1
|
Schmitt O. Relationships and representations of brain structures, connectivity, dynamics and functions. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111332. [PMID: 40147809 DOI: 10.1016/j.pnpbp.2025.111332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/20/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
The review explores the complex interplay between brain structures and their associated functions, presenting a diversity of hierarchical models that enhances our understanding of these relationships. Central to this approach are structure-function flow diagrams, which offer a visual representation of how specific neuroanatomical structures are linked to their functional roles. These diagrams are instrumental in mapping the intricate connections between different brain regions, providing a clearer understanding of how functions emerge from the underlying neural architecture. The study details innovative attempts to develop new functional hierarchies that integrate structural and functional data. These efforts leverage recent advancements in neuroimaging techniques such as fMRI, EEG, MEG, and PET, as well as computational models that simulate neural dynamics. By combining these approaches, the study seeks to create a more refined and dynamic hierarchy that can accommodate the brain's complexity, including its capacity for plasticity and adaptation. A significant focus is placed on the overlap of structures and functions within the brain. The manuscript acknowledges that many brain regions are multifunctional, contributing to different cognitive and behavioral processes depending on the context. This overlap highlights the need for a flexible, non-linear hierarchy that can capture the brain's intricate functional landscape. Moreover, the study examines the interdependence of these functions, emphasizing how the loss or impairment of one function can impact others. Another crucial aspect discussed is the brain's ability to compensate for functional deficits following neurological diseases or injuries. The investigation explores how the brain reorganizes itself, often through the recruitment of alternative neural pathways or the enhancement of existing ones, to maintain functionality despite structural damage. This compensatory mechanism underscores the brain's remarkable plasticity, demonstrating its ability to adapt and reconfigure itself in response to injury, thereby ensuring the continuation of essential functions. In conclusion, the study presents a system of brain functions that integrates structural, functional, and dynamic perspectives. It offers a robust framework for understanding how the brain's complex network of structures supports a wide range of cognitive and behavioral functions, with significant implications for both basic neuroscience and clinical applications.
Collapse
Affiliation(s)
- Oliver Schmitt
- Medical School Hamburg - University of Applied Sciences and Medical University - Institute for Systems Medicine, Am Kaiserkai 1, Hamburg 20457, Germany; University of Rostock, Department of Anatomy, Gertrudenstr. 9, Rostock, 18055 Rostock, Germany.
| |
Collapse
|
2
|
Speranza BE, Hill AT, Do M, Cerins A, Donaldson PH, Desarker P, Oberman LM, Das S, Enticott PG, Kirkovski M. The Neurophysiological Effects of Theta Burst Stimulation as Measured by Electroencephalography: A Systematic Review. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:1083-1120. [PMID: 39084526 DOI: 10.1016/j.bpsc.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/21/2024] [Indexed: 08/02/2024]
Abstract
Theta burst stimulation (TBS) is a noninvasive brain stimulation technique that can modulate neural activity. The effect of TBS on regions beyond the motor cortex remains unclear. With increased interest in applying TBS to nonmotor regions for research and clinical purposes, these effects must be understood and characterized. We synthesized the electrophysiological effects of a single session of TBS, as indexed by electroencephalography (EEG) and concurrent transcranial magnetic stimulation and EEG, in nonclinical participants. We reviewed 79 studies that administered either continuous TBS or intermittent TBS protocols. Broadly, continuous TBS suppressed and intermittent TBS facilitated evoked response component amplitudes. Response to TBS as measured by spectral power and connectivity was much more variable. Variability increased in the presence of task stimuli. There was a large degree of heterogeneity in the research methodology across studies. Additionally, the effect of individual differences on TBS response has been insufficiently investigated. Future research investigating the effects of TBS as measured by EEG must consider methodological and individual factors that may affect TBS outcomes.
Collapse
Affiliation(s)
- Bridgette E Speranza
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia.
