1
|
Zhang F, Han Y, Wang H, Li Y, Tang D. Effects of transcranial direct current stimulation on motor learning in healthy elderly individuals: a systematic review and meta-analysis. Somatosens Mot Res 2025; 42:17-27. [PMID: 38319133 DOI: 10.1080/08990220.2024.2310851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/02/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is widely used in motor recovery. Nevertheless, whether tDCS improves motor learning in healthy older adults is still controversial. This review aims to investigate the effectiveness of tDCS on motor learning in healthy elderly individuals. METHODS The PubMed, Cochrane Library, Web of Science and Embase databases were initially searched from inception to December 5, 2022. The standard mean difference (SMD) with the corresponding 95% confidence intervals (CIs) were analysed via random-effect models. RESULTS Compared with the sham group, no significant effects were found regarding improvement in motor learning based on the speed or accuracy of the task and reaction time for the tDCS intervention group. After subgroup analysis, a significant effect was found for improved motor learning based on reaction time in the primary motor cortex (M1)-cerebellar group. CONCLUSIONS This review revealed that tDCS had no significant effect on improving the speed or accuracy of motor learning in healthy elderly adults. However, it has a significant effect on improving the motor learning ability based on the reaction time of the task (mainly referring to the tDCS stimulation position of M1 and cerebellar), although the results have obvious heterogeneity and uncertainty.
Collapse
Affiliation(s)
- Fusheng Zhang
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
- School of Physical Education, Zhaotong University, Zhaotong, China
| | - Yanbai Han
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Hongli Wang
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Yong Li
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Dingyu Tang
- School of Physical Education, Zhaotong University, Zhaotong, China
| |
Collapse
|
2
|
Narmashiri A, Akbari F. The Effects of Transcranial Direct Current Stimulation (tDCS) on the Cognitive Functions: A Systematic Review and Meta-analysis. Neuropsychol Rev 2025; 35:126-152. [PMID: 38060075 DOI: 10.1007/s11065-023-09627-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/24/2023] [Indexed: 12/08/2023]
Abstract
Previous studies have investigated the effect of transcranial direct current stimulation (tDCS) on cognitive functions. However, these studies reported inconsistent results due to differences in experiment design, measurements, and stimulation parameters. Nonetheless, there is a lack of meta-analyses and review studies on tDCS and its impact on cognitive functions, including working memory, inhibition, flexibility, and theory of mind. We performed a systematic review and meta-analysis of tDCS studies published from the earliest available data up to October 2021, including studies reporting the effects of tDCS on cognitive functions in human populations. Therefore, these systematic review and meta-analysis aim to comprehensively analyze the effects of anodal and cathodal tDCS on cognitive functions by investigating 69 articles with a total of 5545 participants. Our study reveals significant anodal tDCS effects on various cognitive functions. Specifically, we observed improvements in working memory reaction time (RT), inhibition RT, flexibility RT, theory of mind RT, working memory accuracy, theory of mind accuracy and flexibility accuracy. Furthermore, our findings demonstrate noteworthy cathodal tDCS effects, enhancing working memory accuracy, inhibition accuracy, flexibility RT, flexibility accuracy, theory of mind RT, and theory of mind accuracy. Notably, regarding the influence of stimulation parameters of tDCS on cognitive functions, the results indicated significant differences across various aspects, including the timing of stimulation (online vs. offline studies), population type (clinical vs. healthy studies), stimulation duration (< 15 min vs. > 15 min), electrical current intensities (1-1.5 m.A vs. > 1.5 m.A), stimulation sites (right frontal vs. left frontal studies), age groups (young vs. older studies), and different cognitive tasks in each cognitive functioning aspect. In conclusion, our results demonstrate that tDCS can effectively enhance cognitive task performance, offering valuable insights into the potential benefits of this method for cognitive improvement.
Collapse
Affiliation(s)
- Abdolvahed Narmashiri
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
- Electrical Engineering Department, Bio-Intelligence Research Unit, Sharif Brain Center, Sharif University of Technology, Tehran, Iran.
