1
|
Menétrey MQ, Pascucci D. Spectral tuning and after-effects in neural entrainment. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:29. [PMID: 39574159 PMCID: PMC11580347 DOI: 10.1186/s12993-024-00259-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/08/2024] [Indexed: 11/25/2024]
Abstract
Neural entrainment has become a popular technique to non-invasively manipulate brain rhythms via external, periodic stimulation. However, there is still debate regarding its underlying mechanisms and effects on brain activity. Here, we used EEG recordings during a visual entrainment paradigm to assess characteristic changes in the spectral content of EEG signals due to entrainment. Our results demonstrate that entrainment not only increases synchrony between neural oscillations and the entraining stimulus but also elicits previously unreported spectral tuning effects and long-lasting after-effects. These findings offer compelling evidence for the presence of dedicated, flexible, and adaptive mechanisms for neural entrainment, which may have key roles in adjusting the sensitivity and dynamic range of brain oscillators in response to environmental temporal structures.
Collapse
Affiliation(s)
- Maëlan Q Menétrey
- Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Psychophysics and Neural Dynamics Lab, Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- The Sense Innovation and Research Center, Lausanne, Switzerland.
| | - David Pascucci
- Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Psychophysics and Neural Dynamics Lab, Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- The Sense Innovation and Research Center, Lausanne, Switzerland
| |
Collapse
|
2
|
Pileckyte I, Soto-Faraco S. Sensory stimulation enhances visual working memory capacity. COMMUNICATIONS PSYCHOLOGY 2024; 2:109. [PMID: 39558084 PMCID: PMC11574275 DOI: 10.1038/s44271-024-00158-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024]
Abstract
Visual working memory (vWM) plays a crucial role in visual information processing and higher cognitive functions; however, it has a very limited capacity. Recently, several studies have successfully modulated vWM capacity in humans using entrainment with transcranial alternate current stimulation (tACS) by targeting parietal theta in a frequency-specific manner. In the current study, we aim to expand upon these findings by utilizing sensory instead of electrical stimulation. Across six behavioral experiments (combined N = 209), we applied rhythmic visual and auditory sensory stimulation at 4 Hz and 7 Hz, aiming to modulate vWM capacity. Collectively, the results showed an overall robust improvement with sensory stimulation at either frequency, compared to baseline. However, contrary to our prediction, 7 Hz stimulation tended to slightly outperform 4 Hz stimulation. Importantly, the observed facilitatory effect was mainly driven by the low-capacity sub-group of participants. Follow-up experiments using the Attention Network Test (ANT) and pupillometry measures did not find evidence that this effect could be directly attributed to modulation of phasic or tonic arousal. We speculate that our results differed from those obtained with tACS due to targeting functionally different theta oscillations, or the modulation of participants' temporal expectations.
Collapse
Affiliation(s)
- Indre Pileckyte
- Departament d'Enginyeria, Center for Brain & Cognition, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Salvador Soto-Faraco
- Departament d'Enginyeria, Center for Brain & Cognition, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
3
|
Bressler S, Neely R, Yost RM, Wang D. A randomized controlled trial of alpha phase-locked auditory stimulation to treat symptoms of sleep onset insomnia. Sci Rep 2024; 14:13039. [PMID: 38844793 PMCID: PMC11156862 DOI: 10.1038/s41598-024-63385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Sleep onset insomnia is a pervasive problem that contributes significantly to the poor health outcomes associated with insufficient sleep. Auditory stimuli phase-locked to slow-wave sleep oscillations have been shown to augment deep sleep, but it is unknown whether a similar approach can be used to accelerate sleep onset. The present randomized controlled crossover trial enrolled adults with objectively verified sleep onset latencies (SOLs) greater than 30 min to test the effect of auditory stimuli delivered at specific phases of participants' alpha oscillations prior to sleep onset. During the intervention week, participants wore an electroencephalogram (EEG)-enabled headband that delivered acoustic pulses timed to arrive anti-phase with alpha for 30 min (Stimulation). During the Sham week, the headband silently recorded EEG. The primary outcome was SOL determined by blinded scoring of EEG records. For the 21 subjects included in the analyses, stimulation had a significant effect on SOL according to a linear mixed effects model (p = 0.0019), and weekly average SOL decreased by 10.5 ± 15.9 min (29.3 ± 44.4%). These data suggest that phase-locked acoustic stimulation can be a viable alternative to pharmaceuticals to accelerate sleep onset in individuals with prolonged sleep onset latencies. Trial Registration: This trial was first registered on clinicaltrials.gov on 24/02/2023 under the name Sounds Locked to ElectroEncephalogram Phase For the Acceleration of Sleep Onset Time (SLEEPFAST), and assigned registry number NCT05743114.
