1
|
Li Y, Li S, Li H, Tang Y, Zhang D. fNIRS neurofeedback facilitates emotion regulation: Exploring individual differences over the ventrolateral prefrontal cortex. Neuroimage 2025; 308:121079. [PMID: 39929405 DOI: 10.1016/j.neuroimage.2025.121079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025] Open
Abstract
The ventrolateral prefrontal cortex (VLPFC) plays a pivotal role in emotion regulation, yet the effectiveness of neurofeedback (NF) training targeting the VLPFC remains uncertain, suggesting significant individual differences in outcomes. In this study, we aimed to clarify these differences by enrolling 90 participants, randomly assigned to either an experimental group or a sham group (n = 48/42). Participants in the experimental group underwent VLPFCNF training over eight sessions across two consecutive days, while those in the sham group received random signals from functional near-infrared spectroscopy (fNIRS). To investigate individual variability, participants in the experimental group were further categorized as high or low-efficacy groups based on their training efficiency, determined by the regression slope of VLPFC activity over the sessions. Our results revealed a significant reduction in negative emotions and increased VLPFC activity during emotion regulation in the high-efficacy group, compared to both the low-efficacy group and sham group. Importantly, the benefit in emotion regulation, as reflected by decreased negativity ratings, was predicted by NF training efficiency. Furthermore, the enhancement of VLPFC activity during emotion regulation fully mediated the relationship between NF training efficiency and emotion regulation benefits. Participants with higher VLPFCNF training efficiency exhibited greater engagement of the VLPFC during emotion regulation, leading to superior emotional outcomes. Additionally, VLPFCNF training efficiency was linked to the habitual use of reappraisal strategies in daily life. This study provides novel causal evidence that VLPFCNF training can effectively enhance emotion regulation, highlighting the importance of individual differences in training outcomes. Our findings suggest that NF training targeting the VLPFC offers a promising and personalized intervention strategy for improving emotion regulation, with potential applications for treating emotional disorders. This research underscores the potential of personalized NF approaches, offering new avenues for tailored therapeutic interventions in the future.
Collapse
Affiliation(s)
- Yiwei Li
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, PR China
| | - Sijin Li
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, PR China
| | - Hua Li
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, PR China
| | - Yuyao Tang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, PR China
| | - Dandan Zhang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, PR China; School of Psychology, Chengdu Medical College, Chengdu 610500, PR China; China Center for Behavioral Economics and Finance & School of Economics, Southwestern University of Finance and Economics, Chengdu 611130, PR China.
| |
Collapse
|
2
|
Liu J, Liu Y, Wu L. Exploring the dynamics of prefrontal cortex in the interaction between orienteering experience and cognitive performance by fNIRS. Sci Rep 2024; 14:14918. [PMID: 38942820 PMCID: PMC11213913 DOI: 10.1038/s41598-024-65747-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024] Open
Abstract
Sporting experience plays a pivotal role in shaping exercise habits, with a mutually reinforcing relationship that enhances cognitive performance. The acknowledged plasticity of cognition driven by sports necessitates a comprehensive examination. Hence, this study delves into the dynamic intricacies of the prefrontal cortex, exploring the impact of orienteering experience on cognitive performance. Our findings contribute empirical evidence regarding the functional activation of specific brain regions bridging the nexus between experiential factors and cognitive capabilities. In this cross-sectional study, a cohort of forty-nine athletes was enrolled to meticulously examine behavioral variances and prefrontal cortex dynamics among orienteering athletes of varying experience levels across diverse non-specialized scenarios. These investigations involved the utilization of functional near-infrared spectroscopy (fNIRS) to detect alterations in oxygenated hemoglobin (HbO2). The high-experience expert group exhibited neurological efficiency, demonstrating significantly diminished brain activation in the dorsolateral prefrontal, left ventral lateral prefrontal, and right orbitofrontal regions compared to the low-experience group. Within the low-experience novice group, superior performance in the spatial memory task was observed compared to the mental rotation task, with consistently lower reaction times across all conditions compared to the high-experience group. Notably, cerebral blood oxygenation activation exhibited a significant reduction in the high-experience expert group compared to the low-experience novice group, irrespective of task type. The dorsolateral prefrontal lobe exhibited activation upon task onset, irrespective of experience level. Correct rates in the spatial memory task were consistently higher than those in the mental rotation task, while brain region activation was significantly greater during the mental rotation task than the spatial memory task." This study elucidates disparities in prefrontal cortex dynamics between highly seasoned experts and neophyte novices, showcasing a cognitive edge within the highly experienced cohort and a spatial memory advantage in the inexperienced group. Our findings contribute to the comprehension of the neural mechanisms that underlie the observed cognitive advantage and provide insights into the forebrain resources mobilized by orienteering experience during spatial cognitive tasks."