| | | |
Collapse
|
3
|
Gooijers J, Pauwels L, Hehl M, Seer C, Cuypers K, Swinnen SP. Aging, brain plasticity, and motor learning. Ageing Res Rev 2024; 102:102569. [PMID: 39486523 DOI: 10.1016/j.arr.2024.102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Motor skill learning, the process of acquiring new motor skills, is critically important across the lifespan, from early development through adulthood and into older age, as well as in pathological conditions (i.e., rehabilitation). Extensive research has demonstrated that motor skill acquisition in young adults is accompanied by significant neuroplastic changes, including alterations in brain structure (gray and white matter), function (i.e., activity and connectivity), and neurochemistry (i.e., levels of neurotransmitters). In the aging population, motor performance typically declines, characterized by slower and less accurate movements. However, despite these age-related changes, older adults maintain the capacity for skill improvement through training. In this review, we explore the extent to which the aging brain retains the ability to adapt in response to motor learning, specifically whether skill acquisition is accompanied by neural changes. Furthermore, we discuss the associations between inter-individual variability in brain structure and function and the potential for future learning in older adults. Finally, we consider the use of non-invasive brain stimulation techniques aimed at optimizing motor learning in this population. Our review provides insights into the neurobiological underpinnings of motor learning in older adults and emphasizes strategies to enhance their motor skill acquisition.
Collapse
Affiliation(s)
- Jolien Gooijers
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.
| | - Lisa Pauwels
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Melina Hehl
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium; Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Caroline Seer
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Koen Cuypers
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium; Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Stephan P Swinnen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Verwey WB. C-SMB 2.0: Integrating over 25 years of motor sequencing research with the Discrete Sequence Production task. Psychon Bull Rev 2024; 31:931-978. [PMID: 37848660 PMCID: PMC11192694 DOI: 10.3758/s13423-023-02377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 10/19/2023]
Abstract
An exhaustive review is reported of over 25 years of research with the Discrete Sequence Production (DSP) task as reported in well over 100 articles. In line with the increasing call for theory development, this culminates into proposing the second version of the Cognitive framework of Sequential Motor Behavior (C-SMB 2.0), which brings together known models from cognitive psychology, cognitive neuroscience, and motor learning. This processing framework accounts for the many different behavioral results obtained with the DSP task and unveils important properties of the cognitive system. C-SMB 2.0 assumes that a versatile central processor (CP) develops multimodal, central-symbolic representations of short motor segments by repeatedly storing the elements of these segments in short-term memory (STM). Independently, the repeated processing by modality-specific perceptual and motor processors (PPs and MPs) and by the CP when executing sequences gradually associates successively used representations at each processing level. The high dependency of these representations on active context information allows for the rapid serial activation of the sequence elements as well as for the executive control of tasks as a whole. Speculations are eventually offered as to how the various cognitive processes could plausibly find their neural underpinnings within the intricate networks of the brain.
Collapse
Affiliation(s)
- Willem B Verwey
- Department of Learning, Data-Analytics and Technology, Section Cognition, Data and Education, Faculty of Behavioral, Management and Social sciences, University of Twente, PO Box 217, 7500 AE, Enschede, the Netherlands.
| |
Collapse
|
5
|
Petok JR, Dang L, Hammel B. Impaired executive functioning mediates the association between aging and deterministic sequence learning. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2024; 31:323-339. [PMID: 36476065 PMCID: PMC10244484 DOI: 10.1080/13825585.2022.2153789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Sensitivity to the fixed ordering of actions and events, or deterministic sequence learning, is an important skill throughout adulthood. Yet, it remains unclear whether age deficits in sequencing exist, and we lack a firm understanding of which factors might contribute to age-related impairments when they arise. Though debated, executive functioning, governed by the frontal lobe, may underlie age-related sequence learning deficits in older adults. The present study asked if age predicts errors in deterministic sequence learning across the older adult lifespan (ages 55-89), and whether executive functioning accounts for any age-related declines. Healthy older adults completed a comprehensive measure of frontal-based executive abilities as well as a deterministic sequence learning task that required the step-by-step acquisition of associations through trial-and-error feedback. Among those who met a performance-based criterion, increasing age was positively correlated with higher sequencing errors; however, this relationship was no longer significant after controlling for executive functioning. Moreover, frontal-based executive abilities mediated the relationship between age and sequence learning performance. These findings suggest that executive or frontal functioning may underlie age deficits in learning judgment-based, deterministic serial operations.
