1
|
Togoli I, Collignon O, Bueti D, Fornaciai M. The Mechanisms and Neural Signature of Time-averaged Numerosity Perception. J Cogn Neurosci 2025; 37:498-514. [PMID: 39436233 DOI: 10.1162/jocn_a_02263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The animal brain is endowed with an innate sense of number allowing to intuitively perceive the approximate quantity of items in a scene, or "numerosity." This ability is not limited to items distributed in space, but also to events unfolding in time and to the average numerosity of dynamic scenes. How the brain computes and represents the average numerosity over time, however, remains unclear. Here, we investigate the mechanisms and EEG signature of the perception of average numerosity over time. To do so, we used stimuli composed of a variable number (3-12) of briefly presented dot arrays (50 msec each) and asked participants to judge the average numerosity of the sequence. We first show that the weight of different portions of the stimuli in determining the judgment depends on how many arrays are included in the sequence itself: the longer the sequence, the lower the weight of the latest arrays. Second, we show systematic adaptation effects across stimuli in consecutive trials. Importantly, the EEG results highlight two processing stages whereby the amplitude of occipital ERPs reflects the adaptation effect (∼300 msec after stimulus onset) and the accuracy and precision of average numerosity judgments (∼450-700 msec). These two stages are consistent with processes involved with the representation of perceived average numerosity and with perceptual decision-making, respectively. Overall, our findings provide new evidence showing how the visual system computes the average numerosity of dynamic visual stimuli, and support the existence of a dedicated, relatively low-level perceptual mechanism mediating this process.
Collapse
Affiliation(s)
- Irene Togoli
- Université catholique de Louvain, Louvain-la-Neuve, Belgium
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Olivier Collignon
- Université catholique de Louvain, Louvain-la-Neuve, Belgium
- HES-SO Valais-Walis, Lausanne and Sion, Switzerland
| | - Domenica Bueti
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Michele Fornaciai
- Université catholique de Louvain, Louvain-la-Neuve, Belgium
- International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
2
|
Caponi C, Castaldi E, Grasso PA, Arrighi R. Feature-selective adaptation of numerosity perception. Proc Biol Sci 2025; 292:20241841. [PMID: 39876730 PMCID: PMC11775598 DOI: 10.1098/rspb.2024.1841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/03/2024] [Accepted: 01/03/2025] [Indexed: 01/30/2025] Open
Abstract
Perceptual adaptation has been widely used to infer the existence of numerosity detectors, enabling animals to quickly estimate the number of objects in a scene. Here, we investigated, in humans, whether numerosity adaptation is influenced by stimulus feature changes as previous research suggested that adaptation is reduced when the colour of adapting and test stimuli did not match. We tested whether such adaptation reduction is due to unspecific novelty effects or changes of stimuli identity. Numerosity adaptation was measured for stimuli matched or unmatched for low-level (colour, luminance, shape and motion) or high-level (letters' identity and face emotions) features. Robust numerosity adaptation occurred in all conditions, but it was reduced when adapting and test stimuli differed for colour, luminance and shape. However, no reduction was observed between moving and still stimuli, a readable change that did not affect the item's identity. Similarly, changes in letters' spatial rotations or face features did not affect adaptation magnitude. Overall, changes in stimulus identity defined by low-level features, rather than novelty in general, determined the strength of the adaptation effects, provided these changes were readily noticeable. These findings suggest that numerosity mechanisms operate on categorized items in addition to the total quantity of the set.
Collapse
Affiliation(s)
- Camilla Caponi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Elisa Castaldi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | | | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
3
|
Marlair C, Lochy A, Crollen V. Frequency-tagging EEG reveals the effect of attentional focus on abstract magnitude processing. Psychon Bull Rev 2024; 31:2266-2274. [PMID: 38467991 DOI: 10.3758/s13423-024-02480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 03/13/2024]
Abstract
While humans can readily access the common magnitude of various codes such as digits, number words, or dot sets, it remains unclear whether this process occurs automatically, or only when explicitly attending to magnitude information. We addressed this question by examining the neural distance effect, a robust marker of magnitude processing, with a frequency-tagging approach. Electrophysiological responses were recorded while participants viewed rapid sequences of a base numerosity presented at 6 Hz (e.g., "2") in randomly mixed codes: digits, number words, canonical dot, and finger configurations. A deviant numerosity either close (e.g., "3") or distant (e.g., "8") from the base was inserted every five items. Participants were instructed to focus their attention either on the magnitude number feature (from a previous study), the parity number feature, a nonnumerical color feature or no specific feature. In the four attentional conditions, we found clear discrimination responses of the deviant numerosity despite its code variation. Critically, the distance effect (larger responses when base/deviant are distant than close) was present when participants were explicitly attending to magnitude and parity, but it faded with color and simple viewing instructions. Taken together, these results suggest automatic access to an abstract number representation but highlight the role of selective attention in processing the underlying magnitude information. This study therefore provides insights into how attention can modulate the neural activity supporting abstract magnitude processing.