Collapse
Affiliation(s)
- Jingru Liu
- Department of Physical Education, Xi'an University of Posts and Telecommunications, Xi'an, 710199, Shaanxi, China
| | - Yang Liu
- School of Physical Education, Shaanxi Normal University, Xi'an, 710121, Shaanxi, China.
| | - Linzhen Wu
- Department of Physical Education, Xi'an University of Posts and Telecommunications, Xi'an, 710199, Shaanxi, China
| |
Collapse
|
3
|
Yang X, Zeng Y, Jiao G, Gan X, Linden D, Hernaus D, Zhu C, Li K, Yao D, Yao S, Jiang Y, Becker B. A brief real-time fNIRS-informed neurofeedback training of the prefrontal cortex changes brain activity and connectivity during subsequent working memory challenge. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110968. [PMID: 38354898 DOI: 10.1016/j.pnpbp.2024.110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/06/2023] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Working memory (WM) represents a building-block of higher cognitive functions and a wide range of mental disorders are associated with WM impairments. Initial studies have shown that several sessions of functional near-infrared spectroscopy (fNIRS) informed real-time neurofeedback (NF) allow healthy individuals to volitionally increase activity in the dorsolateral prefrontal cortex (DLPFC), a region critically involved in WM. For the translation to therapeutic or neuroenhancement applications, however, it is critical to assess whether fNIRS-NF success transfers into neural and behavioral WM enhancement in the absence of feedback. We therefore combined single-session fNIRS-NF of the left DLPFC with a randomized sham-controlled design (N = 62 participants) and a subsequent WM challenge with concomitant functional MRI. Over four runs of fNIRS-NF, the left DLPFC NF training group demonstrated enhanced neural activity in this region, reflecting successful acquisition of neural self-regulation. During the subsequent WM challenge, we observed no evidence for performance differences between the training and the sham group. Importantly, however, examination of the fMRI data revealed that - compared to the sham group - the training group exhibited significantly increased regional activity in the bilateral DLPFC and decreased left DLPFC - left anterior insula functional connectivity during the WM challenge. Exploratory analyses revealed a negative association between DLPFC activity and WM reaction times in the NF group. Together, these findings indicate that healthy individuals can learn to volitionally increase left DLPFC activity in a single training session and that the training success translates into WM-related neural activation and connectivity changes in the absence of feedback. This renders fNIRS-NF as a promising and scalable WM intervention approach that could be applied to various mental disorders.
Collapse
Affiliation(s)
- Xi Yang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital; University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Yixu Zeng
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital; University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Guojuan Jiao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital; University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital; University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - David Linden
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Dennis Hernaus
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Chaozhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Keshuang Li
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Dezhong Yao
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuxia Yao
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yihan Jiang
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Beijing, China.
| | - Benjamin Becker
- The University of Hong Kong, State Key Laboratory of Brain and Cognitive Sciences, Hong Kong, China; The University of Hong Kong, Department of Psychology, Hong Kong, China.
