1
|
Percy C, Gómez-Emilsson A. Integrated Information Theory and the Phenomenal Binding Problem: Challenges and Solutions in a Dynamic Framework. ENTROPY (BASEL, SWITZERLAND) 2025; 27:338. [PMID: 40282573 PMCID: PMC12026057 DOI: 10.3390/e27040338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025]
Abstract
Theories of consciousness grounded in neuroscience must explain the phenomenal binding problem, e.g., how micro-units of information are combined to create the macro-scale conscious experience common to human phenomenology. An example is how single 'pixels' of a visual scene are experienced as a single holistic image in the 'mind's eye', rather than as individual, separate, and massively parallel experiences, corresponding perhaps to individual neuron activations, neural ensembles, or foveal saccades, any of which could conceivably deliver identical functionality from an information processing point of view. There are multiple contested candidate solutions to the phenomenal binding problem. This paper explores how the metaphysical infrastructure of Integrated Information Theory (IIT) v4.0 can provide a distinctive solution. The solution-that particular entities aggregable from multiple units ('complexes') define existence-might work in a static picture, but introduces issues in a dynamic system. We ask what happens to our phenomenal self as the main complex moves around a biological neural network. Our account of conscious entities developing through time leads to an apparent dilemma for IIT theorists between non-local entity transitions and contiguous selves: the 'dynamic entity evolution problem'. As well as specifying the dilemma, we describe three ways IIT might dissolve the dilemma before it gains traction. Clarifying IIT's position on the phenomenal binding problem, potentially underpinned with novel empirical or theoretical research, helps researchers understand IIT and assess its plausibility. We see our paper as contributing to IIT's current research emphasis on the shift from static to dynamic analysis.
Collapse
Affiliation(s)
- Chris Percy
- College of Arts, Humanities and Education, University of Derby, Derby DE22 1GB, UK
- Qualia Research Institute, San Francisco, CA 95066, USA;
| | | |
Collapse
|
2
|
Heylighen F, Beigi S. Why Uncertainty Is Essential for Consciousness: Local Prospect Theory vs. Predictive Processing. ENTROPY (BASEL, SWITZERLAND) 2025; 27:140. [PMID: 40003137 PMCID: PMC11854793 DOI: 10.3390/e27020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025]
Abstract
We present and develop local prospect theory (LPT), a novel framework for understanding consciousness, and, in particular, subjective experience and free will. While predictive processing (PP) theories model the brain as trying to optimize the accuracy of predictions, LPT sees uncertainty as an essential feature of conscious decision-making. This is achieved by creating a "local prospect"-a range of potential developments colored by subjective experience from which an agent can freely choose how to react. Drawing on global workspace theory, LPT conceptualizes consciousness as a self-maintaining process of circulating neural activation, creating a temporary working memory where thoughts and feelings coming from different brain modules enter into an asynchronous, non-linear interaction. This contrasts with unconscious processes, which operate automatically and deterministically. LPT proposes entropy-based measures, including the determination of actions by conditions and the breadth of prospect, to quantify the range of potential developments considered. This framework allows us to understand Buddhist practices and concepts, such as mindfulness, liberation from attachments, and meditation, which broaden consciousness and de-automatize reactions by reducing the influence of conditioning. The proposed prospect measure may be operationalized by indicators such as the variety of action, breadth of perception, and unpredictability of behavior, thus allowing for the empirical testing of the theory.
Collapse
Affiliation(s)
- Francis Heylighen
- Center Leo Apostel, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Shima Beigi
- Center Leo Apostel, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
3
|
Costa FP, Wiedenmann B, Schöll E, Tuszynski J. Emerging cancer therapies: targeting physiological networks and cellular bioelectrical differences with non-thermal systemic electromagnetic fields in the human body - a comprehensive review. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1483401. [PMID: 39720338 PMCID: PMC11666389 DOI: 10.3389/fnetp.2024.1483401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024]
Abstract
A steadily increasing number of publications support the concept of physiological networks, and how cellular bioelectrical properties drive cell proliferation and cell synchronization. All cells, especially cancer cells, are known to possess characteristic electrical properties critical for physiological behavior, with major differences between normal and cancer cell counterparts. This opportunity can be explored as a novel treatment modality in Oncology. Cancer cells exhibit autonomous oscillations, deviating from normal rhythms. In this context, a shift from a static view of cellular processes is required for a better understanding of the dynamic connections between cellular metabolism, gene expression, cell signaling and membrane polarization as states in constant flux in realistic human models. In oncology, radiofrequency electromagnetic fields have produced sustained responses and improved quality of life in cancer patients with minimal side effects. This review aims to show how non-thermal systemic radiofrequency electromagnetic fields leads to promising therapeutic responses at cellular and tissue levels in humans, supporting this newly emerging cancer treatment modality with early favorable clinical experience specifically in advanced cancer.
Collapse
Affiliation(s)
| | | | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
| | - Jack Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB, Canada
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Turin, Italy
- Department of Data Science and Engineering, The Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
4
|
Sarasso P, Tschacher W, Schoeller F, Francesetti G, Roubal J, Gecele M, Sacco K, Ronga I. Nature heals: An informational entropy account of self-organization and change in field psychotherapy. Phys Life Rev 2024; 51:64-84. [PMID: 39299158 DOI: 10.1016/j.plrev.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
This paper reviews biophysical models of psychotherapeutic change based on synergetics and the free energy principle. These models suggest that introducing sensory surprise into the patient-therapist system can lead to self-organization and the formation of new attractor states, disrupting entrenched patterns of thoughts, emotions, and behaviours. We propose that the therapist can facilitate this process by cultivating epistemic trust and modulating embodied attention to allow surprising affective states to enter shared awareness. Transient increases in free energy enable the update of generative models, expanding the range of experiences available within the patient-therapist phenomenal field. We hypothesize that patterns of disorganization at behavioural and physiological levels, indexed by increased entropy, complexity, and lower determinism, are key markers and predictors of psychotherapeutic gains. Future research should investigate how the therapist's openness to novelty shapes therapeutic outcomes.
