1
|
Ji GJ, Fox MD, Morton-Dutton M, Wang Y, Sun J, Hu P, Chen X, Jiang Y, Zhu C, Tian Y, Zhang Z, Akkad H, Nordberg J, Joutsa J, Torres Diaz CV, Groppa S, Gonzalez-Escamilla G, Toledo MD, Dalic LJ, Archer JS, Selway R, Stavropoulos I, Valentin A, Yang J, Isbaine F, Gross RE, Park S, Gregg NM, Cukiert A, Middlebrooks EH, Dosenbach NUF, Turner J, Warren AEL, Chua MMJ, Cohen AL, Larivière S, Neudorfer C, Horn A, Sarkis RA, Bubrick EJ, Fisher RS, Rolston JD, Wang K, Schaper FLWVJ. A generalized epilepsy network derived from brain abnormalities and deep brain stimulation. Nat Commun 2025; 16:2783. [PMID: 40128186 PMCID: PMC11933423 DOI: 10.1038/s41467-025-57392-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/14/2025] [Indexed: 03/26/2025] Open
Abstract
Idiopathic generalized epilepsy (IGE) is a brain network disease, but the location of this network and its relevance for treatment remain unclear. We combine the locations of brain abnormalities in IGE (131 coordinates from 21 studies) with the human connectome to identify an IGE network. We validate this network by showing alignment with structural brain abnormalities previously identified in IGE and brain areas activated by generalized epileptiform discharges in simultaneous electroencephalogram-functional magnetic resonance imaging. The topography of the IGE network aligns with brain networks involved in motor control and loss of consciousness consistent with generalized seizure semiology. To investigate therapeutic relevance, we analyze data from 21 patients with IGE treated with deep brain stimulation (DBS) for generalized seizures. Seizure frequency reduced a median 90% after DBS and stimulation sites intersect an IGE network peak in the centromedian nucleus of the thalamus. Together, this study helps unify prior findings in IGE and identify a brain network target that can be tested in clinical trials of brain stimulation to control generalized seizures.
Collapse
Affiliation(s)
- Gong-Jun Ji
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui Province, 230032, China
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
- Anhui Institute of Translational Medicine, Hefei, 230032, China
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Department of Neurology, Neurosurgery, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Mae Morton-Dutton
- Center for Brain Circuit Therapeutics, Department of Neurology, Neurosurgery, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Yingru Wang
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jinmei Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui Province, 230032, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China
| | - Panpan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui Province, 230032, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China
| | - Xingui Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui Province, 230032, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China
| | - Yubao Jiang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui Province, 230032, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China
| | - Chunyan Zhu
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yanghua Tian
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
| | - Zhiqiang Zhang
- Department of Diagnostic Radiology, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China
| | - Haya Akkad
- Center for Brain Circuit Therapeutics, Department of Neurology, Neurosurgery, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
- Queen Square Institute of Cognitive Neuroscience, University College London, London, UK
| | - Janne Nordberg
- Neurocenter, Department of Clinical Neurophysiology, Turku University Hospital, Turku, Finland
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland
| | - Juho Joutsa
- Neurocenter, Department of Clinical Neurophysiology, Turku University Hospital, Turku, Finland
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland
| | - Cristina V Torres Diaz
- Department of Neurourgery, Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Rhine Main Neuroscience Network (rmn2), Mainz, Germany
| | - Gabriel Gonzalez-Escamilla
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Rhine Main Neuroscience Network (rmn2), Mainz, Germany
| | - Maria de Toledo
- Department of Neurology, Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Linda J Dalic
- Department of Medicine (Austin Health), The University of Melbourne, Victoria, Australia
| | - John S Archer
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Richard Selway
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Ioannis Stavropoulos
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Department of Clinical Neurophysiology, King's College Hospital NHS Foundation Trust, London, UK
| | - Antonio Valentin
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Department of Clinical Neurophysiology, King's College Hospital NHS Foundation Trust, London, UK
- Department of Clinical Neurophysiology, Alder Hey Children's Hospital Trust, Liverpool, UK
| | - Jimmy Yang
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Neurosurgery, Emory University, 1365 Clifton Road NE, Suite B6200, Atlanta, GA, 30322, USA
| | - Faical Isbaine
- Departments of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Robert E Gross
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Sihyeong Park
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Nico U F Dosenbach
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, USA
| | - Joseph Turner
- Center for Brain Circuit Therapeutics, Department of Neurology, Neurosurgery, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Aaron E L Warren
- Center for Brain Circuit Therapeutics, Department of Neurology, Neurosurgery, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Melissa M J Chua
- Center for Brain Circuit Therapeutics, Department of Neurology, Neurosurgery, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Alexander L Cohen
- Center for Brain Circuit Therapeutics, Department of Neurology, Neurosurgery, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Sara Larivière
- Center for Brain Circuit Therapeutics, Department of Neurology, Neurosurgery, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Clemens Neudorfer
- Center for Brain Circuit Therapeutics, Department of Neurology, Neurosurgery, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
- MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Andreas Horn
- Center for Brain Circuit Therapeutics, Department of Neurology, Neurosurgery, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
- MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Rani A Sarkis
- Center for Brain Circuit Therapeutics, Department of Neurology, Neurosurgery, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Ellen J Bubrick
- Center for Brain Circuit Therapeutics, Department of Neurology, Neurosurgery, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Robert S Fisher
- Department of Neurology and Neurological Sciences and Neurosurgery by courtesy, Stanford University School of Medicine, Palo Alto, California, USA
| | - John D Rolston
- Center for Brain Circuit Therapeutics, Department of Neurology, Neurosurgery, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui Province, 230032, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China.