| |
Collapse
|
4
|
Xu J, Zhang W, Yu J, Li G, Cui J, Qi H, Zhang M, Li M, Hu Y, Wang H, Min H, Xu F, Xu X, Zhu C, Xiao Y, Zhang Y. Functional near-infrared spectroscopy-based neurofeedback training regulates time-on-task effects and enhances sustained cognitive performance. Cereb Cortex 2024; 34:bhae259. [PMID: 38904080 DOI: 10.1093/cercor/bhae259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024] Open
Abstract
Time-on-task effect is a common consequence of long-term cognitive demand work, which reflects reduced behavioral performance and increases the risk of accidents. Neurofeedback is a neuromodulation method that can guide individuals to regulate their brain activity and manifest as changes in related symptoms and cognitive behaviors. This study aimed to examine the effects of functional near-infrared spectroscopy-based neurofeedback training on time-on-task effects and sustained cognitive performance. A randomized, single-blind, sham-controlled study was performed: 17 participants received feedback signals of their own dorsolateral prefrontal cortex activity (neurofeedback group), and 16 participants received feedback signals of dorsolateral prefrontal cortex activity from the neurofeedback group (sham-neurofeedback group). All participants received 5 neurofeedback training sessions and completed 2 sustained cognitive tasks, including a 2-back task and a psychomotor vigilance task, to evaluate behavioral performance changes following neurofeedback training. Results showed that neurofeedback relative to the sham-neurofeedback group exhibited increased dorsolateral prefrontal cortex activation, increased accuracy in the 2-back task, and decreased mean response time in the psychomotor vigilance task after neurofeedback training. In addition, the neurofeedback group showed slower decline performance during the sustained 2-back task after neurofeedback training compared with sham-neurofeedback group. These findings demonstrate that neurofeedback training could regulate time-on-task effects on difficult task and enhance performance on sustained cognitive tasks by increasing dorsolateral prefrontal cortex activity.
Collapse
Affiliation(s)
- Jiayu Xu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xifeng Road, Chang'an District, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xifeng Road, Chang'an District, Xi'an, Shaanxi 710126, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xifeng Road, Chang'an District, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xifeng Road, Chang'an District, Xi'an, Shaanxi 710126, China
| | - Juan Yu
- Department of Gastroenterology, Xijing Hospital, Air Force Medical University, Changle West Road, Xincheng District, Xi'an, Shaanxi 710032, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xifeng Road, Chang'an District, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xifeng Road, Chang'an District, Xi'an, Shaanxi 710126, China
| | - Jianqi Cui
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xifeng Road, Chang'an District, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xifeng Road, Chang'an District, Xi'an, Shaanxi 710126, China
| | - Haowen Qi
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xifeng Road, Chang'an District, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xifeng Road, Chang'an District, Xi'an, Shaanxi 710126, China
| | - Minmin Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xifeng Road, Chang'an District, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xifeng Road, Chang'an District, Xi'an, Shaanxi 710126, China
| | - Mengshan Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xifeng Road, Chang'an District, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xifeng Road, Chang'an District, Xi'an, Shaanxi 710126, China
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xifeng Road, Chang'an District, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xifeng Road, Chang'an District, Xi'an, Shaanxi 710126, China
| | - Haoyi Wang
- College of Westa, Southwest University, Tiansheng Road, Beipei District, Chongqing 400715, China
| | - Huaqiao Min
- Beijing Institute of Remote Sensing Information, Anwaiwaiguan Road, Chaoyang District, Beijing 100192, China
| | - Fenggang Xu
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Lvyuan West Road, Haidian District, Beijing 100094, China
| | - Xiaodan Xu
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Lvyuan West Road, Haidian District, Beijing 100094, China
| | - Chaozhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Xinjiekouwai Street, Haidian District, Beijing 100091, China
| | - Yi Xiao
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Lvyuan West Road, Haidian District, Beijing 100094, China
