1
|
Koffman AF, Flaten E, Desroches AS, Kruk RS. Neural Correlates of Visual Attention and Short-Term Memory in Children with Reading Difficulty. Dev Neuropsychol 2023; 48:65-80. [PMID: 36802942 DOI: 10.1080/87565641.2023.2177856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Visual attention and memory of 20 children with reading difficulty (Mage = 134 months), 24 chronological (Mage = 138 months) and 19 reading-age controls (Mage = 92 months) were examined using object substitution masking; mask offset delay increases visual attention and visual short-term memory demands. ERP amplitude differences in the N1 (alerting), N2pc (N2-posterior-contralateral; selective attention), and SPCN (sustained posterior contralateral negativity; memory load) were expected between groups. Chronological controls performed best, but ERP results were mixed. No group differences were found for N1 or N2pc. SPCN showed enhanced negativity in reading difficulty, indicating greater memory load and anomalous inhibition.
Collapse
Affiliation(s)
- Alexis F Koffman
- Department of Psychology, University of Manitoba, Winnipeg, MB, Canada
| | - Erica Flaten
- Department of Psychology, University of Manitoba, Winnipeg, MB, Canada
| | - Amy S Desroches
- Department of Psychology, University of Manitoba, Winnipeg, MB, Canada
| | - Richard S Kruk
- Department of Psychology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Azaiez N, Loberg O, Hämäläinen JA, Leppänen PHT. Auditory P3a response to native and foreign speech in children with or without attentional deficit. Neuropsychologia 2023; 183:108506. [PMID: 36773807 DOI: 10.1016/j.neuropsychologia.2023.108506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/24/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
The aim of this study was to investigate the attentional mechanism in speech processing of native and foreign language in children with and without attentional deficit. For this purpose, the P3a component, cognitive neuromarker of the attentional processes, was investigated in a two-sequence two-deviant oddball paradigm using Finnish and English speech items via event-related potentials (ERP) technique. The difference waves reflected the temporal brain dynamics of the P3a response in native and foreign language contexts. Cluster-based permutation tests evaluated the group differences over the P3a time window. A correlation analysis was conducted between the P3a response and the attention score (ATTEX) to evaluate whether the behavioral assessment reflected the neural activity. The source reconstruction method (CLARA) was used to investigate the neural origins of the attentional differences between groups and conditions. The ERP results showed a larger P3a response in the group of children with attentional problems (AP) compared to controls (CTR). The P3a response differed statistically between the two groups in the native language processing, but not in the foreign language. The ATTEX score correlated with the P3a amplitude in the native language contrasts. The correlation analyses hint at some hemispheric brain activity difference in the frontal area. The group-level CLARA reconstruction showed activation in the speech perception and attention networks over the frontal, parietal, and temporal areas. Differences in activations of these networks were found between the groups and conditions, with the AP group showing higher activity in the source level, being the origin of the ERP enhancement observed on the scalp level.
Collapse
Affiliation(s)
- Najla Azaiez
- Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, Finland.
| | - Otto Loberg
- Department of Psychology, Faculty of Science and Technology, Bournemouth University, United Kingdom
| | - Jarmo A Hämäläinen
- Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, Finland; Jyväskylä Center for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, Finland
| | - Paavo H T Leppänen
- Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, Finland; Jyväskylä Center for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, Finland
| |
Collapse
|
3
|
Li B, Guo J, Zhao C, Luo X, Kong Y, Chen Y, Liu H, Sun L, Song Y. Lack of an association between anticipatory alpha oscillations and attentional selection in children with attention-deficit/hyperactivity disorder. Clin Neurophysiol 2022; 138:25-37. [DOI: 10.1016/j.clinph.2022.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/22/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022]
|
4
|
Chen A, Zhang Z, Cao C, Lu J, Wu S, Ma S, Feng Y, Wang S, Xu G, Song J. Altered Attention Network in Paratroopers Exposed to Repetitive Subconcussion: Evidence Based on Behavioral and Event-Related Potential Results. J Neurotrauma 2021; 38:3306-3314. [PMID: 34549595 DOI: 10.1089/neu.2021.0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Cognitive impairment caused by repetitive subconcussion has received increasing attention in recent years. Although the dysfunction of attention has been confirmed by neuropsychological research using scales, there is no event-related potentials (ERPs) research. The Attention Network Test (ANT) has been widely used to evaluate the three separate components of attention processing (alerting, orienting, and executive control). Twenty-seven paratroopers exposed to repetitive subconcussion (subconcussion group) and 25 matched healthy control participants (HCs group) were enrolled, and all of them performed the ANT test while continuous scalp electroencephalography data were recorded. On the behavioral performance level, the subconcussion group showed a slower task response, with an especially significant slower reaction time in alerting. Concerning ERP results, reduction amplitudes of cue-N1 in the alerting network were observed, indicating that this group was less able to make efficient use of cues and maintain an alerting state for incoming information. For the orienting network, no difference in N1 amplitude was observed between the two groups. Moreover, there was a reduced P3 amplitude in the executive control network in the subconcussion group compared with the HCs group, suggesting a dysfunction of attentional resource allocation and inhibition control in the former group. This study is, to our knowledge, the first analysis of the altered attention network caused by repetitive subconcussion from the perspectives of behavioral and neuropsychology levels. These preliminary results revealed the possible damage of the alerting and executive control networks and provided a reference for further research on subconcussion cognitive impairment.
Collapse
Affiliation(s)
- Aobo Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| | - Zhihao Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| | - Chenglong Cao
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China.,Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jinjiang Lu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| | - Shukai Wu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| | - Shenghui Ma
- Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China.,Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Yu Feng
- Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China.,Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Shuochen Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| | - Guozheng Xu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| | - Jian Song
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| |
Collapse
|