Collapse
Affiliation(s)
- Scott Bressler
- Elemind Technologies, Inc., Cambridge, MA, USA
- Science and Research, Elemind Technologies, Inc., Cambridge, MA, 02139, USA
| | - Ryan Neely
- Elemind Technologies, Inc., Cambridge, MA, USA.
- Science and Research, Elemind Technologies, Inc., Cambridge, MA, 02139, USA.
| | - Ryan M Yost
- Elemind Technologies, Inc., Cambridge, MA, USA
- Science and Research, Elemind Technologies, Inc., Cambridge, MA, 02139, USA
| | - David Wang
- Elemind Technologies, Inc., Cambridge, MA, USA
| |
Collapse
|
4
|
Harlow TJ, Marquez SM, Bressler S, Read HL. Individualized Closed-Loop Acoustic Stimulation Suggests an Alpha Phase Dependence of Sound Evoked and Induced Brain Activity Measured with EEG Recordings. eNeuro 2024; 11:ENEURO.0511-23.2024. [PMID: 38834300 PMCID: PMC11181104 DOI: 10.1523/eneuro.0511-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
Following repetitive visual stimulation, post hoc phase analysis finds that visually evoked response magnitudes vary with the cortical alpha oscillation phase that temporally coincides with sensory stimulus. This approach has not successfully revealed an alpha phase dependence for auditory evoked or induced responses. Here, we test the feasibility of tracking alpha with scalp electroencephalogram (EEG) recordings and play sounds phase-locked to individualized alpha phases in real-time using a novel end-point corrected Hilbert transform (ecHT) algorithm implemented on a research device. Based on prior work, we hypothesize that sound-evoked and induced responses vary with the alpha phase at sound onset and the alpha phase that coincides with the early sound-evoked response potential (ERP) measured with EEG. Thus, we use each subject's individualized alpha frequency (IAF) and individual auditory ERP latency to define target trough and peak alpha phases that allow an early component of the auditory ERP to align to the estimated poststimulus peak and trough phases, respectively. With this closed-loop and individualized approach, we find opposing alpha phase-dependent effects on the auditory ERP and alpha oscillations that follow stimulus onset. Trough and peak phase-locked sounds result in distinct evoked and induced post-stimulus alpha level and frequency modulations. Though additional studies are needed to localize the sources underlying these phase-dependent effects, these results suggest a general principle for alpha phase-dependence of sensory processing that includes the auditory system. Moreover, this study demonstrates the feasibility of using individualized neurophysiological indices to deliver automated, closed-loop, phase-locked auditory stimulation.
Collapse
Affiliation(s)
- Tylor J Harlow
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut 06269
- Brain-Computer Interface Core, University of Connecticut, Storrs, Connecticut 06269
- Institute of Brain and Cognitive Science (IBACS), University of Connecticut, Storrs, Connecticut 06269
| | - Samantha M Marquez
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut 06269
| | - Scott Bressler
- Elemind Technologies, Inc., Cambridge, Massachusetts 02139
| | - Heather L Read
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut 06269
- Brain-Computer Interface Core, University of Connecticut, Storrs, Connecticut 06269
- Institute of Brain and Cognitive Science (IBACS), University of Connecticut, Storrs, Connecticut 06269
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
5
|
Oppermann H, Thelen A, Haueisen J. Single-trial EEG analysis reveals burst structure during photic driving. Clin Neurophysiol 2024; 159:66-74. [PMID: 38350295 DOI: 10.1016/j.clinph.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/06/2023] [Accepted: 01/20/2024] [Indexed: 02/15/2024]
Abstract
OBJECTIVE Photic driving in the human visual cortex evoked by intermittent photic stimulation is usually characterized in averaged data by an ongoing oscillation showing frequency entrainment and resonance phenomena during the course of stimulation. We challenge this view of an ongoing oscillation by analyzing unaveraged data. METHODS 64-channel EEGs were recorded during visual stimulation with light flashes at eight stimulation frequencies between 7.8 and 23 Hz for fourteen healthy volunteers. Time-frequency analyses were performed in averaged and unaveraged data. RESULTS While we find ongoing oscillations in the averaged data during intermittent photic stimulation, we find transient events (bursts) of activity in the unaveraged data. Both resonance and entrainment occur for the ongoing oscillations in the averaged data and the bursts in the unaveraged data. CONCLUSIONS We argue that the continuous oscillations in the averaged signal may be composed of brief, transient bursts in single trials. Our results can also explain previously observed amplitude fluctuations in averaged photic driving data. SIGNIFICANCE Single-trial analyses might consequently improve our understanding of resonance and entrainment phenomena in the brain.