- Anhui Institute of Translational Medicine, Hefei, 230032, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.
| | - Frederic L W V J Schaper
- Center for Brain Circuit Therapeutics, Department of Neurology, Neurosurgery, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
2
|
Chua MMJ, Jha R, Campbell JM, Warren AEL, Rahimpour S, Rolston JD. A Posterior Approach for Combined Targeting of the Centromedian Nucleus and Pulvinar for Responsive Neurostimulation. Oper Neurosurg (Hagerstown) 2025:01787389-990000000-01504. [PMID: 40053878 DOI: 10.1227/ons.0000000000001535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/26/2024] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Neuromodulation for the treatment of epilepsy is a growing field, and several thalamic nuclei (including the anterior nucleus, centromedian nucleus [CM], and pulvinar) have been implicated and targeted. Although an anterior trajectory approach to the CM is conventionally used, we report on a novel posterior trajectory which can be useful when the conventional anterior approach is surgically challenging, or where dual CM and pulvinar coverage is desired. METHODS Clinical and imaging data were retrospectively collected from 7 patients with at least 1 posterior trajectory CM lead and 4 patients with at least 1 anterior trajectory CM lead. RESULTS Patients in the anterior and posterior trajectory groups had a mean of 48.1% and 65.2% seizure reduction, respectively, and were not significantly different (P = .53). Patients in the posterior trajectory group had contacts within the CM and/or pulvinar. There were no pulvinar contacts in the anterior trajectory group. Analysis of structural connectivity in 1 patient from each group revealed temporal- and occipital-projecting tracts for electrodes within the anterior and medial pulvinar nuclei. Stimulated thalamic nuclei from the anterior trajectory lead did not show any temporal- or occipital-projecting tracts. CONCLUSION We demonstrate that a posterior trajectory approach to the CM is feasible, safe, and effective in drug-resistant epilepsy. This provides an alternative option when the conventional anterior approach is surgically infeasible or when dual CM/pulvinar coverage is desired.
Collapse
Affiliation(s)
- Melissa M J Chua
- Department of Neurosurgery, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Rohan Jha
- Department of Neurosurgery, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Justin M Campbell
- Department of Neurosurgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Aaron E L Warren
- Department of Neurosurgery, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Shervin Rahimpour
- Department of Neurosurgery, University of Utah Health, Salt Lake City, Utah, USA
| | - John D Rolston
- Department of Neurosurgery, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Marcuse LV, Langan M, Hof PR, Panov F, Saez I, Jimenez-Shahed J, Figee M, Mayberg H, Yoo JY, Ghatan S, Balchandani P, Fields MC. The thalamus: Structure, function, and neurotherapeutics. Neurotherapeutics 2025; 22:e00550. [PMID: 39956708 PMCID: PMC12014413 DOI: 10.1016/j.neurot.2025.e00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/18/2025] Open
Abstract
The complexity and expansive nature of thalamic research has led to numerous interventions for varied disease states. At the same time, this complexity along with siloed areas of study can hinder a comprehensive understanding. The goal of this paper is to give the reader a broader and more detailed perspective on the thalamus. In order to accomplish this goal, the paper begins with a summary of the function, electrophysiology, and anatomy of the normal thalamus. With this foundation, thalamic involvement in neurological diseases is discussed with a focus on epilepsy. Therapeutic interventions in the thalamus for epilepsy as well as movement disorders, psychiatric conditions and disorders of consciousness are described. Lastly limitations in the field and future models of data sharing and cooperation are explored.
Collapse
Affiliation(s)
- Lara V Marcuse
- Department of Neurology, Epilepsy Division, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA.