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xifeng Road, Chang'an District, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xifeng Road, Chang'an District, Xi'an, Shaanxi 710126, China
| |
Collapse
|
5
|
Takahashi S, Takahashi D, Kuroiwa Y, Sakurai N, Kodama N. Construction and evaluation of a neurofeedback system using finger tapping and near-infrared spectroscopy. FRONTIERS IN NEUROIMAGING 2024; 3:1361513. [PMID: 38726042 PMCID: PMC11079114 DOI: 10.3389/fnimg.2024.1361513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
Introduction Neurofeedback using near-infrared spectroscopy (NIRS) has been used in patients with stroke and other patients, but few studies have included older people or patients with cognitive impairment. Methods We constructed a NIRS-based neurofeedback system and used finger tapping to investigate whether neurofeedback can be implemented in older adults while finger tapping and whether brain activity improves in older adults and healthy participants. Our simple neurofeedback system was constructed using a portable wearable optical topography (WOT-HS) device. Brain activity was evaluated in 10 older and 31 healthy young individuals by measuring oxygenated hemoglobin concentration during finger tapping and neurofeedback implementation. Results During neurofeedback, the concentration of oxygenated hemoglobin increased in the prefrontal regions in both the young and older participants. Discussion The results of this study demonstrate the usefulness of neurofeedback using simple NIRS devices for older adults and its potential to mitigate cognitive decline.
Collapse
Affiliation(s)
- Shingo Takahashi
- Department of Healthcare Informatics, Faculty of Health and Welfare, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Daishi Takahashi
- Department of Healthcare Informatics, Faculty of Health and Welfare, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Yuki Kuroiwa
- Department of Healthcare Informatics, Faculty of Health and Welfare, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Noriko Sakurai
- Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare, Niigata, Japan
| | - Naoki Kodama
- Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
6
|
Zhang Y, Liu X, Yang Y, Zhang Y, He Q, Xu F, Jin X, Gao J, Yao Y, Yu D, Hommel B, Zhu X, Wang K, Zhang W. Revealing complexity: segmentation of hippocampal subfields in adolescents with major depressive disorder reveals specific links to cognitive dysfunctions. Eur Psychiatry 2024; 68:e5. [PMID: 38389334 PMCID: PMC11795510 DOI: 10.1192/j.eurpsy.2024.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Hippocampal disruptions represent potential neuropathological biomarkers in depressed adolescents with cognitive dysfunctions. Given heterogeneous outcomes of whole-hippocampus analyses, we investigated subregional abnormalities in depressed adolescents and their associations with symptom severity and cognitive dysfunctions. METHODS MethodsSeventy-nine first-episode depressive patients (ag = 15.54 ± 1.83) and 71 healthy controls (age = 16.18 ± 2.85) were included. All participants underwent T1 and T2 imaging, completed depressive severity assessments, and performed cognitive assessments on memory, emotional recognition, cognitive control, and attention. Freesurfer was used to segment each hippocampus into 12 subfields. Multivariable analyses of variance were performed to identify overall and disease severity-related abnormalities in patients. LASSO regression was also conducted to explore the associations between hippocampal subfields and patients' cognitive abilities. RESULTS Depressed adolescents showed decreases in dentate gyrus, CA1, CA2/3, CA4, fimbria, tail, and molecular layer. Analyses of overall symptom severity, duration, self-harm behavior, and suicidality suggested that severity-related decreases mainly manifested in CA regions and involved surrounding subfields with disease severity increases. LASSO regression indicated that hippocampal subfield abnormalities had the strongest associations with memory impairments, with CA regions and dentate gyrus showing the highest weights. CONCLUSIONS Hippocampal abnormalities are widespread in depressed adolescents and such abnormalities may spread from CA regions to surrounding areas as the disease progresses. Abnormalities in CA regions and dentate gyrus among these subfields primarily link with memory impairments in patients. These results demonstrate that hippocampal subsections may serve as useful biomarkers of depression progression in adolescents, offering new directions for early clinical intervention.