Collapse
Affiliation(s)
- Hannes Oppermann
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany.
| | - Antonia Thelen
- eemagine Medical Imaging Solutions GmbH, Berlin, Germany.
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany; Department of Neurology, Biomagnetic Center, University Hospital Jena, Jena, Germany.
| |
Collapse
|
6
|
Otero M, Prieur-Coloma Y, El-Deredy W, Weinstein A. A High-Resolution LED Stimulator for Steady-State Visual Stimulation: Customizable, Affordable, and Open Source. SENSORS (BASEL, SWITZERLAND) 2024; 24:678. [PMID: 38276370 PMCID: PMC10819381 DOI: 10.3390/s24020678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Visually evoked steady-state potentials (SSVEPs) are neural responses elicited by visual stimuli oscillating at specific frequencies. In this study, we introduce a novel LED stimulator system explicitly designed for steady-state visual stimulation, offering precise control over visual stimulus parameters, including frequency resolution, luminance, and the ability to control the phase at the end of the stimulation. The LED stimulator provides a personalized, modular, and affordable option for experimental setups. Based on the Teensy 3.2 board, the stimulator utilizes direct digital synthesis and pulse width modulation techniques to control the LEDs. We validated its performance through four experiments: the first two measured LED light intensities directly, while the last two assessed the stimulator's impact on EEG recordings. The results demonstrate that the stimulator can deliver a stimulus suitable for generating SSVEPs with the desired frequency and phase resolution. As an open source resource, we provide comprehensive documentation, including all necessary codes and electrical diagrams, which facilitates the system's replication and adaptation for specific experimental requirements, enhancing its potential for widespread use in the field of neuroscience setups.
Collapse
Affiliation(s)
- Mónica Otero
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago de Chile 8420000, Chile;
- Centro BASAL Ciencia & Vida, Universidad San Sebastián, Santiago de Chile 8580000, Chile
| | - Yunier Prieur-Coloma
- Brain Dynamics Laboratory, Universidad de Valparaíso, Valparaíso 2340000, Chile; (Y.P.-C.); (W.E.-D.)
- Escuela de Ingeniería Civil Biomédica, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Wael El-Deredy
- Brain Dynamics Laboratory, Universidad de Valparaíso, Valparaíso 2340000, Chile; (Y.P.-C.); (W.E.-D.)
- Escuela de Ingeniería Civil Biomédica, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Alejandro Weinstein
- Escuela de Ingeniería Civil Biomédica, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| |
Collapse
|
7
|
Semenkov I, Fedosov N, Makarov I, Ossadtchi A. Real-time low latency estimation of brain rhythms with deep neural networks. J Neural Eng 2023; 20:056008. [PMID: 37683653 DOI: 10.1088/1741-2552/acf7f3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2023]
Abstract
Objective.Neurofeedback and brain-computer interfacing technology open the exciting opportunity for establishing interactive closed-loop real-time communication with the human brain. This requires interpreting brain's rhythmic activity and generating timely feedback to the brain. Lower delay between neuronal events and the appropriate feedback increases the efficacy of such interaction. Novel more efficient approaches capable of tracking brain rhythm's phase and envelope are needed for scenarios that entail instantaneous interaction with the brain circuits.Approach.Isolating narrow-band signals incurs fundamental delays. To some extent they can be compensated using forecasting models. Given the high quality of modern time series forecasting neural networks we explored their utility for low-latency extraction of brain rhythm parameters. We tested five neural networks with conceptually distinct architectures in forecasting synthetic EEG rhythms. The strongest architecture was then trained to simultaneously filter and forecast EEG data. We compared it against the state-of-the-art techniques using synthetic and real data from 25 subjects.Main results.The temporal convolutional network (TCN) remained the strongest forecasting model that achieved in the majority of testing scenarios>90% rhythm's envelope correlation with<10 ms effective delay and<20∘circular standard deviation of phase estimates. It also remained stable enough to noise level perturbations. Trained to filter and predict the TCN outperformed the cFIR, the Kalman filter based state-space estimation technique and remained on par with the larger Conv-TasNet architecture.Significance.Here we have for the first time demonstrated the utility of the neural network approach for low-latency narrow-band filtering of brain activity signals. Our proposed approach coupled with efficient implementation enhances the effectiveness of brain-state dependent paradigms across various applications. Moreover, our framework for forecasting EEG signals holds promise for investigating the predictability of brain activity, providing valuable insights into the fundamental questions surrounding the functional organization and hierarchical information processing properties of the brain.