| | - Mackenzie Langan
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY 10029, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 787 11th Avenue New York, NY 10019, USA
| | - Fedor Panov
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1000 10th Ave, New York, NY 10019, USA
| | - Igancio Saez
- Department of Neurology, Epilepsy Division, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA; Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 787 11th Avenue New York, NY 10019, USA; Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1000 10th Ave, New York, NY 10019, USA; Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA
| | - Joohi Jimenez-Shahed
- Department of Neurology, Movement Disorders Division, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA
| | - Martijn Figee
- Department of Neurology, Movement Disorders Division, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA
| | - Helen Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA
| | - Ji Yeoun Yoo
- Department of Neurology, Epilepsy Division, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA
| | - Saadi Ghatan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1000 10th Ave, New York, NY 10019, USA
| | - Priti Balchandani
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY 10029, USA
| | - Madeline C Fields
- Department of Neurology, Epilepsy Division, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA
| |
Collapse
|
4
|
Tatum WO, Freund B, Middlebrooks EH, Lundstrom BN, Feyissa AM, Van Gompel JJ, Grewal SS. CM-Pf deep brain stimulation in polyneuromodulation for epilepsy. Epileptic Disord 2024; 26:626-637. [PMID: 39078093 DOI: 10.1002/epd2.20255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/09/2024] [Indexed: 07/31/2024]
Abstract
OBJECTIVE Neuromodulation is a viable option for patients with drug-resistant epilepsies. We reviewed the management of patients with two deep brain neurostimulators. In addition, patients implanted with a device targeting the centromedian-parafascicular (CM-Pf) nuclear complex supplements this report to provide an illustrative case to implantation and programming a patient with three active devices. METHODS A narrative review using PubMed and Embase identified patients with drug-resistant epilepsy implanted with more than one neurostimulator was performed. Combinations of vagus nerve stimulation (VNS), deep brain stimulation (DBS), and responsive neurostimulation (RNS) were identified. We provide a background of a newly reported case of an adult with a triple implant eventually responding to CM-Pf DBS as the third implant following suboptimal benefit from VNS and RNS. RESULTS In review of the literature, dual-device therapy is increasing in reports of use with combinations of VNS, RNS, and DBS to treat patients with drug-resistant epilepsy. We review dual-device implants with thalamic DBS device combinations, functional neural networks, and programming patients with dual devices. CM-Pf is a new target for DBS and has shown a variable response in focal epilepsy. We report the unique case of 28-year-old male with drug-resistant focal epilepsy who experienced a 75% seizure reduction with CM-Pf DBS as his third device after suboptimal responses to VNS and RNS. After 9 months, he also experienced seizure freedom from recurrent focal to bilateral tonic-clonic seizures. No medical or surgical complications or safety issues were encountered. CONCLUSION We demonstrate safety and feasibility in an adult combining active VNS, RNS, and CM-Pf DBS. Patients with dual-device therapy who experience a suboptimal response to initial device use at optimized settings should not be considered a neuromodulation "failure." Strategies to combine devices require a working knowledge of brain networks.
Collapse
Affiliation(s)
- W O Tatum
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - B Freund
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - E H Middlebrooks
- Department of Radiology, Division of Neuroradiology, Mayo Clinic, Jacksonville, Florida, USA
| | - B N Lundstrom
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - A M Feyissa
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - J J Van Gompel
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, USA
| | - S S Grewal
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
5
|
Sandoval-Bonilla BA, Vargas MFDLC, Nuñez MA, Parpaley Y, Codeiro JG, Cosio JF, de la Torre RAP, Garcia-Muñoz L. Adequate control of seizures in a case of lead migration and neuromodulation of the posterior Sylvian junction: A case report. Surg Neurol Int 2024; 15:124. [PMID: 38742005 PMCID: PMC11090593 DOI: 10.25259/sni_911_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/27/2024] [Indexed: 05/16/2024] Open
Abstract
Background This report aims to describe the neuromodulation effect on seizure control in a patient with a left hippocampal migrated electrode to the Posterior Sylvian Junction (PSJ) during a follow-up of 17 years. Case Description We report a case of a female patient with drug-resistant epilepsy who initiated at seven years old and underwent a stereotactic frame-based insertion of a left hippocampal electrode for deep brain stimulation (DBS). Posterior migration of the electrode was identified at PSJ by postoperative magnetic resonance imaging one month after surgery. A consistent seizure reduction (Engel IC) was obtained with 2v-120 uS-145 Hz, contacts 0-3 negative, casing positive DBS parameters and maintained to this day. Patient data were collected from electronic medical records preceded by obtaining an informed consent for research and publication purposes. Stimulation parameter adjustments were confirmed with the digital records of the local device provider (Medtronic). Results PSJ is a connectivity confluence point of white matter pathways in the posterior quadrant of the hemispheres. White mater DBS could be considered for research as a potential complementary target for neuromodulation of refractory epilepsy.