Collapse
Affiliation(s)
| | - Layla Dang
- Department of Psychology, Saint Olaf College, Northfield, MN
- Department of Psychological Sciences, Purdue University, West Lafayette, IN
| | - Beatrice Hammel
- Department of Psychology, Saint Olaf College, Northfield, MN
| |
Collapse
|
6
|
Vandendoorent B, Nackaerts E, Zoetewei D, Hulzinga F, Gilat M, Orban de Xivry JJ, Nieuwboer A. Effect of transcranial direct current stimulation on learning in older adults with and without Parkinson's disease: A systematic review with meta-analysis. Brain Cogn 2023; 171:106073. [PMID: 37611344 DOI: 10.1016/j.bandc.2023.106073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/26/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023]
Abstract
Older adults with and without Parkinson's disease show impaired retention after training of motor or cognitive skills. This systematic review with meta-analysis aims to investigate whether adding transcranial direct current stimulation (tDCS) to motor or cognitive training versus placebo boosts motor sequence and working memory training. The effects of interest were estimated between three time points, i.e. pre-training, post-training and follow-up. This review was conducted according to the PRISMA guidelines (PROSPERO: CRD42022348885). Electronic databases were searched from conception to March 2023. Following initial screening, 24 studies were eligible for inclusion in the qualitative synthesis and 20 could be included in the meta-analysis, of which 5 studies concerned motor sequence learning (total n = 186) and 15 working memory training (total n = 650). Results were pooled using an inverse variance random effects meta-analysis. The findings showed no statistically significant additional effects of tDCS over placebo on motor sequence learning outcomes. However, there was a strong trend showing that tDCS boosted working memory training, although methodological limitations and some heterogeneity were also apparent. In conclusion, the present findings do not support wide implementation of tDCS as an add-on to motor sequence training at the moment, but the promising results on cognitive training warrant further investigations.
Collapse
Affiliation(s)
- Britt Vandendoorent
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.
| | - Evelien Nackaerts
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Demi Zoetewei
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Femke Hulzinga
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Moran Gilat
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Jean-Jacques Orban de Xivry
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Alice Nieuwboer
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Metais A, Muller CO, Boublay N, Breuil C, Guillot A, Daligault S, Di Rienzo F, Collet C, Krolak-Salmon P, Saimpont A. Anodal tDCS does not enhance the learning of the sequential finger-tapping task by motor imagery practice in healthy older adults. Front Aging Neurosci 2022; 14:1060791. [PMID: 36570544 PMCID: PMC9780548 DOI: 10.3389/fnagi.2022.1060791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Background Motor imagery practice (MIP) and anodal transcranial direct current stimulation (a-tDCS) are innovative methods with independent positive influence on motor sequence learning (MSL) in older adults. Objective The present study investigated the effect of MIP combined with a-tDCS over the primary motor cortex (M1) on the learning of a finger tapping sequence of the non-dominant hand in healthy older adults. Methods Thirty participants participated in this double-blind sham-controlled study. They performed three MIP sessions, one session per day over three consecutive days and a retention test 1 week after the last training session. During training / MIP, participants had to mentally rehearse an 8-element finger tapping sequence with their left hand, concomitantly to either real (a-tDCS group) or sham stimulation (sham-tDCS group). Before and after MIP, as well as during the retention test, participants had to physically perform the same sequence as fast and accurately as possible. Results Our main results showed that both groups (i) improved their performance during the first two training sessions, reflecting acquisition/on-line performance gains, (ii) stabilized their performance from one training day to another, reflecting off-line consolidation; as well as after 7 days without practice, reflecting retention, (iii) for all stages of MSL, there was no significant difference between the sham-tDCS and a-tDCS groups. Conclusion This study highlights the usefulness of MIP in motor sequence learning for older adults. However, 1.5 mA a-tDCS did not enhance the beneficial effects of MIP, which adds to the inconsistency of results found in tDCS studies. Future work is needed to further explore the best conditions of use of tDCS to improve motor sequence learning with MIP.
Collapse
Affiliation(s)
- Angèle Metais
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
| | - Camille O. Muller
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France,EuroMov Digital Health in Motion, Université Montpellier, IMT Mines Alès, Montpellier, France
| | - Nawale Boublay
- Centre de Recherche Clinique Vieillissement Cerveau - Fragilité, Hospices Civils de Lyon, Lyon, France
| | - Caroline Breuil
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
| | - Aymeric Guillot
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
| | - Sébastien Daligault
- Centre de Recherche Multimodal et Pluridisciplinaire en Imagerie du Vivant (CERMEP), Département de MagnétoEncéphalographie, Bron, France
| | - Franck Di Rienzo
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
| | - Christian Collet
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
| | - Pierre Krolak-Salmon
- Centre de Recherche Clinique Vieillissement Cerveau - Fragilité, Hospices Civils de Lyon, Lyon, France
| | - Arnaud Saimpont
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France,*Correspondence: Arnaud Saimpont,
| |
Collapse
|