Collapse
Affiliation(s)
- Pietro Sarasso
- Brain Plasticity and Behaviour Changes Research Group, Department of Psychology, University of Turin, Turin, Italy.
| | - Wolfgang Tschacher
- Department of Experimental Psychology, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Felix Schoeller
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States; Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Gianni Francesetti
- International Institute for Gestalt Therapy and Psychopathology, Turin, Italy
| | - Jan Roubal
- Gestalt Studia, Training in Psychotherapy Integration, Center for Psychotherapy Research in Brno, Masaryk University, Brno, Czechia
| | - Michela Gecele
- International Institute for Gestalt Therapy and Psychopathology, Turin, Italy
| | - Katiuscia Sacco
- Brain Plasticity and Behaviour Changes Research Group, Department of Psychology, University of Turin, Turin, Italy
| | - Irene Ronga
- Brain Plasticity and Behaviour Changes Research Group, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
5
|
Lacalli T. The function(s) of consciousness: an evolutionary perspective. Front Psychol 2024; 15:1493423. [PMID: 39660268 PMCID: PMC11628302 DOI: 10.3389/fpsyg.2024.1493423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
The functions of consciousness, viewed from an evolutionary standpoint, can be categorized as being either general or particular. There are two general functions, meaning those that do not depend on the particulars of how consciousness influences behavior or how and why it first evolved: of (1) expanding the behavioral repertoire of the individual through the gradual accumulation of neurocircuitry innovations incorporating consciousness that would not exist without it, and (2) reducing the time scale over which preprogrammed behaviors can be altered, from evolutionary time, across generations, to real-time. But neither answers Velmans' question, of why consciousness is adaptive in a proximate sense, and hence why it would have evolved, which depends on identifying the particular function it first performed. Memory arguably plays a role here, as a strong case can be made that consciousness first evolved to make motivational control more responsive, though memory, to the past life experiences of the individual. A control mechanism of this kind could, for example, have evolved to consciously inhibit appetitive behaviors, whether consciously instigated or not, that would otherwise expose the individual to harm. There is then the question of whether, for amniote vertebrates, a role in memory formation and access would have led directly to a wider role for consciousness in the way the brain operates, or if some other explanation is required. Velmans' question might then have two answers, the second having more to do with the advantages of global oversight for the control of behavior, as in a global workspace, or for conferring meaning on sensory experience in a way that non-conscious neural processes cannot. Meaning in this context refers specifically to the way valence is embodied in the genomic instructions for assembling the neurocircuitry responsible for phenomenal contents, so it constitutes an embodied form of species memory, and a way of thinking about the adaptive utility of consciousness that is less concerned with real-time mechanistic events than with information storage on an evolutionary time scale.
Collapse
Affiliation(s)
- Thurston Lacalli
- Biology Department, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
6
|
Pepperell R. Consciousness and Energy Processing in Neural Systems. Brain Sci 2024; 14:1112. [PMID: 39595875 PMCID: PMC11591782 DOI: 10.3390/brainsci14111112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Our understanding of the relationship between neural activity and psychological states has advanced greatly in recent decades. But we are still unable to explain conscious experience in terms of physical processes occurring in our brains. METHODS This paper introduces a conceptual framework that may contribute to an explanation. All physical processes entail the transfer, transduction, and transformation of energy between portions of matter as work is performed in material systems. If the production of consciousness in nervous systems is a physical process, then it must entail the same. Here the nervous system, and the brain in particular, is considered as a material system that transfers, transduces, and transforms energy as it performs biophysical work. CONCLUSIONS Evidence from neuroscience suggests that conscious experience is produced in the organic matter of nervous systems when they perform biophysical work at classical and quantum scales with a certain level of dynamic complexity or organization. An empirically grounded, falsifiable, and testable hypothesis is offered to explain how energy processing in nervous systems may produce conscious experience at a fundamental physical level.
Collapse
|
7
|
Strupp W. A new variant of the electromagnetic field theory of consciousness: approaches to empirical confirmation. Front Neurol 2024; 15:1420676. [PMID: 39494171 PMCID: PMC11527664 DOI: 10.3389/fneur.2024.1420676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/16/2024] [Indexed: 11/05/2024] Open
Abstract
There are various electromagnetic (EM) field theories of consciousness. They postulate an epineural EM field which, due to its binding properties, unifies the different neuronal information differences originating from various sensory and cognitive processes. Only through a real physical integration in space within this field could phenomenal consciousness arise. This would solve the binding problem mentioned in the philosophy of mind. On closer inspection, the electromagnetic interaction not only provides an explanation for the integrative property of the EM field, but also for the necessary differentiating contrasts of information. This article will take a closer look at the physical properties of a postulated EM field. It will also show how the problem of qualia in connection with emergentism could be solved by a new variant of EM field theory. If it can be clearly demonstrated that the postulated epineural EM field plays a decisive role in the origin of consciousness in addition to neuronal "wired" information processing, this also leaves less room for metaphysical assumptions that attempt to solve the binding problem. In experiments to prove the postulated epineural EM field by means of external electromagnetic manipulations, it can never be ruled out that these also have a direct effect on the "wired" neuronal signal processing. Therefore, on the way to proving the EM field theory of consciousness, an experimental method is needed that must ensure that external manipulations only affect the extensions of the EM field without directly influencing the neuronal network. A method will be discussed here that works with the shielding of EM fields instead of external electromagnetic stimuli.
Collapse
|
8
|
Yurchenko SB. Panpsychism and dualism in the science of consciousness. Neurosci Biobehav Rev 2024; 165:105845. [PMID: 39106941 DOI: 10.1016/j.neubiorev.2024.105845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
A resurgence of panpsychism and dualism is a matter of ongoing debate in modern neuroscience. Although metaphysically hostile, panpsychism and dualism both persist in the science of consciousness because the former is proposed as a straightforward answer to the problem of integrating consciousness into the fabric of physical reality, whereas the latter proposes a simple solution to the problem of free will by endowing consciousness with causal power as a prerequisite for moral responsibility. I take the Integrated Information Theory (IIT) as a paradigmatic exemplar of a theory of consciousness (ToC) that makes its commitments to panpsychism and dualism within a unified framework. These features are not, however, unique for IIT. Many ToCs are implicitly prone to some degree of panpsychism whenever they strive to propose a universal definition of consciousness, associated with one or another known phenomenon. Yet, those ToCs that can be characterized as strongly emergent are at risk of being dualist. A remedy against both covert dualism and uncomfortable corollaries of panpsychism can be found in the evolutionary theory of life, called here "bioprotopsychism" and generalized in terms of autopoiesis and the free energy principle. Bioprotopsychism provides a biologically inspired basis for a minimalist approach to consciousness via the triad "chemotaxis-efference copy mechanism-counterfactual active inference" by associating the stream of weakly emergent conscious states with an amount of information (best guesses) of the brain, engaged in unconscious predictive processing.
Collapse
Affiliation(s)
- Sergey B Yurchenko
- Brain and Consciousness Independent Research Center, Andijan 710132, Uzbekistan.
| |
Collapse
|
9
|
Kuhn RL. A landscape of consciousness: Toward a taxonomy of explanations and implications. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 190:28-169. [PMID: 38281544 DOI: 10.1016/j.pbiomolbio.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/12/2023] [Accepted: 12/25/2023] [Indexed: 01/30/2024]
Abstract
Diverse explanations or theories of consciousness are arrayed on a roughly physicalist-to-nonphysicalist landscape of essences and mechanisms. Categories: Materialism Theories (philosophical, neurobiological, electromagnetic field, computational and informational, homeostatic and affective, embodied and enactive, relational, representational, language, phylogenetic evolution); Non-Reductive Physicalism; Quantum Theories; Integrated Information Theory; Panpsychisms; Monisms; Dualisms; Idealisms; Anomalous and Altered States Theories; Challenge Theories. There are many subcategories, especially for Materialism Theories. Each explanation is self-described by its adherents, critique is minimal and only for clarification, and there is no attempt to adjudicate among theories. The implications of consciousness explanations or theories are assessed with respect to four questions: meaning/purpose/value (if any); AI consciousness; virtual immortality; and survival beyond death. A Landscape of Consciousness, I suggest, offers perspective.