Collapse
Affiliation(s)
- Ilia Semenkov
- Artificial Intelligence Research Institute (AIRI), Moscow 105064, Russia
- HSE University, Moscow 109028, Russia
| | - Nikita Fedosov
- Artificial Intelligence Research Institute (AIRI), Moscow 105064, Russia
- HSE University, Moscow 109028, Russia
| | - Ilya Makarov
- Artificial Intelligence Research Institute (AIRI), Moscow 105064, Russia
| | - Alexei Ossadtchi
- Artificial Intelligence Research Institute (AIRI), Moscow 105064, Russia
- HSE University, Moscow 109028, Russia
- LLC 'Life Improvement by Future Technologies Center', Moscow, Russia
| |
Collapse
|
8
|
Houshmand Chatroudi A, Yotsumoto Y. No evidence for the effect of entrainment's phase on duration reproduction and precision of regular intervals. Eur J Neurosci 2023; 58:3037-3057. [PMID: 37369629 DOI: 10.1111/ejn.16071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Perception of time is not always veridical; rather, it is subjected to distortions. One such compelling distortion is that the duration of regularly spaced intervals is often overestimated. One account suggests that excitatory phases of neural entrainment concomitant with such stimuli play a major role. However, assessing the correlation between the power of entrained oscillations and time dilation has yielded inconclusive results. In this study, we evaluated whether phase characteristics of neural oscillations impact time dilation. For this purpose, we entrained 10-Hz oscillations and experimentally manipulated the presentation of flickers so that they were presented either in-phase or out-of-phase relative to the established rhythm. Simultaneous electroencephalography (EEG) recordings confirmed that in-phase and out-of-phase flickers had landed on different inhibitory phases of high-amplitude alpha oscillations. Moreover, to control for confounding factors of expectancy and masking, we created two additional conditions. Results, supplemented by the Bayesian analysis, indicated that the phase of entrained visual alpha oscillation does not differentially affect flicker-induced time dilation. Repeating the same experiment with regularly spaced auditory stimuli replicated the null findings. Moreover, we found a robust enhancement of precision for the reproduction of flickers relative to static stimuli that were partially supported by entrainment models. We discussed our results within the framework of neural oscillations and time-perception models, suggesting that inhibitory cycles of visual alpha may have little relevance to the overestimation of regularly spaced intervals. Moreover, based on our findings, we proposed that temporal oscillators, assumed in entrainment models, may act independently of excitatory phases in the brain's lower level sensory areas.
Collapse
Affiliation(s)
| | - Yuko Yotsumoto
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Vilà‐Balló A, Marti‐Marca A, Torralba Cuello M, Soto‐Faraco S, Pozo‐Rosich P. The influence of temporal unpredictability on the electrophysiological mechanisms of neural entrainment. Psychophysiology 2022; 59:e14108. [PMID: 35678104 PMCID: PMC9787398 DOI: 10.1111/psyp.14108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/05/2022] [Accepted: 05/04/2022] [Indexed: 12/30/2022]
Abstract
Neural entrainment, or the synchronization of endogenous oscillations to exogenous rhythmic events, has been postulated as a powerful mechanism underlying stimulus prediction. Nevertheless, studies that have explored the benefits of neural entrainment on attention, perception, and other cognitive functions have received criticism, which could compromise their theoretical and clinical value. Therefore, the aim of the present study was [1] to confirm the presence of entrainment using a set of pre-established criteria and [2] to establish whether the reported behavioral benefits of entrainment remain when temporal predictability related to target appearance is reduced. To address these points, we adapted a previous neural entrainment paradigm to include: a variable entrainer length and increased target-absent trials, and instructing participants to respond only if they had detected a target, to avoid guessing. Thirty-six right-handed women took part in this study. Our results indicated a significant alignment of neural activity to the external periodicity as well as a persistence of phase alignment beyond the offset of the driving signal. This would appear to indicate that neural entrainment triggers preexisting endogenous oscillations, which cannot simply be explained as a succession of event-related potentials associated with the stimuli, expectation and/or motor response. However, we found no behavioral benefit for targets in-phase with entrainers, which would suggest that the effect of neural entrainment on overt behavior may be more limited than expected. These results help to clarify the mechanistic processes underlying neural entrainment and provide new insights on its applications.