Collapse
Affiliation(s)
- Bayron Alexander Sandoval-Bonilla
- Associate Professor of Neurosurgery, Department of Neurosurgery, Functional NeuroOncology and Epilepsy Surgery Multidisciplinary Board, CMN Siglo XXI, IMSS, Mexico City, Mexico
| | | | | | - Yaroslav Parpaley
- Department of Neurosurgery, University Hospital Bochum, Bochum, Nordrhein-Westfalen, Germany
| | | | - Jesus Fonseca Cosio
- Department of Neurosurgery, Functional Neurosurgery Clinic, CMN Siglo XXI, IMSS, Mexico City, Mexico
| | | | - Luis Garcia-Muñoz
- Department of Radiosurgery, Functional and Stereotactic Neurosurgery, General Hospital of Mexico, Mexico City, Mexico
| |
Collapse
|
6
|
Daquin G, Bonini F. The landscape of drug resistant absence seizures in adolescents and adults: Pathophysiology, electroclinical spectrum and treatment options. Rev Neurol (Paris) 2024; 180:256-270. [PMID: 38413268 DOI: 10.1016/j.neurol.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 02/29/2024]
Abstract
The persistence of typical absence seizures (AS) in adolescence and adulthood may reduce the quality of life of patients with genetic generalized epilepsies (GGEs). The prevalence of drug resistant AS is probably underestimated in this patient population, and treatment options are relatively scarce. Similarly, atypical absence seizures in developmental and epileptic encephalopathies (DEEs) may be unrecognized, and often persist into adulthood despite improvement of more severe seizures. These two seemingly distant conditions, represented by typical AS in GGE and atypical AS in DEE, share at least partially overlapping pathophysiological and genetic mechanisms, which may be the target of drug and neurostimulation therapies. In addition, some patients with drug-resistant typical AS may present electroclinical features that lie in between the two extremes represented by these generalized forms of epilepsy.
Collapse
Affiliation(s)
- G Daquin
- Epileptology and Cerebral Rythmology, AP-HM, Timone hospital, Marseille, France
| | - F Bonini
- Epileptology and Cerebral Rythmology, AP-HM, Timone hospital, Marseille, France; Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, Marseille, France.
| |
Collapse
|
7
|
Al-Ramadhani R, Hect JL, Abel TJ. The changing landscape of palliative epilepsy surgery for Lennox Gastaut Syndrome. Front Neurol 2024; 15:1380423. [PMID: 38515452 PMCID: PMC10954786 DOI: 10.3389/fneur.2024.1380423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Lennox Gastaut Syndrome (LGS) is characterized by drug-resistant epilepsy that typically leads to decreased quality of life and deleterious neurodevelopmental comorbidities from medically refractory seizures. In recent years there has been a dramatic increase in the development and availability of novel treatment strategies for Lennox Gastaut Syndrome patient to improve seizure. Recent advances in neuromodulation and minimally invasive magnetic resonance guided laser interstitial thermal therapy (MRgLITT) have paved the way for new treatments strategies including deep brain stimulation (DBS), responsive neurostimulation (RNS), and MRgLITT corpus callosum ablation. These new strategies offer hope for children with drug-resistant generalized epilepsies, but important questions remain about the safety and effectiveness of these new approaches. In this review, we describe the opportunities presented by these new strategies and how each treatment strategy is currently being employed. Next, we will critically assess available evidence for these new approaches compared to traditional palliative epilepsy surgery approaches, such as vagus nerve stimulation (VNS) and open microsurgical corpus callosotomy (CC). Finally, we will describe future directions that would help define which of the available strategies should be employed and when.
Collapse
Affiliation(s)
- Ruba Al-Ramadhani
- Department of Pediatrics, Division of Child Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jasmine L. Hect
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Taylor J. Abel
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Castellano JF, Singla S, Barot N, Aronson JP. Stereoelectroencephalography-Guided Radiofrequency Thermocoagulation: Diagnostic and Therapeutic Implications. Brain Sci 2024; 14:110. [PMID: 38391685 PMCID: PMC10887298 DOI: 10.3390/brainsci14020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024] Open
Abstract
Despite recent medical therapeutic advances, approximately one third of patients do not attain seizure freedom with medications. This drug-resistant epilepsy population suffers from heightened morbidity and mortality. In appropriate patients, resective epilepsy surgery is far superior to continued medical therapy. Despite this efficacy, there remain drawbacks to traditional epilepsy surgery, such as the morbidity of open neurosurgical procedures as well as neuropsychological adverse effects. SEEG-guided Radiofrequency Thermocoagulation (SgRFTC) is a minimally invasive, electrophysiology-guided intervention with both diagnostic and therapeutic implications for drug-resistant epilepsy that offers a convenient adjunct or alternative to ablative and resective approaches. We review the international experience with this procedure, including methodologies, diagnostic benefit, therapeutic benefit, and safety considerations. We propose a framework in which SgRFTC may be incorporated into intracranial EEG evaluations alongside passive recording. Lastly, we discuss the potential role of SgRFTC in both delineating and reorganizing epilepsy networks.
Collapse
Affiliation(s)
- James F Castellano
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Shobhit Singla
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Niravkumar Barot
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Joshua P Aronson
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| |
Collapse
|
9
|
Warren AEL, Tobochnik S, Chua MMJ, Singh H, Stamm MA, Rolston JD. Neurostimulation for Generalized Epilepsy: Should Therapy be Syndrome-specific? Neurosurg Clin N Am 2024; 35:27-48. [PMID: 38000840 PMCID: PMC10676463 DOI: 10.1016/j.nec.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Current applications of neurostimulation for generalized epilepsy use a one-target-fits-all approach that is agnostic to the specific epilepsy syndrome and seizure type being treated. The authors describe similarities and differences between the 2 "archetypes" of generalized epilepsy-Lennox-Gastaut syndrome and Idiopathic Generalized Epilepsy-and review recent neuroimaging evidence for syndrome-specific brain networks underlying seizures. Implications for stimulation targeting and programming are discussed using 5 clinical questions: What epilepsy syndrome does the patient have? What brain networks are involved? What is the optimal stimulation target? What is the optimal stimulation paradigm? What is the plan for adjusting stimulation over time?