Collapse
|
10
|
Kruger FP. The Intersection of Resonant Listening and Preaching That Resonates Daily, Alluding to Listeners’ Memories and Their Meaning-Making Efforts. RELIGIONS 2024; 15:816. [DOI: 10.3390/rel15070816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
This article explores resonant listening as an integral aspect of preaching, transcending physical church spaces. It underscores the active engagement of listeners in participatory listening to grasp the essence of a sermon. Resonant listening, characterised by an attentive disposition intertwined with individuals’ recollections of God’s redemptive acts and everyday experiences, is crucial for sense-making in life. The research question guiding this exploration is: “How can an elucidation of resonant listening connected to listeners’ remembrances and their endeavour to make sense of life enable them to find meaning?” Drawing on Osmer’s research methodology, the article begins with the descriptive empirical phase, investigating the dynamics of resonant listening among listeners. It then delves into insights from communication sciences and social psychology, elucidating the significance of resonant listening and memory in decision-making processes. Moreover, it offers normative perspectives through an examination of John 4, analysing cognitive triggers, memories, and the outcomes of resonant listening in Jesus’s interaction with the Samaritan woman. Finally, the article concludes by intertwining hermeneutical reflections with homiletical perspectives, highlighting the indispensable role of resonant listening in effective preaching.
Collapse
Affiliation(s)
- Ferdi Petrus Kruger
- Unit for Reformational Theology and the Development of the South African Society, North-West University, Potchefstroom 2531, South Africa
| |
Collapse
|
11
|
Pagel JF. The Persistent Paradox of Rapid Eye Movement Sleep (REMS): Brain Waves and Dreaming. Brain Sci 2024; 14:622. [PMID: 39061363 PMCID: PMC11275156 DOI: 10.3390/brainsci14070622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The original conceptualization of REM sleep as paradoxical sleep was based on its EEG resembling wakefulness and its association with dreaming. Over time, the concept of paradox was expanded to include various associations with REM sleep, such as dream exclusivity, high recall, and pathophysiology. However, none of these associations are unique to REM sleep; they can also occur in other sleep states. Today, after more than fifty years of focused research, two aspects of REMS clearly retain paradoxical exclusivity. Despite the persistent contention that the EEG of human REMS consists of wake-like, low-voltage, non-synchronous electrical discharges, REMS is based on and defined by the intracranial electrical presence of 5-8 Hz. theta, which has always been the marker of REMS in other animals. The wake-like EEG used to define REMS on human polysomnography is secondary to a generalized absence of electrophysiological waveforms because the strong waves of intracranial theta do not propagate to scalp electrodes placed outside the skull. It is a persistent paradox that the theta frequency is restricted to a cyclical intracranial dynamic that does not extend beyond the lining of the brain. REMS has a persistent association with narratively long and salient dream reports. However, the extension of this finding to equate REMS with dreaming led to a foundational error in neuroscientific logic. Major theories and clinical approaches were built upon this belief despite clear evidence that dreaming is reported throughout sleep in definingly different physiologic and phenomenological forms. Few studies have addressed the differences between the dreams reported from the different stages of sleep so that today, the most paradoxical aspect of REMS dreaming may be how little the state has actually been studied. An assessment of the differences in dreaming between sleep stages could provide valuable insights into how dreaming relates to the underlying brain activity and physiological processes occurring during each stage. The brain waves and dreams of REMS persist as being paradoxically unique and different from waking and the other states of sleep consciousness.
Collapse
Affiliation(s)
- J. F. Pagel
- Family Medicine Department, University of Colorado Medical School System, P.O. Box 6, Arroyo Seco, NM 87514, USA; ; Tel.: +1-719251707
- Psychology Department, Cape Breton University, 38 Gull Cove Rd., Glace Bay, NS B1K 3S6, Canada
| |
Collapse
|
12
|
Lacalli T. Mental causation: an evolutionary perspective. Front Psychol 2024; 15:1394669. [PMID: 38741757 PMCID: PMC11089241 DOI: 10.3389/fpsyg.2024.1394669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
The relationship between consciousness and individual agency is examined from a bottom-up evolutionary perspective, an approach somewhat different from other ways of dealing with the issue, but one relevant to the question of animal consciousness. Two ways are identified that would decouple the two, allowing consciousness of a limited kind to exist without agency: (1) reflex pathways that incorporate conscious sensations as an intrinsic component (InCs), and (2) reflexes that are consciously conditioned and dependent on synaptic plasticity but not memory (CCRs). Whether InCs and CCRs exist as more than hypothetical constructs is not clear, and InCs are in any case limited to theories where consciousness depends directly on EM field-based effects. Consciousness with agency, as we experience it, then belongs in a third category that allows for deliberate choice of alternative actions (DCs), where the key difference between this and CCR-level pathways is that DCs require access to explicit memory systems whereas CCRs do not. CCRs are nevertheless useful from a heuristic standpoint as a conceptual model for how conscious inputs could act to refine routine behaviors while allowing evolution to optimize phenomenal experience (i.e., qualia) in the absence of individual agency, a somewhat counterintuitive result. However, so long as CCRs are not a required precondition for the evolution of memory-dependent DC-level processes, the later could have evolved first. If so, the adaptive benefit of consciousness when it first evolved may be linked as much to the role it plays in encoding memories as to any other function. The possibility that CCRs are more than a theoretical construct, and have played a role in the evolution of consciousness, argues against theories of consciousness focussed exclusively on higher-order functions as the appropriate way to deal with consciousness as it first evolved, as it develops in the early postnatal period of life, or with the conscious experiences of animals other than ourselves. An evolutionary perspective also resolves the problem of free will, that it is best treated as a property of a species rather than the individuals belonging to that species whereas, in contrast, agency is an attribute of individuals.
