID: PMC9537492 DOI: 10.1177/17448069221128667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Acupuncture is a complex treatment comprising multisensory stimulation, including visual and tactile sensations and experiences of body ownership. The purpose of this study was to investigate the role of these three components of acupuncture stimulation in acupuncture analgesia. 40 healthy volunteers participated in the study and received acupuncture treatment under three different conditions (real-hand, rubber-hand synchronous, and rubber-hand asynchronous). The tolerance for heat pain stimuli was measured before and after treatment. Brain oscillation changes were also measured using electroencephalography (EEG). The pain tolerance was significantly increased after acupuncture treatment under all three conditions. Noticeable deqi (needle) sensations in response to acupuncture stimulation of the rubber hand were found under both rubber-hand synchronous and rubber-hand asynchronous conditions. Deqi sensations were significantly correlated with acupuncture analgesia only under the rubber-hand synchronous condition. Increased delta and decreased theta, alpha, beta, and gamma waves were observed after acupuncture treatment under all three conditions. Our findings clarified the role of cognitive components of acupuncture treatment in acupuncture analgesia through the rubber-hand illusion. This study is a first step toward separating various components of acupuncture analgesia, i.e. visual, tactile, and body ownership, and utilizing those components to maximize analgesic effects.
Collapse
Affiliation(s)
| | | | - In-Seon Lee
- In-Seon Lee, Department of Science in
Korean Medicine, Graduate School, Kyung Hee University, 1 Hoegi-dong,
Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Younbyoung Chae
- Younbyoung Chae, Department of Science in
Korean Medicine, Graduate School, Kyung Hee University, 1 Hoegi-dong,
Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
6
|
Shibuya S, Unenaka S, Ohki Y. Predictability of Delayed Visual Feedback Under Rubber Hand Illusion Modulates Localization but Not Ownership of the Hand. Front Psychol 2021; 12:771284. [PMID: 34867678 PMCID: PMC8632762 DOI: 10.3389/fpsyg.2021.771284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022] Open
Abstract
The rubber hand illusion (RHI) is a perceptual illusion, whereby a fake hand is recognized as one’s own hand when a fake hand and felt real hand are stroked synchronously. RHI strength is mainly assessed using a questionnaire rating and proprioceptive drift (PD). PD is characterized by the proprioceptively sensed location of the participant’s own hand shifting toward the location of the fake hand after RHI. However, the relationship between the two measures of hand ownership and location remains controversial due to mixed findings: some studies report correlations between them, while others show that they are independent. Here, we demonstrated significant PD without RHI using delayed visual feedback. In this RHI study, video images of the fake hand were delivered to the subjects, and four delay intervals of visual feedback (80, 280, 480, and 680ms) were introduced. In four of six conditions, the delay interval was fixed throughout the condition. In the other two conditions, four delays were delivered in a predetermined order (i.e., serial condition; higher predictability) or in a pseudo-random order (i.e., random condition; low predictability). For the four conditions with a fixed delay, the questionnaire ratings and PD declined significantly when the delay interval exceeded circa 300ms. In both the serial and random conditions, no illusory ownership of the fake hand was reported in the questionnaire. In contrast, greater PD was found in the random condition but not in the serial condition. Our findings suggest that hand ownership and localization are caused by distinct multisensory integration processes.
Collapse
Affiliation(s)
- Satoshi Shibuya
- Department of Integrative Physiology, School of Medicine, Kyorin University, Tokyo, Japan
| | - Satoshi Unenaka
- Department of Sport Education, School of Lifelong Sport, Hokusho University, Ebetsu, Japan
| | - Yukari Ohki
- Department of Integrative Physiology, School of Medicine, Kyorin University, Tokyo, Japan
| |
Collapse
|
7
|
Shibuya S, Unenaka S, Shimada S, Ohki Y. Distinct modulation of mu and beta rhythm desynchronization during observation of embodied fake hand rotation. Neuropsychologia 2021; 159:107952. [PMID: 34252417 DOI: 10.1016/j.neuropsychologia.2021.107952] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/16/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022]
Abstract
The rubber hand illusion (RHI) is a phenomenon whereby participants recognize a fake hand as their own. Studies have examined the effects of observing fake hand movements after the RHI on brain sensorimotor activity, although results remain controversial. To address these discrepancies, we investigated the effects of observation of fake hand rotation after the RHI on sensorimotor mu (μ: 8-13 Hz) and beta (β: 15-25 Hz) rhythm event-related desynchronization (ERD) using electroencephalography (EEG). Questionnaire results and proprioceptive drift revealed that the RHI occurred in participants when their invisible hand and fake visible hand were stroked synchronously but not during asynchronous stroking. Independent component (IC) clustering from EEG data during movement observation identified three IC clusters, including the right sensorimotor, left sensorimotor, and left occipital cluster. In the right sensorimotor cluster, we observed distinct modulation of μ and β ERD during fake hand rotation. Illusory ownership over the fake hand enhanced μ ERD but inversely attenuated β ERD. Further, the extent of μ ERD correlated with proprioceptive drift, but not with questionnaire ratings, whereas the converse results were obtained for β ERD. No ownership-dependent ERD modulation was detected in the left sensorimotor cluster. Alpha (α: 8-13 Hz) rhythm ERD of the left occipital cluster was smaller in the synchronous condition than in the asynchronous condition, but α ERD was not correlated with questionnaire rating or drift. These findings suggest that observing embodied fake hand rotation induces distinct cortical processing in sensorimotor brain areas.
Collapse
Affiliation(s)
- Satoshi Shibuya
- Department of Integrative Physiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, Japan.
| | - Satoshi Unenaka
- Department of Sport Education, School of Lifelong Sport, Hokusho University, 23 Bunkyodai, Ebetsu, Hokkaido, Japan
| | - Sotaro Shimada
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, Japan
| | - Yukari Ohki
- Department of Integrative Physiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, Japan
| |
Collapse
|