Collapse
Affiliation(s)
- Adrià Vilà‐Balló
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Department of MedicineAutonomous University of BarcelonaBarcelonaSpain,Department of Psychology, Faculty of Education and PsychologyUniversity of GironaGironaSpain
| | - Angela Marti‐Marca
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Department of MedicineAutonomous University of BarcelonaBarcelonaSpain
| | - Mireia Torralba Cuello
- Multisensory Research Group, Center for Brain and CognitionPompeu Fabra UniversityBarcelonaSpain
| | - Salvador Soto‐Faraco
- Multisensory Research Group, Center for Brain and CognitionPompeu Fabra UniversityBarcelonaSpain,Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
| | - Patricia Pozo‐Rosich
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Department of MedicineAutonomous University of BarcelonaBarcelonaSpain,Headache Unit, Department of NeurologyVall d'Hebron University HospitalBarcelonaSpain
| |
Collapse
|
10
|
Yue Z, Wu Q, Ren SY, Li M, Shi B, Pan Y, Wang J. A novel multiple time-frequency sequential coding strategy for hybrid brain-computer interface. Front Hum Neurosci 2022; 16:859259. [PMID: 35966991 PMCID: PMC9372511 DOI: 10.3389/fnhum.2022.859259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
Background For brain-computer interface (BCI) communication, electroencephalography provides a preferable choice due to its high temporal resolution and portability over other neural recording techniques. However, current BCIs are unable to sufficiently use the information from time and frequency domains simultaneously. Thus, we proposed a novel hybrid time-frequency paradigm to investigate better ways of using the time and frequency information. Method We adopt multiple omitted stimulus potential (OSP) and steady-state motion visual evoked potential (SSMVEP) to design the hybrid paradigm. A series of pre-experiments were undertaken to study factors that would influence the feasibility of the hybrid paradigm and the interaction between multiple features. After that, a novel Multiple Time-Frequencies Sequential Coding (MTFSC) strategy was introduced and explored in experiments. Results Omissions with multiple short and long durations could effectively elicit time and frequency features, including the multi-OSP, ERP, and SSVEP in this hybrid paradigm. The MTFSC was feasible and efficient. The preliminary online analysis showed that the accuracy and the ITR of the nine-target stimulator over thirteen subjects were 89.04% and 36.37 bits/min. Significance This study first combined the SSMVEP and multi-OSP in a hybrid paradigm to produce robust and abundant time features for coding BCI. Meanwhile, the MTFSC proved feasible and showed great potential in improving performance, such as expanding the number of BCI targets by better using time information in specific stimulated frequencies. This study holds promise for designing better BCI systems with a novel coding method.
Collapse
Affiliation(s)
- Zan Yue
- Institute of Robotics and Intelligent Systems, Xi'an Jiaotong University, Xi'an, China
| | - Qiong Wu
- Beijing Tsinghua Changgeng Hospital, Tsinghua University, Beijing, China
| | - Shi-Yuan Ren
- Institute of Robotics and Intelligent Systems, Xi'an Jiaotong University, Xi'an, China
| | - Man Li
- Institute of Robotics and Intelligent Systems, Xi'an Jiaotong University, Xi'an, China
| | - Bin Shi
- Institute of Robotics and Intelligent Systems, Xi'an Jiaotong University, Xi'an, China
| | - Yu Pan
- Beijing Tsinghua Changgeng Hospital, Tsinghua University, Beijing, China
- *Correspondence: Yu Pan
| | - Jing Wang
- Institute of Robotics and Intelligent Systems, Xi'an Jiaotong University, Xi'an, China
- Jing Wang
| |
Collapse
|
11
|
Otero M, Lea-Carnall C, Prado P, Escobar MJ, El-Deredy W. Modelling neural entrainment and its persistence: influence of frequency of stimulation and phase at the stimulus offset. Biomed Phys Eng Express 2022; 8:045014. [PMID: 35320793 DOI: 10.1088/2057-1976/ac605a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/23/2022] [Indexed: 11/12/2022]
Abstract
Neural entrainment, the synchronization of brain oscillations to the frequency of an external stimuli, is a key mechanism that shapes perceptual and cognitive processes.Objective.Using simulations, we investigated the dynamics of neural entrainment, particularly the period following the end of the stimulation, since the persistence (reverberation) of neural entrainment may condition future sensory representations based on predictions about stimulus rhythmicity.Methods.Neural entrainment was assessed using a modified Jansen-Rit neural mass model (NMM) of coupled cortical columns, in which the spectral features of the output resembled that of the electroencephalogram (EEG). We evaluated spectro-temporal features of entrainment as a function of the stimulation frequency, the resonant frequency of the neural populations comprising the NMM, and the coupling strength between cortical columns. Furthermore, we tested if the entrainment persistence depended on the phase of the EEG-like oscillation at the time the stimulus ended.Main Results.The entrainment of the column that received the stimulation was maximum when the frequency of the entrainer was within a narrow range around the resonant frequency of the column. When this occurred, entrainment persisted for several cycles after the stimulus terminated, and the propagation of the entrainment to other columns was facilitated. Propagation also depended on the resonant frequency of the second column, and the coupling strength between columns. The duration of the persistence of the entrainment depended on the phase of the neural oscillation at the time the entrainer terminated, such that falling phases (fromπ/2 to 3π/2 in a sine function) led to longer persistence than rising phases (from 0 toπ/2 and 3π/2 to 2π).Significance.The study bridges between models of neural oscillations and empirical electrophysiology, providing insights to the mechanisms underlying neural entrainment and the use of rhythmic sensory stimulation for neuroenhancement.