Collapse
Affiliation(s)
- Thurston Lacalli
- Department of Biology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
13
|
Keppler J. Laying the foundations for a theory of consciousness: the significance of critical brain dynamics for the formation of conscious states. Front Hum Neurosci 2024; 18:1379191. [PMID: 38736531 PMCID: PMC11082359 DOI: 10.3389/fnhum.2024.1379191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Empirical evidence indicates that conscious states, distinguished by the presence of phenomenal qualities, are closely linked to synchronized neural activity patterns whose dynamical characteristics can be attributed to self-organized criticality and phase transitions. These findings imply that insight into the mechanism by which the brain controls phase transitions will provide a deeper understanding of the fundamental mechanism by which the brain manages to transcend the threshold of consciousness. This article aims to show that the initiation of phase transitions and the formation of synchronized activity patterns is due to the coupling of the brain to the zero-point field (ZPF), which plays a central role in quantum electrodynamics (QED). The ZPF stands for the presence of ubiquitous vacuum fluctuations of the electromagnetic field, represented by a spectrum of normal modes. With reference to QED-based model calculations, the details of the coupling mechanism are revealed, suggesting that critical brain dynamics is governed by the resonant interaction of the ZPF with the most abundant neurotransmitter glutamate. The pyramidal neurons in the cortical microcolumns turn out to be ideally suited to control this interaction. A direct consequence of resonant glutamate-ZPF coupling is the amplification of specific ZPF modes, which leads us to conclude that the ZPF is the key to the understanding of consciousness and that the distinctive feature of neurophysiological processes associated with conscious experience consists in modulating the ZPF. Postulating that the ZPF is an inherently sentient field and assuming that the spectrum of phenomenal qualities is represented by the normal modes of the ZPF, the significance of resonant glutamate-ZPF interaction for the formation of conscious states becomes apparent in that the amplification of specific ZPF modes is inextricably linked with the excitation of specific phenomenal qualities. This theory of consciousness, according to which phenomenal states arise through resonant amplification of zero-point modes, is given the acronym TRAZE. An experimental setup is specified that can be used to test a corollary of the theory, namely, the prediction that normally occurring conscious perceptions are absent under experimental conditions in which resonant glutamate-ZPF coupling is disrupted.
Collapse
|
14
|
McFadden J. Carving Nature at Its Joints: A Comparison of CEMI Field Theory with Integrated Information Theory and Global Workspace Theory. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1635. [PMID: 38136515 PMCID: PMC10743215 DOI: 10.3390/e25121635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
The quest to comprehend the nature of consciousness has spurred the development of many theories that seek to explain its underlying mechanisms and account for its neural correlates. In this paper, I compare my own conscious electromagnetic information field (cemi field) theory with integrated information theory (IIT) and global workspace theory (GWT) for their ability to 'carve nature at its joints' in the sense of predicting the entities, structures, states and dynamics that are conventionally recognized as being conscious or nonconscious. I go on to argue that, though the cemi field theory shares features of both integrated information theory and global workspace theory, it is more successful at carving nature at its conventionally accepted joints between conscious and nonconscious systems, and is thereby a more successful theory of consciousness.
Collapse
Affiliation(s)
- Johnjoe McFadden
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
15
|
Sanfey J. Simultaneity of consciousness with physical reality: the key that unlocks the mind-matter problem. Front Psychol 2023; 14:1173653. [PMID: 37842692 PMCID: PMC10568466 DOI: 10.3389/fpsyg.2023.1173653] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
The problem of explaining the relationship between subjective experience and physical reality remains difficult and unresolved. In most explanations, consciousness is epiphenomenal, without causal power. The most notable exception is Integrated Information Theory (IIT), which provides a causal explanation for consciousness. However, IIT relies on an identity between subjectivity and a particular type of physical structure, namely with an information structure that has intrinsic causal power greater than the sum of its parts. Any theory that relies on a psycho-phyiscal identity must eventually appeal to panpsychism, which undermines that theory's claim to be fundamental. IIT has recently pivoted towards a strong version of causal emergence, but macroscopic structures cannot be stronger causally than their microphysical parts without some new physical law or governing principle. The approach taken here is designed to uncover such a principle. The decisive argument is entirely deductive from initial premises that are phenomenologically certain. If correct, the arguments prove that conscious experience is sufficient to create additional degrees of causal freedom independently of the content of experience, and in a manner that is unpredictable and unobservable by any temporally sequential means. This provides a fundamental principle about consciousness, and a conceptual bridge between it and the physics describing what is experienced. The principle makes testable predictions about brain function, with notable differences from IIT, some of which are also empirically testable.
Collapse
|
16
|
Gómez-Emilsson A, Percy C. Don't forget the boundary problem! How EM field topology can address the overlooked cousin to the binding problem for consciousness. Front Hum Neurosci 2023; 17:1233119. [PMID: 37600559 PMCID: PMC10435742 DOI: 10.3389/fnhum.2023.1233119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
The boundary problem is related to the binding problem, part of a family of puzzles and phenomenal experiences that theories of consciousness (ToC) must either explain or eliminate. By comparison with the phenomenal binding problem, the boundary problem has received very little scholarly attention since first framed in detail by Rosengard in 1998, despite discussion by Chalmers in his widely cited 2016 work on the combination problem. However, any ToC that addresses the binding problem must also address the boundary problem. The binding problem asks how a unified first person perspective (1PP) can bind experiences across multiple physically distinct activities, whether billions of individual neurons firing or some other underlying phenomenon. To a first approximation, the boundary problem asks why we experience hard boundaries around those unified 1PPs and why the boundaries operate at their apparent spatiotemporal scale. We review recent discussion of the boundary problem, identifying several promising avenues but none that yet address all aspects of the problem. We set out five specific boundary problems to aid precision in future efforts. We also examine electromagnetic (EM) field theories in detail, given their previous success with the binding problem, and introduce a feature with the necessary characteristics to address the boundary problem at a conceptual level. Topological segmentation can, in principle, create exactly the hard boundaries desired, enclosing holistic, frame-invariant units capable of effecting downward causality. The conclusion outlines a programme for testing this concept, describing how it might also differentiate between competing EM ToCs.
Collapse
Affiliation(s)
| | - Chris Percy
- Qualia Research Institute, San Francisco, CA, United States
- College of Arts, Humanities and Education, University of Derby, Derby, United Kingdom
| |
Collapse
|
17
|
Hunt T, Jones M. Fields or firings? Comparing the spike code and the electromagnetic field hypothesis. Front Psychol 2023; 14:1029715. [PMID: 37546464 PMCID: PMC10400444 DOI: 10.3389/fpsyg.2023.1029715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 06/09/2023] [Indexed: 08/08/2023] Open
Abstract
Where is consciousness? Neurobiological theories of consciousness look primarily to synaptic firing and "spike codes" as the physical substrate of consciousness, although the specific mechanisms of consciousness remain unknown. Synaptic firing results from electrochemical processes in neuron axons and dendrites. All neurons also produce electromagnetic (EM) fields due to various mechanisms, including the electric potential created by transmembrane ion flows, known as "local field potentials," but there are also more meso-scale and macro-scale EM fields present in the brain. The functional role of these EM fields has long been a source of debate. We suggest that these fields, in both their local and global forms, may be the primary seat of consciousness, working as a gestalt with synaptic firing and other aspects of neuroanatomy to produce the marvelous complexity of minds. We call this assertion the "electromagnetic field hypothesis." The neuroanatomy of the brain produces the local and global EM fields but these fields are not identical with the anatomy of the brain. These fields are produced by, but not identical with, the brain, in the same manner that twigs and leaves are produced by a tree's branches and trunk but are not the same as the branches and trunk. As such, the EM fields represent the more granular, both spatially and temporally, aspects of the brain's structure and functioning than the neuroanatomy of the brain. The brain's various EM fields seem to be more sensitive to small changes than the neuroanatomy of the brain. We discuss issues with the spike code approach as well as the various lines of evidence supporting our argument that the brain's EM fields may be the primary seat of consciousness. This evidence (which occupies most of the paper) suggests that oscillating neural EM fields may make firing in neural circuits oscillate, and these oscillating circuits may help unify and guide conscious cognition.