Collapse
Affiliation(s)
- Aaron E L Warren
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Steven Tobochnik
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa M J Chua
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hargunbir Singh
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michaela A Stamm
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - John D Rolston
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Wong GM, Hofmann K, Shlobin NA, Tsuchida TN, Gaillard WD, Oluigbo CO. Stimulation of the pulvinar nucleus of the thalamus in epilepsy: A systematic review and individual patient data (IPD) analysis. Clin Neurol Neurosurg 2023; 235:108041. [PMID: 37979562 DOI: 10.1016/j.clineuro.2023.108041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 11/20/2023]
Abstract
Emerging neuromodulatory treatments, such as deep brain stimulation (DBS) and responsive neurostimulation (RNS), have shown promise in reducing drug-resistant seizures. While centromedian thalamic nucleus and anterior thalamic nucleus stimulation have been effective in certain types of seizures, limited research has explored pulvinar nucleus stimulation for epilepsy. To address this gap, we conducted a systematic review and individual patient data analysis. Of 78 resultant articles, 5 studies with transient stimulation and chronic stimulation of the pulvinar nucleus were included. Of the 20 patients reviewed, 65% of patients had temporal lobe seizures, while 20% had temporooccipital/occipital lobe seizures. Transient stimulation studies via stereoelectroencephalography (SEEG) showed pulvinar evoked potential response rates of 80% in the mesial temporal region, 76% in the temporal neocortex, and 67% in the TP junction. Another study reported clinically less severe seizures in 62.5% of patients with pulvinar stimulation. In chronic stimulation studies, 80% of patients responded to RNS or DBS, and 2 of 4 patients experienced > 90% seizure reduction. The pulvinar nucleus of the thalamus emerges as a potential target for chronic stimulation in drug-resistant epilepsy. However, knowledge regarding pulvinar connectivity and chronic stimulation remains limited. Further research should investigate specific subregions of the pulvinar for epilepsy treatment. Understanding the role of pulvinar stimulation and its cortical connectivity will advance therapeutic interventions for epilepsy patients.
Collapse
Affiliation(s)
- Georgia M Wong
- Department of Neurological Surgery, Georgetown University School of Medicine, Washington, DC, USA.
| | - Katherine Hofmann
- Department of Neurosurgery, Children's National Hospital, Washington, DC, USA
| | - Nathan A Shlobin
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tammy N Tsuchida
- Department of Neurology, Children's National Hospital, Washington, DC, USA
| | - William D Gaillard
- Department of Neurology, Children's National Hospital, Washington, DC, USA
| | - Chima O Oluigbo
- Department of Neurosurgery, Children's National Hospital, Washington, DC, USA
| |
Collapse
|
11
|
Chua MMJ, Vissani M, Liu DD, Schaper FLWVJ, Warren AEL, Caston R, Dworetzky BA, Bubrick EJ, Sarkis RA, Cosgrove GR, Rolston JD. Initial case series of a novel sensing deep brain stimulation device in drug-resistant epilepsy and consistent identification of alpha/beta oscillatory activity: A feasibility study. Epilepsia 2023; 64:2586-2603. [PMID: 37483140 DOI: 10.1111/epi.17722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVE Here, we report a retrospective, single-center experience with a novel deep brain stimulation (DBS) device capable of chronic local field potential (LFP) recording in drug-resistant epilepsy (DRE) and explore potential electrophysiological biomarkers that may aid DBS programming and outcome tracking. METHODS Five patients with DRE underwent thalamic DBS, targeting either the bilateral anterior (n = 3) or centromedian (n = 2) nuclei. Postoperative electrode lead localizations were visualized in Lead-DBS software. Local field potentials recorded over 12-18 months were tracked, and changes in power were associated with patient events, medication changes, and stimulation. We utilized a combination of lead localization, in-clinic broadband LFP recordings, real-time LFP response to stimulation, and chronic recordings to guide DBS programming. RESULTS Four patients (80%) experienced a >50% reduction in seizure frequency, whereas one patient had no significant reduction. Peaks in the alpha and/or beta frequency range were observed in the thalamic LFPs of each patient. Stimulation suppressed these LFP peaks in a dose-dependent manner. Chronic timeline data identified changes in LFP amplitude associated with stimulation, seizure occurrences, and medication changes. We also noticed a circadian pattern of LFP amplitudes in all patients. Button-presses during seizure events via a mobile application served as a digital seizure diary and were associated with elevations in LFP power. SIGNIFICANCE We describe an initial cohort of patients with DRE utilizing a novel sensing DBS device to characterize potential LFP biomarkers of epilepsy that may be associated with seizure control after DBS in DRE. We also present a new workflow utilizing the Percept device that may optimize DBS programming using real-time and chronic LFP recording.