Collapse
Affiliation(s)
- Cathy Marlair
- Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain, Place Cardinal Mercier 10, 1348, Louvain-la-Neuve, Belgium.
| | - Aliette Lochy
- Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain, Place Cardinal Mercier 10, 1348, Louvain-la-Neuve, Belgium
- Institute of Cognitive Science and Assessment, Department of Behavioral and Cognitive Sciences, Faculty of Humanities, Social and Educational Sciences, Université du Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Virginie Crollen
- Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain, Place Cardinal Mercier 10, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
4
|
Grasso PA, Petrizzo I, Coniglio F, Arrighi R. Electrophysiological correlates of temporal numerosity adaptation. Front Neurosci 2024; 18:1349540. [PMID: 38505772 PMCID: PMC10948506 DOI: 10.3389/fnins.2024.1349540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction Much research has revealed the human visual system is capable to estimate numerical quantities, rapidly and reliably, in both the spatial and the temporal domain. This ability is highly susceptible to short-term plastic phenomena related to previous exposure to visual numerical information (i.e., adaptation). However, while determinants of spatial numerosity adaptation have been widely investigated, little is known about the neural underpinnings of short-term plastic phenomena related to the encoding of temporal numerical information. In the present study we investigated the electrophysiological correlates of temporal numerosity adaptation. Methods Participants were asked to estimate the numerosity of a test sequence of flashes after being exposed to either a high or low numerous adapting sequence. Behavioral results confirmed the expected underestimation of test stimulus when this was preceded by a high numerous sequence as compared to when preceded by a low numerous sequence. Results Electrophysiological data revealed that this behavior was tightly linked to the amplitude of the steady-state visual evoked (ssVEP) response elicited by the test stimulus. When preceded by a high numerous sequence, the test stimulus elicited larger ssVEP responses as compared to when preceded by a low numerous sequence with this pattern being robustly correlated with behavior. Finally, topographical maps showed that this difference was mostly evident across two antero-posterior distributed clusters of electrodes and correlated with changes in functional connectivity. Discussion Taken together, our results suggest that visual plastic phenomena related to the encoding of temporal numerosity information reflect changes in rhythmic evoked activity that are likely related to long range communications between distinct brain regions.
Collapse
Affiliation(s)
- Paolo A. Grasso
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Tuscany, Italy
- Department of Physics and Astronomy, University of Florence, Florence, Italy
| | - Irene Petrizzo
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Tuscany, Italy
| | - Francesca Coniglio
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Tuscany, Italy
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Tuscany, Italy
| |
Collapse
|
5
|
Caponi C, Maldonado Moscoso PA, Castaldi E, Arrighi R, Grasso PA. EEG signature of grouping strategies in numerosity perception. Front Neurosci 2023; 17:1190317. [PMID: 37292163 PMCID: PMC10244500 DOI: 10.3389/fnins.2023.1190317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
The moment we see a group of objects, we can appreciate its numerosity. Our numerical estimates can be imprecise for large sets (>4 items), but they become much faster and more accurate if items are clustered into groups compared to when they are randomly displaced. This phenomenon, termed groupitizing, is thought to leverage on the capacity to quickly identify groups from 1 to 4 items (subitizing) within larger sets, however evidence in support for this hypothesis is scarce. The present study searched for an electrophysiological signature of subitizing while participants estimated grouped numerosities exceeding this range by measuring event-related potential (ERP) responses to visual arrays of different numerosities and spatial configurations. The EEG signal was recorded while 22 participants performed a numerosity estimation task on arrays with numerosities in the subitizing (3 or 4) or estimation (6 or 8) ranges. In the latter case, items could be spatially arranged into subgroups (3 or 4) or randomly scattered. In both ranges, we observed a decrease in N1 peak latency as the number of items increased. Importantly, when items were arranged to form subgroups, we showed that the N1 peak latency reflected both changes in total numerosity and changes in the number of subgroups. However, this result was mainly driven by the number of subgroups to suggest that clustered elements might trigger the recruitment of the subitizing system at a relatively early stage. At a later stage, we found that P2p was mostly modulated by the total numerosity in the set, with much less sensitivity for the number of subgroups these might be segregated in. Overall, this experiment suggests that the N1 component is sensitive to both local and global parcelling of elements in a scene suggesting that it could be crucially involved in the emergence of the groupitizing advantage. On the other hand, the later P2p component seems to be much more bounded to the global aspects of the scene coding the total number of elements while being mostly blind to the number of subgroups in which elements are parsed.
Collapse
Affiliation(s)
- Camilla Caponi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Tuscany, Italy
| | - Paula A. Maldonado Moscoso
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Tuscany, Italy
- Centre for Mind/Brain Sciences – CIMeC, University of Trento, Rovereto, Italy
| | - Elisa Castaldi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Tuscany, Italy
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Tuscany, Italy
| | - Paolo A. Grasso
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Tuscany, Italy
- Department of Physics and Astronomy, University of Florence, Florence, Tuscany, Italy
| |
Collapse
|