Collapse
Affiliation(s)
- Yixin Zhang
- School of Psychology, Shandong Normal University, Jinan, China
| | - Xuan Liu
- School of Psychology, Shandong Normal University, Jinan, China
| | - Ying Yang
- Shandong Mental Health Center, Jinan, China
| | - Yihao Zhang
- School of Psychology, Shandong Normal University, Jinan, China
| | - Qiang He
- Shandong Mental Health Center, Jinan, China
| | - Feiyu Xu
- Shandong Mental Health Center, Jinan, China
| | - Xinjuan Jin
- Radiology Department of Qilu Hospital, Shandong University, Jinan, China
| | - Junqi Gao
- Radiology Department of Qilu Hospital, Shandong University, Jinan, China
| | - Yuan Yao
- Radiology Department of Qilu Hospital, Shandong University, Jinan, China
| | - Dexin Yu
- Radiology Department of Qilu Hospital, Shandong University, Jinan, China
| | - Bernhard Hommel
- School of Psychology, Shandong Normal University, Jinan, China
| | - Xingxing Zhu
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Kangcheng Wang
- School of Psychology, Shandong Normal University, Jinan, China
- Shandong Mental Health Center, Jinan, China
| | - Wenxin Zhang
- School of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
7
|
Li K, Yang J, Becker B, Li X. Functional near-infrared spectroscopy neurofeedback of dorsolateral prefrontal cortex enhances human spatial working memory. NEUROPHOTONICS 2023; 10:025011. [PMID: 37275655 PMCID: PMC10234406 DOI: 10.1117/1.nph.10.2.025011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/06/2023] [Accepted: 05/11/2023] [Indexed: 06/07/2023]
Abstract
Significance Spatial working memory (SWM) is essential for daily life and deficits in this domain represent a common impairment across aging and several mental disorders. Impaired SWM has been closely linked to dysregulations in dorsolateral prefrontal cortex (DLPFC) activation. Aim The present study evaluates the feasibility and maintenance of functional near-infrared spectroscopy neurofeedback (fNIRS-NF) training of the DLPFC to enhance SWM in healthy individuals using a real-time fNIRS-NF platform developed by the authors. Approach We used a randomized sham-controlled between-subject fNIRS-NF design with 60 healthy subjects as a sample. Training-induced changes in the DLPFC, SWM, and attention performance served as primary outcomes. Results Feedback from the target channel significantly increased regional-specific DLPFC activation over the fNIRS-NF training compared to sham NF. A significant group difference in NF-induced frontoparietal connectivity was observed. Compared to the control group, the experimental group demonstrated significantly improved SWM and attention performance that were maintained for 1 week. Furthermore, a mediation analysis demonstrated that increased DLPFC activation mediated the effects of fNIRS-NF treatment on better SWM performance. Conclusions The present results demonstrated that successful self-regulation of DLPFC activation may represent a long-lasting intervention to improve human SWM and has the potential for further applications.
Collapse
Affiliation(s)
- Keshuang Li
- East China Normal University, School of Psychology and Cognitive Science, Affiliated Mental Health Center, Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Shanghai, China
| | - Jinhao Yang
- East China Normal University, School of Psychology and Cognitive Science, Affiliated Mental Health Center, Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Shanghai, China
| | - Benjamin Becker
- University of Electronic Science and Technology of China, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Chengdu, China
| | - Xianchun Li
- East China Normal University, School of Psychology and Cognitive Science, Affiliated Mental Health Center, Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Shanghai, China
| |
Collapse
|
8
|
Collin SHP, van den Broek PLC, van Mourik T, Desain P, Doeller CF. Inducing a mental context for associative memory formation with real-time fMRI neurofeedback. Sci Rep 2022; 12:21226. [PMID: 36481793 PMCID: PMC9731952 DOI: 10.1038/s41598-022-25799-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Memory, one of the hallmarks of human cognition, can be modified when humans voluntarily modulate neural population activity using neurofeedback. However, it is currently unknown whether neurofeedback can influence the integration of memories, and whether memory is facilitated or impaired after such neural perturbation. In this study, participants memorized objects while we provided them with abstract neurofeedback based on their brain activity patterns in the ventral visual stream. This neurofeedback created an implicit face or house context in the brain while memorizing the objects. The results revealed that participants created associations between each memorized object and its implicit context solely due to the neurofeedback manipulation. Our findings shed light onto how memory formation can be influenced by synthetic memory tags with neurofeedback and advance our understanding of mnemonic processing.