Collapse
Affiliation(s)
- Melissa M J Chua
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Matteo Vissani
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David D Liu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Frederic L W V J Schaper
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aaron E L Warren
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rose Caston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| | - Barbara A Dworetzky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ellen J Bubrick
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rani A Sarkis
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - G Rees Cosgrove
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John D Rolston
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
12
|
Cui Z, Wang J, Mao Z, Ling Z, Zhang J, Chen T. Long-term efficacy of deep brain stimulation of the subthalamic nucleus in patients with pharmacologically intractable epilepsy: A case series of six patients. Epileptic Disord 2023; 25:712-723. [PMID: 37518904 DOI: 10.1002/epd2.20129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/14/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVE Epilepsy is one of the widespread neurological illnesses, and about 20%-40% of epilepsy patients are pharmacoresistant. We aimed to assess the long-term efficacy of subthalamic nucleus (STN) deep brain stimulation (DBS) for drug-resistant epilepsy. METHODS We included pharmacologically intractable epilepsy patients who had STN-DBS at the Chinese People's Liberation Army General Hospital between June 2016 and December 2018. We retrospectively evaluated pre- and postoperative clinical outcomes, including seizure frequency, seizure type, anti-seizure medication, cognitive function, anatomical target coordinates, stimulation parameters, and adverse events following the surgical procedure. Six patients with a mean follow-up of 49.3 ± 10.2 months, were included. RESULTS Seizure frequency decreased by an average of 64.0% after STN-DBS at last year follow-up (p = .046), and one patient (1/6) achieved seizure-free status. For seizure type, anti-seizure medication, and cognitive function, there were no significant differences between pre-and post-operation (p > .05). In terms of stimulation parameters, the pulse width, amplitude, and frequency were 58.3 ± 9.4 μs, 2.5 ± .7 V, and 122.5 ± 15.7 Hz, respectively. None of the patients showed normal electroencephalography during the electroencephalography reexamination. There were no surgery-related complications, and chronic STN stimulation was generally well tolerated in five patients. However, one patient (1/6) had a difficulty of dyskinesia in the right arm. SIGNIFICANCE In conclusion, neuromodulation of the STN by DBS is a promising option for patients with pharmacologically intractable epilepsy, especially for whose epileptic zone originates mainly from the frontoparietal region and who are unsuitable for resective surgery. Further prospective multicenter studies with a larger sample size are necessary for further exploration.
Collapse
Affiliation(s)
- Zhiqiang Cui
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Jian Wang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Zhiqi Mao
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Zhipei Ling
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Jianning Zhang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Tong Chen
- Department of Neurology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Mesraoua B, Brigo F, Lattanzi S, Abou-Khalil B, Al Hail H, Asadi-Pooya AA. Drug-resistant epilepsy: Definition, pathophysiology, and management. J Neurol Sci 2023; 452:120766. [PMID: 37597343 DOI: 10.1016/j.jns.2023.120766] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/24/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
There are currently >51 million people with epilepsy (PWE) in the world and every year >4.9 million people develop new-onset epilepsy. The cornerstone of treatment in PWE is drug therapy with antiseizure medications (ASMs). However, about one-third of PWE do not achieve seizure control and do not respond well to drug therapy despite the use of appropriate ASMs [drug-resistant epilepsy (DRE)]. The aims of the current narrative review are to discuss the definition of DRE, explain the biological underpinnings and clinical biomarkers of this condition, and finally to suggest practical management strategies to tackle this issue appropriately, in a concise manner.
Collapse
Affiliation(s)
- Boulenouar Mesraoua
- Neurosciences Department, Hamad Medical Corporation and Weill Cornell Medical College, Doha, Qatar.
| | - Francesco Brigo
- Department of Neurology, Hospital of Merano (SABES-ASDAA), Merano-Meran, Italy
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | | | - Hassan Al Hail
- Neurosciences Department, Hamad Medical Corporation and Weill Cornell Medical College, Doha, Qatar.
| | - Ali A Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
14
|
Smith KM, Wirrell EC, Andrade DM, Choi H, Trenité DKN, Jones H, Knupp KG, Mugar J, Nordli DR, Riva A, Stern JM, Striano P, Thiele EA, Zawar I. Management of epilepsy with eyelid myoclonia: Results of an international expert consensus panel. Epilepsia 2023; 64:2342-2350. [PMID: 37326215 DOI: 10.1111/epi.17682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
OBJECTIVE There are limited data about the treatment and management of epilepsy with eyelid myoclonia (EEM). The objective of this study was to determine areas of consensus among an international panel of experts for the management of EEM (formerly known as Jeavons syndrome). METHODS An international steering committee was convened of physicians and patients/caregivers with expertise in EEM. This committee summarized the current literature and identified an international panel of experts (comprising 25 physicians and five patients/caregivers). This panel participated in a modified Delphi process, including three rounds of surveys to determine areas of consensus for the treatment, other areas of management, and prognosis for EEM. RESULTS There was a strong consensus for valproic acid as the first-line treatment, with levetiracetam or lamotrigine as preferable alternatives for women of childbearing age. There was a moderate consensus that ethosuximide and clobazam are also efficacious. There was a strong consensus to avoid sodium channel-blocking medications, except for lamotrigine, as they may worsen seizure control. There was consensus that seizures typically persist into adulthood, with remission occurring in <50% of patients. There was less agreement about other areas of management, including dietary therapy, lens therapy, candidacy for driving, and outcome. SIGNIFICANCE This international expert panel identified multiple areas of consensus regarding the optimal management of EEM. These areas of consensus may inform clinical practice to improve the management of EEM. In addition, multiple areas with less agreement were identified, which highlight topics for further research.