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia
| | - Michael Do
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia
| | - Andris Cerins
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia; Brain Stimulation Laboratory, Alfred Psychiatry Research Centre, Department of Psychiatry, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Peter H Donaldson
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia
| | - Pushpal Desarker
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lindsay M Oberman
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Sushmit Das
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia
| | - Melissa Kirkovski
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia; Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Wang T, de Graaf T, Tanner L, Schuhmann T, Duecker F, Sack AT. Hemispheric Asymmetry in TMS-Induced Effects on Spatial Attention: A Meta-Analysis. Neuropsychol Rev 2024; 34:838-849. [PMID: 37736863 PMCID: PMC11473452 DOI: 10.1007/s11065-023-09614-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/14/2023] [Indexed: 09/23/2023]
Abstract
Hemispheric asymmetry is a fundamental principle in the functional architecture of the brain. It plays an important role in attention research where right hemisphere dominance is core to many attention theories. Lesion studies seem to confirm such hemispheric dominance with patients being more likely to develop left hemineglect after right hemispheric stroke than vice versa. However, the underlying concept of hemispheric dominance is still not entirely clear. Brain stimulation studies using transcranial magnetic stimulation (TMS) might be able to illuminate this concept. To examine the putative hemispheric asymmetry in spatial attention, we conducted a meta-analysis of studies applying inhibitory TMS protocols to the left or right posterior parietal cortices (PPC), assessing effects on attention biases with the landmark and line bisection task. A total of 18 studies including 222 participants from 1994 to February 2022 were identified. The analysis revealed a significant shift of the perceived midpoint towards the ipsilateral hemifield after right PPC suppression (Cohen's d = 0.52), but no significant effect after left PPC suppression (Cohen's d = 0.26), suggesting a hemispheric asymmetry even though the subgroup difference does not reach significance (p = .06). A complementary Bayesian meta-analysis revealed a high probability of at least a medium effect size after right PPC disruption versus a low probability after left PPC disruption. This is the first quantitative meta-analysis supporting right hemisphere-specific TMS-induced spatial attention deficits, mimicking hemineglect in healthy participants. We discuss the result in the light of prominent attention theories, ultimately concluding how difficult it remains to differentiate between these theories based on attentional bias scores alone.
Collapse
Affiliation(s)
- Ting Wang
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, the Netherlands.
- Maastricht Brain Imaging Centre, Maastricht, the Netherlands.
| | - Tom de Graaf
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, the Netherlands
- Maastricht Brain Imaging Centre, Maastricht, the Netherlands
| | - Lisabel Tanner
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, the Netherlands
| | - Teresa Schuhmann
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, the Netherlands
- Maastricht Brain Imaging Centre, Maastricht, the Netherlands
| | - Felix Duecker
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, the Netherlands
- Maastricht Brain Imaging Centre, Maastricht, the Netherlands
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, the Netherlands
- Maastricht Brain Imaging Centre, Maastricht, the Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre+, Brain+Nerve Centre, Maastricht, the Netherlands
- Centre for Integrative Neuroscience, Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
4
|
Jiang Z, An X, Liu S, Yin E, Yan Y, Ming D. Beyond alpha band: prestimulus local oscillation and interregional synchrony of the beta band shape the temporal perception of the audiovisual beep-flash stimulus. J Neural Eng 2024; 21:036035. [PMID: 37419108 DOI: 10.1088/1741-2552/ace551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/07/2023] [Indexed: 07/09/2023]
Abstract
Objective.Multisensory integration is more likely to occur if the multimodal inputs are within a narrow temporal window called temporal binding window (TBW). Prestimulus local neural oscillations and interregional synchrony within sensory areas can modulate cross-modal integration. Previous work has examined the role of ongoing neural oscillations in audiovisual temporal integration, but there is no unified conclusion. This study aimed to explore whether local ongoing neural oscillations and interregional audiovisual synchrony modulate audiovisual temporal integration.Approach.The human participants performed a simultaneity judgment (SJ) task with the beep-flash stimuli while recording electroencephalography. We focused on two stimulus onset asynchrony (SOA) conditions where subjects report ∼50% proportion of synchronous responses in auditory- and visual-leading SOA (A50V and V50A).Main results.We found that the alpha band power is larger in synchronous response in the central-right posterior and posterior sensors in A50V and V50A conditions, respectively. The results suggested that the alpha band power reflects neuronal excitability in the auditory or visual cortex, which can modulate audiovisual temporal perception depending on the leading sense. Additionally, the SJs were modulated by the opposite phases of alpha (5-10 Hz) and low beta (14-20 Hz) bands in the A50V condition while the low beta band (14-18 Hz) in the V50A condition. One cycle of alpha or two cycles of beta oscillations matched an auditory-leading TBW of ∼86 ms, while two cycles of beta oscillations matched a visual-leading TBW of ∼105 ms. This result indicated the opposite phases in the alpha and beta bands reflect opposite cortical excitability, which modulated the audiovisual SJs. Finally, we found stronger high beta (21-28 Hz) audiovisual phase synchronization for synchronous response in the A50V condition. The phase synchrony of the beta band might be related to maintaining information flow between visual and auditory regions in a top-down manner.Significance.These results clarified whether and how the prestimulus brain state, including local neural oscillations and functional connectivity between brain regions, affects audiovisual temporal integration.