Collapse
Affiliation(s)
- Tam Hunt
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, United States
| | - Mostyn Jones
- Formerly of Washington and Jefferson College, Washington, PA, United States
| |
Collapse
|
18
|
Lacalli T. Consciousness and its hard problems: separating the ontological from the evolutionary. Front Psychol 2023; 14:1196576. [PMID: 37484112 PMCID: PMC10362341 DOI: 10.3389/fpsyg.2023.1196576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Few of the many theories devised to account for consciousness are explicit about the role they ascribe to evolution, and a significant fraction, by their silence on the subject, treat evolutionary processes as being, in effect, irrelevant. This is a problem for biological realists trying to assess the applicability of competing theories of consciousness to taxa other than our own, and across evolutionary time. Here, as an aid to investigating such questions, a consciousness "machine" is employed as conceptual device for thinking about the different ways ontology and evolution contribute to the emergence of a consciousness composed of distinguishable contents. A key issue is the nature of the evolutionary innovations required for any kind of consciousness to exist, specifically whether this is due to the underappreciated properties of electromagnetic (EM) field effects, as in neurophysical theories, or, for theories where there is no such requirement, including computational and some higher-order theories (here, as a class, algorithmic theories), neural connectivity and the pattern of information flow that connectivity encodes are considered a sufficient explanation for consciousness. In addition, for consciousness to evolve in a non-random way, there must be a link between emerging consciousness and behavior. For the neurophysical case, an EM field-based scenario shows that distinct contents can be produced in the absence of an ability to consciously control action, i.e., without agency. This begs the question of how agency is acquired, which from this analysis would appear to be less of an evolutionary question than a developmental one. Recasting the problem in developmental terms highlights the importance of real-time feedback mechanisms for transferring agency from evolution to the individual, the implication being, for a significant subset of theories, that agency requires a learning process repeated once in each generation. For that subset of theories the question of how an evolved consciousness can exist will then have two components, of accounting for conscious experience as a phenomenon on the one hand, and agency on the other. This reduces one large problem to two, simplifying the task of investigation and providing what may prove an easier route toward their solution.
Collapse
|
19
|
Yurchenko SB. A systematic approach to brain dynamics: cognitive evolution theory of consciousness. Cogn Neurodyn 2023; 17:575-603. [PMID: 37265655 PMCID: PMC10229528 DOI: 10.1007/s11571-022-09863-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 12/18/2022] Open
Abstract
The brain integrates volition, cognition, and consciousness seamlessly over three hierarchical (scale-dependent) levels of neural activity for their emergence: a causal or 'hard' level, a computational (unconscious) or 'soft' level, and a phenomenal (conscious) or 'psyche' level respectively. The cognitive evolution theory (CET) is based on three general prerequisites: physicalism, dynamism, and emergentism, which entail five consequences about the nature of consciousness: discreteness, passivity, uniqueness, integrity, and graduation. CET starts from the assumption that brains should have primarily evolved as volitional subsystems of organisms, not as prediction machines. This emphasizes the dynamical nature of consciousness in terms of critical dynamics to account for metastability, avalanches, and self-organized criticality of brain processes, then coupling it with volition and cognition in a framework unified over the levels. Consciousness emerges near critical points, and unfolds as a discrete stream of momentary states, each volitionally driven from oldest subcortical arousal systems. The stream is the brain's way of making a difference via predictive (Bayesian) processing. Its objective observables could be complexity measures reflecting levels of consciousness and its dynamical coherency to reveal how much knowledge (information gain) the brain acquires over the stream. CET also proposes a quantitative classification of both disorders of consciousness and mental disorders within that unified framework.
Collapse
|
20
|
McFadden J. Consciousness: Matter or EMF? Front Hum Neurosci 2023; 16:1024934. [PMID: 36741784 PMCID: PMC9889563 DOI: 10.3389/fnhum.2022.1024934] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Conventional theories of consciousness (ToCs) that assume that the substrate of consciousness is the brain's neuronal matter fail to account for fundamental features of consciousness, such as the binding problem. Field ToC's propose that the substrate of consciousness is the brain's best accounted by some kind of field in the brain. Electromagnetic (EM) ToCs propose that the conscious field is the brain's well-known EM field. EM-ToCs were first proposed only around 20 years ago primarily to account for the experimental discovery that synchronous neuronal firing was the strongest neural correlate of consciousness (NCC). Although EM-ToCs are gaining increasing support, they remain controversial and are often ignored by neurobiologists and philosophers and passed over in most published reviews of consciousness. In this review I examine EM-ToCs against established criteria for distinguishing between ToCs and demonstrate that they outperform all conventional ToCs and provide novel insights into the nature of consciousness as well as a feasible route toward building artificial consciousnesses.
Collapse
|
21
|
Yurchenko SB. From the origins to the stream of consciousness and its neural correlates. Front Integr Neurosci 2022; 16:928978. [PMID: 36407293 PMCID: PMC9672924 DOI: 10.3389/fnint.2022.928978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/12/2022] [Indexed: 09/22/2023] Open
Abstract
There are now dozens of very different theories of consciousness, each somehow contributing to our understanding of its nature. The science of consciousness needs therefore not new theories but a general framework integrating insights from those, yet not making it a still-born "Frankenstein" theory. First, the framework must operate explicitly on the stream of consciousness, not on its static description. Second, this dynamical account must also be put on the evolutionary timeline to explain the origins of consciousness. The Cognitive Evolution Theory (CET), outlined here, proposes such a framework. This starts with the assumption that brains have primarily evolved as volitional subsystems of organisms, inherited from primitive (fast and random) reflexes of simplest neural networks, only then resembling error-minimizing prediction machines. CET adopts the tools of critical dynamics to account for metastability, scale-free avalanches, and self-organization which are all intrinsic to brain dynamics. This formalizes the stream of consciousness as a discrete (transitive, irreflexive) chain of momentary states derived from critical brain dynamics at points of phase transitions and mapped then onto a state space as neural correlates of a particular conscious state. The continuous/discrete dichotomy appears naturally between the brain dynamics at the causal level and conscious states at the phenomenal level, each volitionally triggered from arousal centers of the brainstem and cognitively modulated by thalamocortical systems. Their objective observables can be entropy-based complexity measures, reflecting the transient level or quantity of consciousness at that moment.