Collapse
Affiliation(s)
- Kelsey M Smith
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Danielle M Andrade
- Department of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Hyunmi Choi
- Department of Neurology, Columbia University, New York, New York, USA
| | | | | | - Kelly G Knupp
- Department of Pediatrics, University of Colorado, Aurora, Colorado, USA
| | | | - Douglas R Nordli
- Department of Neurology, University of Chicago, Chicago, Illinois, USA
| | - Antonella Riva
- L'Istituto di Ricovero e Cura a Carattere Scientifico Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Genoa, Italy
| | - John M Stern
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| | - Pasquale Striano
- L'Istituto di Ricovero e Cura a Carattere Scientifico Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Genoa, Italy
| | - Elizabeth A Thiele
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ifrah Zawar
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
15
|
Wu TQ, Kaboodvand N, McGinn RJ, Veit M, Davey Z, Datta A, Graber KD, Meador KJ, Fisher R, Buch V, Parvizi J. Multisite thalamic recordings to characterize seizure propagation in the human brain. Brain 2023; 146:2792-2802. [PMID: 37137813 PMCID: PMC10316776 DOI: 10.1093/brain/awad121] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/22/2023] [Accepted: 03/23/2023] [Indexed: 05/05/2023] Open
Abstract
Neuromodulation of the anterior nuclei of the thalamus (ANT) has shown to be efficacious in a subset of patients with refractory focal epilepsy. One important uncertainty is to what extent thalamic subregions other than the ANT could be recruited more prominently in the propagation of focal onset seizures. We designed the current study to simultaneously monitor the engagement of the ANT, mediodorsal (MD) and pulvinar (PUL) nuclei during seizures in patients who could be candidates for thalamic neuromodulation. We studied 11 patients with clinical manifestations of presumed temporal lobe epilepsy (TLE) undergoing invasive stereo-encephalography (sEEG) monitoring to confirm the source of their seizures. We extended cortical electrodes to reach the ANT, MD and PUL nuclei of the thalamus. More than one thalamic subdivision was simultaneously interrogated in nine patients. We recorded seizures with implanted electrodes across various regions of the brain and documented seizure onset zones (SOZ) in each recorded seizure. We visually identified the first thalamic subregion to be involved in seizure propagation. Additionally, in eight patients, we applied repeated single pulse electrical stimulation in each SOZ and recorded the time and prominence of evoked responses across the implanted thalamic regions. Our approach for multisite thalamic sampling was safe and caused no adverse events. Intracranial EEG recordings confirmed SOZ in medial temporal lobe, insula, orbitofrontal and temporal neocortical sites, highlighting the importance of invasive monitoring for accurate localization of SOZs. In all patients, seizures with the same propagation network and originating from the same SOZ involved the same thalamic subregion, with a stereotyped thalamic EEG signature. Qualitative visual reviews of ictal EEGs were largely consistent with the quantitative analysis of the corticothalamic evoked potentials, and both documented that thalamic nuclei other than ANT could have the earliest participation in seizure propagation. Specifically, pulvinar nuclei were involved earlier and more prominently than ANT in more than half of the patients. However, which specific thalamic subregion first demonstrated ictal activity could not be reliably predicted based on clinical semiology or lobar localization of SOZs. Our findings document the feasibility and safety of bilateral multisite sampling from the human thalamus. This may allow more personalized thalamic targets to be identified for neuromodulation. Future studies are needed to determine if a personalized thalamic neuromodulation leads to greater improvements in clinical outcome.