Collapse
Affiliation(s)
- Zeliang Jiang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, People's Republic of China
| | - Xingwei An
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, People's Republic of China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, People's Republic of China
| | - Erwei Yin
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, People's Republic of China
- Defense Innovation Institute, Academy of Military Sciences (AMS), 100071 Beijing, People's Republic of China
- Tianjin Artificial Intelligence Innovation Center (TAIIC), 300457 Tianjin, People's Republic of China
| | - Ye Yan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, People's Republic of China
- Defense Innovation Institute, Academy of Military Sciences (AMS), 100071 Beijing, People's Republic of China
- Tianjin Artificial Intelligence Innovation Center (TAIIC), 300457 Tianjin, People's Republic of China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, People's Republic of China
| |
Collapse
|
5
|
Carter AR, Barrett A. Recent advances in treatment of spatial neglect: networks and neuropsychology. Expert Rev Neurother 2023; 23:587-601. [PMID: 37273197 PMCID: PMC10740348 DOI: 10.1080/14737175.2023.2221788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
INTRODUCTION Spatial neglect remains an underdiagnosed and undertreated consequence of stroke that imposes significant disability. A growing appreciation of brain networks involved in spatial cognition is helping us to develop a mechanistic understanding of different therapies under development. AREAS COVERED This review focuses on neuromodulation of brain networks for the treatment of spatial neglect after stroke, using evidence-based approaches including 1) Cognitive strategies that are more likely to impact frontal lobe executive function networks; 2) Visuomotor adaptation, which may depend on the integrity of parietal and parieto- and subcortical-frontal connections and the presence of a particular subtype of neglect labeled Aiming neglect; 3) Non-invasive brain stimulation that may modulate relative levels of activity of the two hemispheres and depend on corpus callosum connectivity; and 4) Pharmacological modulation that may exert its effect primarily via right-lateralized networks more closely involved in arousal. EXPERT OPINION Despite promising results from individual studies, significant methodological heterogeneity between trials weakened conclusions drawn from meta-analyses. Improved classification of spatial neglect subtypes will benefit research and clinical care. Understanding the brain network mechanisms of different treatments and different types of spatial neglect will make possible a precision medicine treatment approach.
Collapse
Affiliation(s)
- Alex R. Carter
- Department of Neurology, Department of Orthopedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - A.M. Barrett
- UMass Chan Medical School and UMass Memorial Healthcare, Worcester, MA, USA
- Central Western MA VA Healthcare System, Worcester, MA, USA
| |
Collapse
|
6
|
Moretti J, Terstege DJ, Poh EZ, Epp JR, Rodger J. Low intensity repetitive transcranial magnetic stimulation modulates brain-wide functional connectivity to promote anti-correlated c-Fos expression. Sci Rep 2022; 12:20571. [PMID: 36446821 PMCID: PMC9708643 DOI: 10.1038/s41598-022-24934-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) induces action potentials to induce plastic changes in the brain with increasing evidence for the therapeutic importance of brain-wide functional network effects of rTMS; however, the influence of sub-action potential threshold (low-intensity; LI-) rTMS on neuronal activity is largely unknown. We investigated whether LI-rTMS modulates neuronal activity and functional connectivity and also specifically assessed modulation of parvalbumin interneuron activity. We conducted a brain-wide analysis of c-Fos, a marker for neuronal activity, in mice that received LI-rTMS to visual cortex. Mice received single or multiple sessions of excitatory 10 Hz LI-rTMS with custom rodent coils or were sham controls. We assessed changes to c-Fos positive cell densities and c-Fos/parvalbumin co-expression. Peak c-Fos expression corresponded with activity during rTMS. We also assessed functional connectivity changes using brain-wide c-Fos-based network analysis. LI-rTMS modulated c-Fos expression in cortical and subcortical regions. c-Fos density changes were most prevalent with acute stimulation, however chronic stimulation decreased parvalbumin interneuron activity, most prominently in the amygdala and striatum. LI-rTMS also increased anti-correlated functional connectivity, with the most prominent effects also in the amygdala and striatum following chronic stimulation. LI-rTMS induces changes in c-Fos expression that suggest modulation of neuronal activity and functional connectivity throughout the brain. Our results suggest that LI-rTMS promotes anticorrelated functional connectivity, possibly due to decreased parvalbumin interneuron activation induced by chronic stimulation. These changes may underpin therapeutic rTMS effects, therefore modulation of subcortical activity supports rTMS for treatment of disorders involving subcortical dysregulation.