Collapse
|
22
|
Hales CG, Ericson M. Electromagnetism's Bridge Across the Explanatory Gap: How a Neuroscience/Physics Collaboration Delivers Explanation Into All Theories of Consciousness. Front Hum Neurosci 2022; 16:836046. [PMID: 35782039 PMCID: PMC9245352 DOI: 10.3389/fnhum.2022.836046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
A productive, informative three decades of correlates of phenomenal consciousness (P-Consciousness) have delivered valuable knowledge while simultaneously locating us in a unique and unprecedented explanatory cul-de-sac. Observational correlates are demonstrated to be intrinsically very unlikely to explain or lead to a fundamental principle underlying the strongly emergent 1st-person-perspective (1PP) invisibly stowed away inside them. That lack is now solidly evidenced in practice. To escape our explanatory impasse, this article focuses on fundamental physics (the standard model of particle physics), which brings to light a foundational argument for how the brain is an essentially electromagnetic (EM) field object from the atomic level up. That is, our multitude of correlates of P-Consciousness are actually descriptions of specific EM field behaviors that are posed (hypothesized) as "the right" correlate by a particular theory of consciousness. Because of this, our 30 years of empirical progress can be reinterpreted as, in effect, the delivery of a large body of evidence that the standard model's EM quadrant can deliver a 1PP. That is, all theories of consciousness are, in the end, merely recipes that select a particular subset of the totality of EM field expression that is brain tissue. With a universal convergence on EM, the science of P-Consciousness becomes a collaborative effort between neuroscience and physics. The collaboration acts in pursuit of a unified explanation applicable to all theories of consciousness while remaining mindful that the process still contains no real explanation as to why or how EM fields deliver a 1PP. The apparent continued lack of explanation is, however, different: this time, the way forward is opened through its direct connection to fundamental physics. This is the first result (Part I). Part II posits, in general terms, a structural (epistemic) add-on/upgrade to the standard model that has the potential to deliver the missing route to an explanation of how subjectivity is delivered through EM fields. The revised standard model, under the neuroscience/physics collaboration, intimately integrates with the existing "correlates of-" paradigm, which acts as its source of empirical evidence. No existing theory of consciousness is lost or invalidated.
Collapse
Affiliation(s)
- Colin G. Hales
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Marissa Ericson
- Department of Psychology and Clinical Neuroscience, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
23
|
Lomas JD, Lin A, Dikker S, Forster D, Lupetti ML, Huisman G, Habekost J, Beardow C, Pandey P, Ahmad N, Miyapuram K, Mullen T, Cooper P, van der Maden W, Cross ES. Resonance as a Design Strategy for AI and Social Robots. Front Neurorobot 2022; 16:850489. [PMID: 35574227 PMCID: PMC9097027 DOI: 10.3389/fnbot.2022.850489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/23/2022] [Indexed: 11/20/2022] Open
Abstract
Resonance, a powerful and pervasive phenomenon, appears to play a major role in human interactions. This article investigates the relationship between the physical mechanism of resonance and the human experience of resonance, and considers possibilities for enhancing the experience of resonance within human-robot interactions. We first introduce resonance as a widespread cultural and scientific metaphor. Then, we review the nature of "sympathetic resonance" as a physical mechanism. Following this introduction, the remainder of the article is organized in two parts. In part one, we review the role of resonance (including synchronization and rhythmic entrainment) in human cognition and social interactions. Then, in part two, we review resonance-related phenomena in robotics and artificial intelligence (AI). These two reviews serve as ground for the introduction of a design strategy and combinatorial design space for shaping resonant interactions with robots and AI. We conclude by posing hypotheses and research questions for future empirical studies and discuss a range of ethical and aesthetic issues associated with resonance in human-robot interactions.
Collapse
Affiliation(s)
- James Derek Lomas
- Department of Human Centered Design, Faculty of Industrial Design Engineering, Delft University of Technology, Delft, Netherlands
| | - Albert Lin
- Center for Human Frontiers, Qualcomm Institute, University of California, San Diego, San Diego, CA, United States
| | - Suzanne Dikker
- Department of Psychology, New York University, New York, NY, United States
- Department of Clinical Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Deborah Forster
- Center for Human Frontiers, Qualcomm Institute, University of California, San Diego, San Diego, CA, United States
| | - Maria Luce Lupetti
- Department of Human Centered Design, Faculty of Industrial Design Engineering, Delft University of Technology, Delft, Netherlands
| | - Gijs Huisman
- Department of Human Centered Design, Faculty of Industrial Design Engineering, Delft University of Technology, Delft, Netherlands
| | - Julika Habekost
- The Design Lab, California Institute of Information and Communication Technologies, University of California, San Diego, San Diego, CA, United States
| | - Caiseal Beardow
- Department of Human Centered Design, Faculty of Industrial Design Engineering, Delft University of Technology, Delft, Netherlands
| | - Pankaj Pandey
- Centre for Cognitive and Brain Sciences, Indian Institute of Technology, Gandhinagar, India
| | - Nashra Ahmad
- Centre for Cognitive and Brain Sciences, Indian Institute of Technology, Gandhinagar, India
| | - Krishna Miyapuram
- Centre for Cognitive and Brain Sciences, Indian Institute of Technology, Gandhinagar, India
| | - Tim Mullen
- Intheon Labs, San Diego, CA, United States
| | - Patrick Cooper
- Department of Physics, Duquesne University, Pittsburgh, PA, United States
| | - Willem van der Maden
- Department of Human Centered Design, Faculty of Industrial Design Engineering, Delft University of Technology, Delft, Netherlands
| | - Emily S. Cross
- Social Robotics, Institute of Neuroscience and Psychology, School of Computing Science, University of Glasgow, Glasgow, United Kingdom
- SOBA Lab, School of Psychology, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
24
|
Young A, Robbins I, Shelat S. From Micro to Macro: The Combination of Consciousness. Front Psychol 2022; 13:755465. [PMID: 35432082 PMCID: PMC9008346 DOI: 10.3389/fpsyg.2022.755465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
Crick and Koch’s 1990 “neurobiological theory of consciousness” sparked the race for the physical correlates of subjective experience. 30 years later, cognitive sciences trend toward consideration of the brain’s electromagnetic field as the primary seat of consciousness, the “to be” of the individual. Recent advancements in laboratory tools have preceded an influx of studies reporting a synchronization between the neuronally generated EM fields of interacting individuals. An embodied and enactive neuroscientific approach has gained traction in the wake of these findings wherein consciousness and cognition are theorized to be regulated and distributed beyond the individual. We approach this frontier to extend the implications of person-to-person synchrony to propose a process of combination whereby coupled individual agents merge into a hierarchical cognitive system to which they are subsidiary. Such is to say, the complex mammalian consciousness humans possess may not be the tip of the iceberg, but another step in a succeeding staircase. To this end, the axioms and conjectures of General Resonance Theory are utilized to describe this phenomenon of interpersonal resonant combination. Our proposal describes a coupled system of spatially distributed EM fields that are synchronized through recurrent, entraining behavioral interactions. The system, having achieved sufficient synchronization, enjoys an optimization of information flow that alters the conscious states of its merging agents and enhances group performance capabilities. In the race for the neurobiological correlates of subjective experience, we attempt the first steps in the journey toward defining the physical basis of “group consciousness.” The establishment of a concrete account of the combination of consciousness at a scale superseding individual human consciousness remains speculation, but our suggested approach provides a framework for empirical testing of these possibilities.