Collapse
Affiliation(s)
- Teresa Q Wu
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
- Human Intracranial Cognitive Electrophysiology Program, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
| | - Neda Kaboodvand
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
- Human Intracranial Cognitive Electrophysiology Program, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
| | - Ryan J McGinn
- Department of Neurology and Neurological Sciences, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
| | - Mike Veit
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
- Human Intracranial Cognitive Electrophysiology Program, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
| | - Zachary Davey
- Department of Neurology and Neurological Sciences, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
| | - Anjali Datta
- Human Intracranial Cognitive Electrophysiology Program, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
- Department of Neurosurgery, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
| | - Kevin D Graber
- Department of Neurology and Neurological Sciences, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
| | - Kimford J Meador
- Department of Neurology and Neurological Sciences, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
| | - Robert Fisher
- Department of Neurology and Neurological Sciences, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
| | - Vivek Buch
- Human Intracranial Cognitive Electrophysiology Program, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
- Department of Neurosurgery, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
| | - Josef Parvizi
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
- Human Intracranial Cognitive Electrophysiology Program, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
- Department of Neurosurgery, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
| |
Collapse
|
16
|
Chandrabhatla AS, Pomeraniec IJ, Horgan TM, Wat EK, Ksendzovsky A. Landscape and future directions of machine learning applications in closed-loop brain stimulation. NPJ Digit Med 2023; 6:79. [PMID: 37106034 PMCID: PMC10140375 DOI: 10.1038/s41746-023-00779-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/17/2023] [Indexed: 04/29/2023] Open
Abstract
Brain stimulation (BStim) encompasses multiple modalities (e.g., deep brain stimulation, responsive neurostimulation) that utilize electrodes implanted in deep brain structures to treat neurological disorders. Currently, BStim is primarily used to treat movement disorders such as Parkinson's, though indications are expanding to include neuropsychiatric disorders like depression and schizophrenia. Traditional BStim systems are "open-loop" and deliver constant electrical stimulation based on manually-determined parameters. Advancements in BStim have enabled development of "closed-loop" systems that analyze neural biomarkers (e.g., local field potentials in the sub-thalamic nucleus) and adjust electrical modulation in a dynamic, patient-specific, and energy efficient manner. These closed-loop systems enable real-time, context-specific stimulation adjustment to reduce symptom burden. Machine learning (ML) has emerged as a vital component in designing these closed-loop systems as ML models can predict / identify presence of disease symptoms based on neural activity and adaptively learn to modulate stimulation. We queried the US National Library of Medicine PubMed database to understand the role of ML in developing closed-loop BStim systems to treat epilepsy, movement disorders, and neuropsychiatric disorders. Both neural and non-neural network ML algorithms have successfully been leveraged to create closed-loop systems that perform comparably to open-loop systems. For disorders in which the underlying neural pathophysiology is relatively well understood (e.g., Parkinson's, essential tremor), most work has involved refining ML models that can classify neural signals as aberrant or normal. The same is seen for epilepsy, where most current research has focused on identifying optimal ML model design and integrating closed-loop systems into existing devices. For neuropsychiatric disorders, where the underlying pathologic neural circuitry is still being investigated, research is focused on identifying biomarkers (e.g., local field potentials from brain nuclei) that ML models can use to identify onset of symptoms and stratify severity of disease.
Collapse
Affiliation(s)
- Anirudha S Chandrabhatla
- School of Medicine, University of Virginia Health Sciences Center, Charlottesville, VA, 22903, USA
| | - I Jonathan Pomeraniec
- Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
- Department of Neurosurgery, University of Virginia Health Sciences Center, Charlottesville, VA, 22903, USA.
| | - Taylor M Horgan
- School of Medicine, University of Virginia Health Sciences Center, Charlottesville, VA, 22903, USA
| | - Elizabeth K Wat
- School of Medicine, University of Virginia Health Sciences Center, Charlottesville, VA, 22903, USA
| | - Alexander Ksendzovsky
- Department of Neurosurgery, University of Maryland Medical System, Baltimore, MD, 21201, USA
| |
Collapse
|
17
|
Zheng B, Liu DD, Theyel BB, Abdulrazeq H, Kimata AR, Lauro PM, Asaad WF. Thalamic neuromodulation in epilepsy: A primer for emerging circuit-based therapies. Expert Rev Neurother 2023; 23:123-140. [PMID: 36731858 DOI: 10.1080/14737175.2023.2176752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Epilepsy is a common, often debilitating disease of hyperexcitable neural networks. While medically intractable cases may benefit from surgery, there may be no single, well-localized focus for resection or ablation. In such cases, approaching the disease from a network-based perspective may be beneficial. AREAS COVERED Herein, the authors provide a narrative review of normal thalamic anatomy and physiology and propose general strategies for preventing and/or aborting seizures by modulating this structure. Additionally, they make specific recommendations for targeting the thalamus within different contexts, motivated by a more detailed discussion of its distinct nuclei and their respective connectivity. By describing important principles governing thalamic function and its involvement in seizure networks, the authors aim to provide a primer for those now entering this fast-growing field of thalamic neuromodulation for epilepsy. EXPERT OPINION The thalamus is critically involved with the function of many cortical and subcortical areas, suggesting it may serve as a compelling node for preventing or aborting seizures, and so it has increasingly been targeted for the surgical treatment of epilepsy. As various thalamic neuromodulation strategies for seizure control are developed, there is a need to ground such interventions in a mechanistic, circuit-based framework.
Collapse
Affiliation(s)
- Bryan Zheng
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - David D Liu
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Brian B Theyel
- Department of Psychiatry, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Hael Abdulrazeq
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - Anna R Kimata
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - Peter M Lauro
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Wael F Asaad
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA.,The Carney Institute for Brain Science, Brown University, Providence, RI, USA.,The Norman Prince Neurosciences Institute, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|