1
|
Yeh CH, Zhang C, Shi W, Lo MT, Tinkhauser G, Oswal A. Cross-Frequency Coupling and Intelligent Neuromodulation. CYBORG AND BIONIC SYSTEMS 2023; 4:0034. [PMID: 37266026 PMCID: PMC10231647 DOI: 10.34133/cbsystems.0034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
Cross-frequency coupling (CFC) reflects (nonlinear) interactions between signals of different frequencies. Evidence from both patient and healthy participant studies suggests that CFC plays an essential role in neuronal computation, interregional interaction, and disease pathophysiology. The present review discusses methodological advances and challenges in the computation of CFC with particular emphasis on potential solutions to spurious coupling, inferring intrinsic rhythms in a targeted frequency band, and causal interferences. We specifically focus on the literature exploring CFC in the context of cognition/memory tasks, sleep, and neurological disorders, such as Alzheimer's disease, epilepsy, and Parkinson's disease. Furthermore, we highlight the implication of CFC in the context and for the optimization of invasive and noninvasive neuromodulation and rehabilitation. Mainly, CFC could support advancing the understanding of the neurophysiology of cognition and motor control, serve as a biomarker for disease symptoms, and leverage the optimization of therapeutic interventions, e.g., closed-loop brain stimulation. Despite the evident advantages of CFC as an investigative and translational tool in neuroscience, further methodological improvements are required to facilitate practical and correct use in cyborg and bionic systems in the field.
Collapse
Affiliation(s)
- Chien-Hung Yeh
- School of Information and Electronics,
Beijing Institute of Technology, Beijing, China
| | - Chuting Zhang
- School of Information and Electronics,
Beijing Institute of Technology, Beijing, China
| | - Wenbin Shi
- School of Information and Electronics,
Beijing Institute of Technology, Beijing, China
| | - Men-Tzung Lo
- Department of Biomedical Sciences and Engineering,
National Central University, Taoyuan, Taiwan
| | - Gerd Tinkhauser
- Department of Neurology,
Bern University Hospital and University of Bern, Bern, Switzerland
| | - Ashwini Oswal
- MRC Brain Network Dynamics Unit,
University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Li X, Zhang H, Lai H, Wang J, Wang W, Yang X. High-Frequency Oscillations and Epileptogenic Network. Curr Neuropharmacol 2022; 20:1687-1703. [PMID: 34503414 PMCID: PMC9881061 DOI: 10.2174/1570159x19666210908165641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022] Open
Abstract
Epilepsy is a network disease caused by aberrant neocortical large-scale connectivity spanning regions on the scale of several centimeters. High-frequency oscillations, characterized by the 80-600 Hz signals in electroencephalography, have been proven to be a promising biomarker of epilepsy that can be used in assessing the severity and susceptibility of epilepsy as well as the location of the epileptogenic zone. However, the presence of a high-frequency oscillation network remains a topic of debate as high-frequency oscillations have been previously thought to be incapable of propagation, and the relationship between high-frequency oscillations and the epileptogenic network has rarely been discussed. Some recent studies reported that high-frequency oscillations may behave like networks that are closely relevant to the epileptogenic network. Pathological highfrequency oscillations are network-driven phenomena and elucidate epileptogenic network development; high-frequency oscillations show different characteristics coincident with the epileptogenic network dynamics, and cross-frequency coupling between high-frequency oscillations and other signals may mediate the generation and propagation of abnormal discharges across the network.
Collapse
Affiliation(s)
- Xiaonan Li
- Bioland Laboratory, Guangzhou, China; ,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | | | | | - Jiaoyang Wang
- Bioland Laboratory, Guangzhou, China; ,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Wei Wang
- Bioland Laboratory, Guangzhou, China; ,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaofeng Yang
- Bioland Laboratory, Guangzhou, China; ,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China,Address correspondence to this author at the Bioland Laboratory, Guangzhou, China; Tel: 86+ 18515855127; E-mail:
| |
Collapse
|
3
|
Ren G, Sun Y, Wang D, Ren J, Dai J, Mei S, Li Y, Wang X, Yang X, Yan J, Wang Q. Identification of Epileptogenic and Non-epileptogenic High-Frequency Oscillations Using a Multi-Feature Convolutional Neural Network Model. Front Neurol 2021; 12:640526. [PMID: 34721249 PMCID: PMC8553964 DOI: 10.3389/fneur.2021.640526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 09/06/2021] [Indexed: 11/26/2022] Open
Abstract
Accurately identifying epileptogenic zone (EZ) using high-frequency oscillations (HFOs) is a challenge that must be mastered to transfer HFOs into clinical use. We analyzed the ability of a convolutional neural network (CNN) model to distinguish EZ and non-EZ HFOs. Nineteen medically intractable epilepsy patients with good surgical outcomes 2 years after surgery were studied. Five-minute interictal intracranial electroencephalogram epochs of slow-wave sleep were selected randomly. Then 5 s segments of ripples (80–200 Hz) and fast ripples (FRs, 200–500 Hz) were detected automatically. The EZs and non-EZs were identified using the surgery resection range. We innovatively converted all epochs into four types of images using two scales: original waveforms, filtered waveforms, wavelet spectrum images, and smoothed pseudo Wigner–Ville distribution (SPWVD) spectrum images. Two scales were fixed and fitted scales. We then used a CNN model to classify the HFOs into EZ and non-EZ categories. As a result, 7,000 epochs of ripples and 2,000 epochs of FRs were randomly selected from the EZ and non-EZ data for analysis. Our CNN model can distinguish EZ and non-EZ HFOs successfully. Except for original ripple waveforms, the results from CNN models that are trained using fixed-scale images are significantly better than those from models trained using fitted-scale images (p < 0.05). Of the four fixed-scale transformations, the CNN based on the adjusted SPWVD (ASPWVD) produced the best accuracies (80.89 ± 1.43% and 77.85 ± 1.61% for ripples and FRs, respectively, p < 0.05). The CNN using ASPWVD transformation images is an effective deep learning method that can be used to classify EZ and non-EZ HFOs.