Collapse
Affiliation(s)
- Asa Young
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Isabella Robbins
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Shivang Shelat
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
25
|
El Maouch M, Jin Z. Artificial Intelligence Inheriting the Historical Crisis in Psychology: An Epistemological and Methodological Investigation of Challenges and Alternatives. Front Psychol 2022; 13:781730. [PMID: 35360561 PMCID: PMC8961441 DOI: 10.3389/fpsyg.2022.781730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
By following the arguments developed by Vygotsky and employing the cultural-historical activity theory (CHAT) in addition to dialectical logic, this paper attempts to investigate the interaction between psychology and artificial intelligence (AI) to confront the epistemological and methodological challenges encountered in AI research. The paper proposes that AI is facing an epistemological and methodological crisis inherited from psychology based on dualist ontology. The roots of this crisis lie in the duality between rationalism and objectivism or in the mind-body rupture that has governed the production of scientific thought and the proliferation of approaches. In addition, by highlighting the sociohistorical conditions of AI, this paper investigates the historical characteristics of the shift of the crisis from psychology to AI. Additionally, we examine the epistemological and methodological roots of the main challenges encountered in AI research by noting that empiricism is the dominant tendency in the field. Empiricism gives rise to methodological and practical challenges, including challenges related to the emergence of meaning, abstraction, generalization, the emergence of symbols, concept formation, functional reflection of reality, and the emergence of higher psychological functions. Furthermore, through discussing attempts to formalize dialectical logic, the paper, based on contradiction formation, proposes a qualitative epistemological, methodological, and formal alternative by using a preliminary algorithmic model that grasps the formation of meaning as an essential ability for the qualitative reflection of reality and the emergence of other mental functions.
Collapse
Affiliation(s)
- Mohamad El Maouch
- Henan International Joint Laboratory of Psychological Data Science, Zhengzhou Normal University, Zhengzhou, China
| | - Zheng Jin
- Henan International Joint Laboratory of Psychological Data Science, Zhengzhou Normal University, Zhengzhou, China.,Department of Psychology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
26
|
Hunt T, Ericson M, Schooler J. Where's My Consciousness-Ometer? How to Test for the Presence and Complexity of Consciousness. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2022; 17:1150-1165. [PMID: 35271777 DOI: 10.1177/17456916211029942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tools and tests for measuring the presence and complexity of consciousness are becoming available, but there is no established theoretical approach for what these tools are measuring. This article examines several categories of tests for making reasonable inferences about the presence and complexity of consciousness (defined as the capacity for phenomenal/subjective experience) and also suggests ways in which different theories of consciousness may be empirically distinguished. We label the various ways to measure consciousness the measurable correlates of consciousness (MCC) and include three subcategories in our taxonomy: (a) neural correlates of consciousness, (b) behavioral correlates of consciousness, and (c) creative correlates of consciousness. Finally, we reflect on how broader philosophical views about the nature of consciousness, such as materialism and panpsychism, may also be informed by the scientific process.
Collapse
Affiliation(s)
- Tam Hunt
- Department of Psychological and Brain Sciences, University of California, Santa Barbara
| | | | - Jonathan Schooler
- Department of Psychological and Brain Sciences, University of California, Santa Barbara
| |
Collapse
|
27
|
Young A, Hunt T, Ericson M. The Slowest Shared Resonance: A Review of Electromagnetic Field Oscillations Between Central and Peripheral Nervous Systems. Front Hum Neurosci 2022; 15:796455. [PMID: 35250508 PMCID: PMC8888685 DOI: 10.3389/fnhum.2021.796455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Electromagnetic field oscillations produced by the brain are increasingly being viewed as causal drivers of consciousness. Recent research has highlighted the importance of the body's various endogenous rhythms in organizing these brain-generated fields through various types of entrainment. We expand this approach by examining evidence of extracerebral shared oscillations between the brain and other parts of the body, in both humans and animals. We then examine the degree to which these data support one of General Resonance Theory's (GRT) principles: the Slowest Shared Resonance (SSR) principle, which states that the combination of micro- to macro-consciousness in coupled field systems is a function of the slowest common denominator frequency or resonance. This principle may be utilized to develop a spatiotemporal hierarchy of brain-body shared resonance systems. It is predicted that a system's SSR decreases with distance between the brain and various resonating structures in the body. The various resonance relationships examined, including between the brain and gastric neurons, brain and sensory organs, and brain and spinal cord, generally match the predicted SSR relationships, empirically supporting this principle of GRT.
Collapse
Affiliation(s)
- Asa Young
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Tam Hunt
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Marissa Ericson
- Department of Psychology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
28
|
Key B, Zalucki O, Brown DJ. A First Principles Approach to Subjective Experience. Front Syst Neurosci 2022; 16:756224. [PMID: 35250497 PMCID: PMC8888408 DOI: 10.3389/fnsys.2022.756224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/11/2022] [Indexed: 12/05/2022] Open
Abstract
Understanding the neural bases of subjective experience remains one of the great challenges of the natural sciences. Higher-order theories of consciousness are typically defended by assessments of neural activity in higher cortical regions during perception, often with disregard to the nature of the neural computations that these regions execute. We have sought to refocus the problem toward identification of those neural computations that are necessary for subjective experience with the goal of defining the sorts of neural architectures that can perform these operations. This approach removes reliance on behaviour and brain homologies for appraising whether non-human animals have the potential to subjectively experience sensory stimuli. Using two basic principles—first, subjective experience is dependent on complex processing executing specific neural functions and second, the structure-determines-function principle—we have reasoned that subjective experience requires a neural architecture consisting of stacked forward models that predict the output of neural processing from inputs. Given that forward models are dependent on appropriately connected processing modules that generate prediction, error detection and feedback control, we define a minimal neural architecture that is necessary (but not sufficient) for subjective experience. We refer to this framework as the hierarchical forward models algorithm. Accordingly, we postulate that any animal lacking this neural architecture will be incapable of subjective experience.