Collapse
Affiliation(s)
- Mónica Otero
- Escuela de Ingeniería Biomédica, Universidad de Valparaíso, Chile
- Advanced Center for Electric and Electronic Engineering, Valparaíso, Chile
| | - Caroline Lea-Carnall
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Pavel Prado
- Latin-American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Chile
| | | | - Wael El-Deredy
- Escuela de Ingeniería Biomédica, Universidad de Valparaíso, Chile
- Advanced Center for Electric and Electronic Engineering, Valparaíso, Chile
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
12
|
Guo N, Wang X, Duanmu D, Huang X, Li X, Fan Y, Li H, Liu Y, Yeung EHK, To MKT, Gu J, Wan F, Hu Y. SSVEP-Based Brain Computer Interface Controlled Soft Robotic Glove for Post-Stroke Hand Function Rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1737-1744. [PMID: 35731756 DOI: 10.1109/tnsre.2022.3185262] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Soft robotic glove with brain computer interfaces (BCI) control has been used for post-stroke hand function rehabilitation. Motor imagery (MI) based BCI with robotic aided devices has been demonstrated as an effective neural rehabilitation tool to improve post-stroke hand function. It is necessary for a user of MI-BCI to receive a long time training, while the user usually suffers unsuccessful and unsatisfying results in the beginning. To propose another non-invasive BCI paradigm rather than MI-BCI, steady-state visually evoked potentials (SSVEP) based BCI was proposed as user intension detection to trigger the soft robotic glove for post-stroke hand function rehabilitation. Thirty post-stroke patients with impaired hand function were randomly and equally divided into three groups to receive conventional, robotic, and BCI-robotic therapy in this randomized control trial (RCT). Clinical assessment of Fugl-Meyer Motor Assessment of Upper Limb (FMA-UL), Wolf Motor Function Test (WMFT) and Modified Ashworth Scale (MAS) were performed at pre-training, post-training and three months follow-up. In comparing to other groups, The BCI-robotic group showed significant improvement after training in FMA full score (10.05±8.03, p=0.001), FMA shoulder/elbow (6.2±5.94, p=0.0004) and FMA wrist/hand (4.3±2.83, p=0.007), and WMFT (5.1±5.53, p=0.037). The improvement of FMA was significantly correlated with BCI accuracy (r=0.714, p=0.032). Recovery of hand function after rehabilitation of SSVEP-BCI controlled soft robotic glove showed better result than solely robotic glove rehabilitation, equivalent efficacy as results from previous reported MI-BCI robotic hand rehabilitation. It proved the feasibility of SSVEP-BCI controlled soft robotic glove in post-stroke hand function rehabilitation.