Collapse
Affiliation(s)
- Silvy H. P. Collin
- grid.12295.3d0000 0001 0943 3265Tilburg School of Humanities and Digital Sciences, Tilburg University, Tilburg, The Netherlands
| | - Philip L. C. van den Broek
- grid.5590.90000000122931605Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Tim van Mourik
- grid.5590.90000000122931605Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Peter Desain
- grid.5590.90000000122931605Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Christian F. Doeller
- grid.419524.f0000 0001 0041 5028Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany ,grid.5947.f0000 0001 1516 2393Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer’s Disease, Norwegian University of Science and Technology, Trondheim, Norway ,grid.9647.c0000 0004 7669 9786Institute of Psychology-Wilhelm Wundt, Leipzig University, Leipzig, Germany
| |
Collapse
|
9
|
Zheng Y, Tian B, Zhuang Z, Zhang Y, Wang D. fNIRS-based adaptive visuomotor task improves sensorimotor cortical activation. J Neural Eng 2022; 19. [PMID: 35853431 DOI: 10.1088/1741-2552/ac823f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Investigating how to promote the functional activation of the central sensorimotor system is an important goal in the neurorehabilitation research domain. We aim to validate the effectiveness of facilitating cortical excitability using a closed-loop visuomotor task, in which the task difficulty is adaptively adjusted based on an individual's sensorimotor cortical activation. APPROACH We developed a novel visuomotor task, in which subjects moved a handle of a haptic device along a specific path while exerting a constant force against a virtual surface under visual feedback. The difficulty levels of the task were adapted with the aim of increasing the activation of sensorimotor areas, measured non-invasively by functional near-infrared spectroscopy. The changes in brain activation of the bilateral prefrontal cortex, sensorimotor cortex, and the occipital cortex obtained during the adaptive visuomotor task (adaptive group), were compared to the brain activation pattern elicited by the same duration of task with random difficulties in a control group. MAIN RESULTS During one intervention session, the adaptive group showed significantly increased activation in the bilateral sensorimotor cortex, also enhanced effective connectivity between the prefrontal and sensorimotor areas compared to the control group. SIGNIFICANCE Our findings demonstrated that the fNIRS-based adaptive visuomotor task with high ecological validity can facilitate the neural activity in sensorimotor areas and thus has the potential to improve hand motor functions.
Collapse
Affiliation(s)
- Yilei Zheng
- Beihang University, State Key Laboratory of Virtual Reality Technology and Systems, 37 Xueyuan Road, Haidian District, Beijing, P.R. China, 100191, Beijing, 100191, CHINA
| | - Bohao Tian
- State Key Laboratory of Virtual Reality Technology and Systems, 37 Xueyuan Road, Haidian District, Beijing, P.R. China, 100191, Beijing, 100191, CHINA
| | - Zhiqi Zhuang
- Beihang University, 37 Xueyuan Road, Haidian District, Beijing, P.R. China, 100191, Beijing, 100191, CHINA
| | - Yuru Zhang
- State Key Laboratory of Virtual Reality Technology and Systems, 37 Xueyuan Road, Haidian District, Beijing, P.R. China, 100191, Beijing, 100191, CHINA
| | - Dangxiao Wang
- State Key Laboratory of Virtual Reality Technology and Systems, 37 Xueyuan Road, Haidian District, Beijing, P.R. China, 100191, Beijing, 100191, CHINA
| |
Collapse
|