Collapse
Affiliation(s)
- Brian Key
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
- *Correspondence: Brian Key,
| | - Oressia Zalucki
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Deborah J. Brown
- School of Historical and Philosophical Inquiry, University of Queensland, Brisbane, QLD, Australia
- Deborah J. Brown,
| |
Collapse
|
29
|
Winters JJ. The Temporally-Integrated Causality Landscape: Reconciling Neuroscientific Theories With the Phenomenology of Consciousness. Front Hum Neurosci 2021; 15:768459. [PMID: 34803643 PMCID: PMC8599361 DOI: 10.3389/fnhum.2021.768459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 11/30/2022] Open
Abstract
In recent years, there has been a proliferation of neuroscientific theories of consciousness. These include theories which explicitly point to EM fields, notably Operational Architectonics and, more recently, the General Resonance Theory. In phenomenological terms, human consciousness is a unified composition of contents. These contents are specific and meaningful, and they exist from a subjective point of view. Human conscious experience is temporally continuous, limited in content, and coherent. Based upon those phenomenal observations, pre-existing theories of consciousness, and a large body of experimental evidence, I derived the Temporally-Integrated Causality Landscape (TICL). In brief, the TICL proposes that the neural correlate of consciousness is a structure of temporally integrated causality occurring over a large portion of the thalamocortical system. This structure is composed of a large, integrated set of neuronal elements (the System), which contains some subsystems, defined as having a higher level of temporally-integrated causality than the System as a whole. Each Subsystem exists from the point of view of the System, in the form of meaningful content. In this article, I review the TICL and consider the importance of EM forces as a mechanism of neural causality. I compare the fundamentals of TICL to those of several other neuroscientific theories. Using five major characteristics of phenomenal consciousness as a standard, I compare the basic tenets of Integrated Information Theory, Global Neuronal Workspace, General Resonance Theory, Operational Architectonics, and the Temporo-spatial Theory of Consciousness with the framework of the TICL. While the literature concerned with these theories tends to focus on different lines of evidence, there are fundamental areas of agreement. This means that, in time, it may be possible for many of them to converge upon the truth. In this analysis, I conclude that a primary distinction which divides these theories is the feature of spatial and temporal nesting. Interestingly, this distinction does not separate along the fault line between theories explicitly concerned with EM fields and those which are not. I believe that reconciliation is possible, at least in principle, among those theories that recognize the following: just as the contents of consciousness are distinctions within consciousness, the neural correlates of conscious content should be distinguishable from but fall within the spatial and temporal boundaries of the full neural correlates of consciousness.
Collapse
Affiliation(s)
- Jesse J Winters
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, College Station, United States
| |
Collapse
|
30
|
Josipovic Z. Implicit-explicit gradient of nondual awareness or consciousness as such. Neurosci Conscious 2021; 2021:niab031. [PMID: 34646576 PMCID: PMC8500298 DOI: 10.1093/nc/niab031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/29/2021] [Accepted: 08/19/2021] [Indexed: 01/04/2023] Open
Abstract
Consciousness is multi-dimensional but is most often portrayed with a two-dimensional (2D) map that has global levels or states on one axis and phenomenal contents on the other. On this map, awareness is conflated either with general alertness or with phenomenal content. This contributes to ongoing difficulties in the scientific understanding of consciousness. Previously, I have proposed that consciousness as such or nondual awareness-a basic non-conceptual, non-propositional awareness in itself free of subject-object fragmentation-is a unique kind that cannot be adequately specified by this 2D map of states and contents. Here, I propose an implicit-explicit gradient of nondual awareness to be added as the z-axis to the existing 2D map of consciousness. This gradient informs about the degree to which nondual awareness is manifest in any experience, independent of the specifics of global state or local content. Alternatively, within the multi-dimensional state space model of consciousness, nondual awareness can be specified by several vectors, each representing one of its properties. In the first part, I outline nondual awareness or consciousness as such in terms of its phenomenal description, its function and its neural correlates. In the second part, I explore the implicit-explicit gradient of nondual awareness and how including it as an additional axis clarifies certain features of everyday dualistic experiences and is especially relevant for understanding the unitary and nondual experiences accessed via different contemplative methods, mind-altering substances or spontaneously.
Collapse
Affiliation(s)
- Zoran Josipovic
- Psychology Department, Graduate School of Arts & Sciences, New York University, New York, NY 10003, USA
- Nonduality Institute, Woodstock, NY 12498, USA
| |
Collapse
|
31
|
Keppler J. Building Blocks for the Development of a Self-Consistent Electromagnetic Field Theory of Consciousness. Front Hum Neurosci 2021; 15:723415. [PMID: 34650416 PMCID: PMC8505726 DOI: 10.3389/fnhum.2021.723415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
The goal of this work is to compile the basic components for the construction of an electromagnetic field theory of consciousness that meets the standards of a fundamental theory. An essential cornerstone of the conceptual framework is the vacuum state of quantum electrodynamics which, contrary to the classical notion of the vacuum, can be viewed as a vibrant ocean of energy, termed zero-point field (ZPF). Being the fundamental substrate mediating the electromagnetic force, the ubiquitous ZPF constitutes the ultimate bedrock of all electromagnetic phenomena. In particular, resonant interaction with the ZPF is critical for understanding rapidly forming, long-range coherent activity patterns that are characteristic of brain dynamics. Assuming that the entire phenomenal color palette is rooted in the vibrational spectrum of the ZPF and that each normal mode of the ZPF is associated with an elementary shade of consciousness, it stands to reason that conscious states are caused by the coupling of the brain to a particular set of normal modes selectively filtered from the full frequency spectrum of the ZPF. From this perspective, the brain is postulated to function as a resonant oscillator that couples to a specific range of ZPF modes, using these modes as a keyboard for the composition of an enormous variety of phenomenal states. Theoretical considerations suggest that the brain-ZPF interface is controlled by altering the concentrations of neurotransmitters, placing the detailed study of the neurotransmitter-ZPF interaction at the center of future research activities.
Collapse
|
32
|
Applications of Non-Standard analysis in Topoi to Mathematical Neurosciences and Artificial Intelligence: Infons, Energons, Receptons (I). MATHEMATICS 2021. [DOI: 10.3390/math9172048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this paper is to promote new methods in mathematical modeling inspired by neuroscience—that is consciousness and subconsciousness—with an eye toward artificial intelligence as parts of the global brain. As a mathematical model, we propose topoi and their non-standard enlargements as models, due to the fact that their logic corresponds well to human thinking. For this reason, we built non-standard analysis in a special class of topoi; before now, this existed only in the topos of sets (A. Robinson). Then, we arrive at the pseudo-particles from the title and to a new axiomatics denoted by Intuitionistic Internal Set Theory (IIST); a class of models for it is provided, namely, non-standard enlargements of the previous topoi. We also consider the genetic–epigenetic interplay with a mathematical introduction consisting of a study of the Yang–Baxter equations with new mathematical results.
Collapse
|