Collapse
|
13
|
Cheron G, Ristori D, Petieau M, Simar C, Zarka D, Cebolla AM. Effects of Pulsed-Wave Chromotherapy and Guided Relaxation on the Theta-Alpha Oscillation During Arrest Reaction. Front Psychol 2022; 13:792872. [PMID: 35310269 PMCID: PMC8929400 DOI: 10.3389/fpsyg.2022.792872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/13/2022] [Indexed: 12/31/2022] Open
Abstract
The search for the best wellness practice has promoted the development of devices integrating different technologies and guided meditation. However, the final effects on the electrical activity of the brain remain relatively sparse. Here, we have analyzed of the alpha and theta electroencephalographic oscillations during the realization of the arrest reaction (AR; eyes close/eyes open transition) when a chromotherapy session performed in a dedicated room [Rebalance (RB) device], with an ergonomic bed integrating pulsed-wave light (PWL) stimulation, guided breathing, and body scan exercises. We demonstrated that the PWL induced an evoked-related potential characterized by the N2-P3 components maximally recorded on the fronto-central areas and accompanied by an event-related synchronization (ERS) of the delta–theta–alpha oscillations. The power of the alpha and theta oscillations was analyzed during repeated ARs testing realized along with the whole RB session. We showed that the power of the alpha and theta oscillations was significantly increased during the session in comparison to their values recorded before. Of the 14 participants, 11 and 6 showed a significant power increase of the alpha and theta oscillations, respectively. These increased powers were not observed in two different control groups (n = 28) who stayed passively outside or inside the RB room but without any type of stimulation. These preliminary results suggest that PWL chromotherapy and guided relaxation induce measurable electrical brain changes that could be beneficial under neuropsychiatric perspectives.
Collapse
Affiliation(s)
- Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium.,Laboratory of Neuroscience, Université de Mons, Mons, Belgium
| | - Dominique Ristori
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Mathieu Petieau
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Cédric Simar
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium.,Machine Learning Group, Computer Science Department, Université Libre de Bruxelles, Brussels, Belgium
| | - David Zarka
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Ana-Maria Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
14
|
Duecker K, Gutteling TP, Herrmann CS, Jensen O. No Evidence for Entrainment: Endogenous Gamma Oscillations and Rhythmic Flicker Responses Coexist in Visual Cortex. J Neurosci 2021; 41:6684-6698. [PMID: 34230106 PMCID: PMC8336697 DOI: 10.1523/jneurosci.3134-20.2021] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/25/2021] [Accepted: 06/13/2021] [Indexed: 12/02/2022] Open
Abstract
Over the past decades, numerous studies have linked cortical gamma oscillations (∼30-100 Hz) to neurocomputational mechanisms. Their functional relevance, however, is still passionately debated. Here, we asked whether endogenous gamma oscillations in the human brain can be entrained by a rhythmic photic drive >50 Hz. Such a noninvasive modulation of endogenous brain rhythms would allow conclusions about their causal involvement in neurocognition. To this end, we systematically investigated oscillatory responses to a rapid sinusoidal flicker in the absence and presence of endogenous gamma oscillations using magnetoencephalography (MEG) in combination with a high-frequency projector. The photic drive produced a robust response over visual cortex to stimulation frequencies of up to 80 Hz. Strong, endogenous gamma oscillations were induced using moving grating stimuli as repeatedly done in previous research. When superimposing the flicker and the gratings, there was no evidence for phase or frequency entrainment of the endogenous gamma oscillations by the photic drive. Unexpectedly, we did not observe an amplification of the flicker response around participants' individual gamma frequencies (IGFs); rather, the magnitude of the response decreased monotonically with increasing frequency. Source reconstruction suggests that the flicker response and the gamma oscillations were produced by separate, coexistent generators in visual cortex. The presented findings challenge the notion that cortical gamma oscillations can be entrained by rhythmic visual stimulation. Instead, the mechanism generating endogenous gamma oscillations seems to be resilient to external perturbation.SIGNIFICANCE STATEMENT We aimed to investigate to what extent ongoing, high-frequency oscillations in the gamma-band (30-100 Hz) in the human brain can be entrained by a visual flicker. Gamma oscillations have long been suggested to coordinate neuronal firing and enable interregional communication. Our results demonstrate that rhythmic visual stimulation cannot hijack the dynamics of ongoing gamma oscillations; rather, the flicker response and the endogenous gamma oscillations coexist in different visual areas. Therefore, while a visual flicker evokes a strong neuronal response even at high frequencies in the gamma-band, it does not entrain endogenous gamma oscillations in visual cortex. This has important implications for interpreting studies investigating the causal and neuroprotective effects of rhythmic sensory stimulation in the gamma-band.