Collapse
Affiliation(s)
- Guoping Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yueqian Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Dan Wang
- Department of Neurology, Xingtai People's Hospital, Hebei, China
| | - Jiechuan Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jindong Dai
- Department of Functional Neurosurgery, Beijing Haidian Hospital, Beijing, China
| | - Shanshan Mei
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yunlin Li
- Department of Neurosurgery, Capital Institute of Pediatrics, Children's Hospital, Beijing, China
| | - Xiaofei Wang
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | | | - Jiaqing Yan
- College of Electrical and Control Engineering, North China University of Technology, Beijing, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Xu N, Shan W, Qi J, Wu J, Wang Q. Presurgical Evaluation of Epilepsy Using Resting-State MEG Functional Connectivity. Front Hum Neurosci 2021; 15:649074. [PMID: 34276321 PMCID: PMC8283278 DOI: 10.3389/fnhum.2021.649074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
Epilepsy is caused by abnormal electrical discharges (clinically identified by electrophysiological recording) in a specific part of the brain [originating in only one part of the brain, namely, the epileptogenic zone (EZ)]. Epilepsy is now defined as an archetypical hyperexcited neural network disorder. It can be investigated through the network analysis of interictal discharges, ictal discharges, and resting-state functional connectivity. Currently, there is an increasing interest in embedding resting-state connectivity analysis into the preoperative evaluation of epilepsy. Among the various neuroimaging technologies employed to achieve brain functional networks, magnetoencephalography (MEG) with the excellent temporal resolution is an ideal tool for estimating the resting-state connectivity between brain regions, which can reveal network abnormalities in epilepsy. What value does MEG resting-state functional connectivity offer for epileptic presurgical evaluation? Regarding this topic, this paper introduced the origin of MEG and the workflow of constructing source-space functional connectivity based on MEG signals. Resting-state functional connectivity abnormalities correlate with epileptogenic networks, which are defined by the brain regions involved in the production and propagation of epileptic activities. This paper reviewed the evidence of altered epileptic connectivity based on low- or high-frequency oscillations (HFOs) and the evidence of the advantage of using simultaneous MEG and intracranial electroencephalography (iEEG) recordings. More importantly, this review highlighted that MEG-based resting-state functional connectivity has the potential to predict postsurgical outcomes. In conclusion, resting-state MEG functional connectivity has made a substantial progress toward serving as a candidate biomarker included in epileptic presurgical evaluations.
Collapse
Affiliation(s)
- Na Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Shan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing Qi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianping Wu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
| |
Collapse
|
5
|
Grigg-Damberger M, Foldvary-Schaefer N. Bidirectional relationships of sleep and epilepsy in adults with epilepsy. Epilepsy Behav 2021; 116:107735. [PMID: 33561767 DOI: 10.1016/j.yebeh.2020.107735] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/15/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022]
Abstract
This targeted review addresses the best accepted and most intriguing recent observations on the complex relationships between sleep and epilepsy. Ten to 15% of all epilepsies are sleep-related. Included in these is sleep-related hypermotor epilepsy, renamed from nocturnal frontal lobe epilepsy by a 2016 consensus conference since 30% of cases are extra-frontal, seizures are related to sleep rather than clock time, and the predominant semiology is hypermotor. Stereo-EEG is providing crucial insights into network activation in sleep-related epilepsies and definition of the epileptogenic zone. Pathologic high-frequency oscillations, a promising biomarker for identifying the epileptogenic zone, are most frequent in NREM sleep, lowest in wakefulness and REM sleep, similar to interictal epileptiform discharges (IEDs). Most sleep-related seizures are followed by awakening or arousal and IEDs cause arousals and increase after arousals, likely contributing to sleep/wake complaints. Sleep/wake disorders are 2-3 times more common in adults with epilepsy than the general population; these comorbidities are associated with poorer quality of life and may impact seizure control. Treatment of sleep apnea reduces seizures in many cases. An emerging area of research is in circadian biology and epilepsy. Over 90% of people with epilepsy have seizures with circadian periodicity, in part related to sleep itself, and the majority of SUDEP cases occur in sleep. Recognizing these bidirectional relationships is important for patient and caregiver education and counseling and optimizing epilepsy outcomes.
Collapse
Affiliation(s)
| | - Nancy Foldvary-Schaefer
- Sleep Disorders and Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|