Collapse
Affiliation(s)
- Jessica Moretti
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia.
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia.
| | - Dylan J Terstege
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Eugenia Z Poh
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Jonathan R Epp
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia.
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia.
| |
Collapse
|
7
|
Zhang Y, Ye L, Cao L, Song W. Resting-state electroencephalography changes in poststroke patients with visuospatial neglect. Front Neurosci 2022; 16:974712. [PMID: 36033611 PMCID: PMC9399887 DOI: 10.3389/fnins.2022.974712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background This study aimed to explore the electrophysiological characteristics of resting-state electroencephalography (rsEEG) in patients with visuospatial neglect (VSN) after stroke. Methods A total of 44 first-event sub-acute strokes after right hemisphere damage (26 with VSN and 18 without VSN) were included. Besides, 18 age-matched healthy participants were used as healthy controls. The resting-state electroencephalography (EEG) of 64 electrodes was recorded to obtain the power of the spectral density of different frequency bands. The global delta/alpha ratio (DAR), DAR over the affected hemispheres (DARAH), DAR over the unaffected hemispheres (DARUH), and the pairwise-derived brain symmetry index (pdBSI; global and four bands) were compared between groups and receiver operating characteristic (ROC) curve analysis was conducted. The Barthel index (BI), Fugl-Meyer motor function assessment (FMA), and Berg balance scale (BBS) were used to assess the functional state of patients. Visuospatial neglect was assessed using a battery of standardized tests. Results We found that patients with VSN performed poorly compared with those without VSN. Analysis of rsEEG revealed increased delta and theta power and decreased alpha and beta power in stroke patients with VSN. Compared to healthy controls and poststroke non-VSN patients, patients with VSN showed a higher DAR (P < 0.001), which was significantly positively correlated with the BBS (DAR: r = –0.522, P = 0.006; DARAH: r = –0.521, P = 0.006; DARUH: r = –0.494, P = 0.01). The line bisection task was positively correlated with DAR (r = 0.458, P = 0.019) and DARAH (r = 0.483, P = 0.012), while the star cancellation task was only positively correlated with DARAH (r = 0.428, P = 0.029). DARAH had the best discriminating value between VSN and non-VSN, with an area under the curve (AUC) of 0.865. Patients with VSN showed decreased alpha power in the parietal and occipital areas of the right hemisphere. A higher parieto-occipital pdBSIalpha was associated with a worse line bisection task (r = 0.442, P = 0.024). Conclusion rsEEG may be a useful tool for screening for stroke patients with visuospatial neglect, and DAR and parieto-occipital pdBSIalpha may be useful biomarkers for visuospatial neglect after stroke.
Collapse
|
8
|
Moretti J, Marinovic W, Harvey AR, Rodger J, Visser TAW. Offline Parietal Intermittent Theta Burst Stimulation or Alpha Frequency Transcranial Alternating Current Stimulation Has No Effect on Visuospatial or Temporal Attention. Front Neurosci 2022; 16:903977. [PMID: 35774555 PMCID: PMC9237453 DOI: 10.3389/fnins.2022.903977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Non-invasive brain stimulation is a growing field with potentially wide-ranging clinical and basic science applications due to its ability to transiently and safely change brain excitability. In this study we include two types of stimulation: repetitive transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS). Single session stimulations with either technique have previously been reported to induce changes in attention. To better understand and compare the effectiveness of each technique and the basis of their effects on cognition we assessed changes to both temporal and visuospatial attention using an attentional blink task and a line bisection task following offline stimulation with an intermittent theta burst (iTBS) rTMS protocol or 10 Hz tACS. Additionally, we included a novel rTMS stimulation technique, low-intensity (LI-)rTMS, also using an iTBS protocol, which uses stimulation intensities an order of magnitude below conventional rTMS. Animal models show that low-intensity rTMS modulates cortical excitability despite sub-action potential threshold stimulation. Stimulation was delivered in healthy participants over the right posterior parietal cortex (rPPC) using a within-subjects design (n = 24). Analyses showed no evidence for an effect of any stimulation technique on spatial biases in the line bisection task or on magnitude of the attentional blink. Our results suggests that rTMS and LI-rTMS using iTBS protocol and 10 Hz tACS over rPPC do not modulate performance in tasks assessing visuospatial or temporal attention.
Collapse
Affiliation(s)
- Jessica Moretti
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Welber Marinovic
- School of Population Health, Curtin University, Perth, WA, Australia
| | - Alan R. Harvey
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, Perth, WA, Australia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Troy A. W. Visser
- School of Psychological Science, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|