Collapse
Affiliation(s)
- Katharina Duecker
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2SA, United Kingdom
| | - Tjerk P Gutteling
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2SA, United Kingdom
| | - Christoph S Herrmann
- Department of Psychology, Faculty VI-Medicine and Health Sciences, Carl-von-Ossietzky University of Oldenburg, Oldenburg 26129, Germany
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2SA, United Kingdom
| |
Collapse
|
15
|
Photobiological Neuromodulation of Resting-State EEG and Steady-State Visual-Evoked Potentials by 40 Hz Violet Light Optical Stimulation in Healthy Individuals. J Pers Med 2021; 11:jpm11060557. [PMID: 34203878 PMCID: PMC8232632 DOI: 10.3390/jpm11060557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022] Open
Abstract
Photobiological neuromodulation and its clinical application has been investigated in recent years. The response of the gamma-oscillation to human visual stimuli is known to be both burst and resonant in nature, and the coupling between alpha and gamma oscillations may play a functional role in visual processing. To date, there is no study that examined the effects of gamma-frequency violet light (VL) stimulation on human electroencephalography (EEG). In this study, we investigated the neurophysiological changes induced by light stimulation using EEG. The purpose of this study was to evaluate the specific effects of 40 Hz gamma-frequency VL stimulation on EEG activity by comparing the effects of white light (WL) with the same condition. Twenty healthy participants (10 females: 37.5 ± 14.3 years; 10 males: 38.0 ± 13.3 years) participated in this study and the following results were observed. First, when compared with the power spectrum density (PSD) of baseline EEG, 40 Hz-WL induced significant increase of PSD in theta band. Second, compared the PSDs between EEG with 40 Hz-VL and EEG with 40 Hz-WL, 40 Hz-VL induced significantly lower enhancement in delta and theta bands than 40 Hz-WL. Third, when focused on the occipital area, negative peak of VEP with 40 Hz-VL was smaller than that of 40 Hz-WL. Fourth, 40 Hz-VL induced an increase of alpha-gamma coupling during the VEP at the F5 electrode site as well as post-EEG at the C4 electrode site, compared with baseline EEG. Thus, the present study suggested that 40 Hz-VL stimulation may induce unique photobiological neuromodulations on human EEG activity.
Collapse
|
16
|
Soundirarajan M, Aghasian E, Krejcar O, Namazi H. Complexity-based analysis of the coupling between facial muscle and brain activities. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102511] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Wang L, Noordanus E, van Opstal AJ. Estimating multiple latencies in the auditory system from auditory steady-state responses on a single EEG channel. Sci Rep 2021; 11:2150. [PMID: 33495484 PMCID: PMC7835249 DOI: 10.1038/s41598-021-81232-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/05/2021] [Indexed: 01/30/2023] Open
Abstract
The latency of the auditory steady-state response (ASSR) may provide valuable information regarding the integrity of the auditory system, as it could potentially reveal the presence of multiple intracerebral sources. To estimate multiple latencies from high-order ASSRs, we propose a novel two-stage procedure that consists of a nonparametric estimation method, called apparent latency from phase coherence (ALPC), followed by a heuristic sequential forward selection algorithm (SFS). Compared with existing methods, ALPC-SFS requires few prior assumptions, and is straightforward to implement for higher-order nonlinear responses to multi-cosine sound complexes with their initial phases set to zero. It systematically evaluates the nonlinear components of the ASSRs by estimating multiple latencies, automatically identifies involved ASSR components, and reports a latency consistency index. To verify the proposed method, we performed simulations for several scenarios: two nonlinear subsystems with different or overlapping outputs. We compared the results from our method with predictions from existing, parametric methods. We also recorded the EEG from ten normal-hearing adults by bilaterally presenting superimposed tones with four frequencies that evoke a unique set of ASSRs. From these ASSRs, two major latencies were found to be stable across subjects on repeated measurement days. The two latencies are dominated by low-frequency (LF) (near 40 Hz, at around 41-52 ms) and high-frequency (HF) (> 80 Hz, at around 21-27 ms) ASSR components. The frontal-central brain region showed longer latencies on LF components, but shorter latencies on HF components, when compared with temporal-lobe regions. In conclusion, the proposed nonparametric ALPC-SFS method, applied to zero-phase, multi-cosine sound complexes is more suitable for evaluating embedded nonlinear systems underlying ASSRs than existing methods. It may therefore be a promising objective measure for hearing performance and auditory cortex (dys)function.
Collapse
Affiliation(s)
- Lei Wang
- Department of Biophysics, Radboud University, Nijmegen, 6525 AJ, The Netherlands.
- Donders Centre for Neuroscience, Radboud University, Nijmegen, 6525 AJ, The Netherlands.
| | - Elisabeth Noordanus
- Department of Biophysics, Radboud University, Nijmegen, 6525 AJ, The Netherlands
- Donders Centre for Neuroscience, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| | - A John van Opstal
- Department of Biophysics, Radboud University, Nijmegen, 6525 AJ, The Netherlands
- Donders Centre for Neuroscience, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|