1
|
Lin Y, Atad DA, Zanesco AP. Using Electroencephalography to Advance Mindfulness Science: A Survey of Emerging Methods and Approaches. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:342-349. [PMID: 39369988 PMCID: PMC11971390 DOI: 10.1016/j.bpsc.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Throughout the brief history of contemplative neuroscience, electroencephalography (EEG) has been a valuable and enduring methodology used to elucidate the neural correlates and mechanisms of mindfulness. In this review, we provide a reminder that longevity should not be conflated with obsoletion and that EEG continues to offer exceptional promise for addressing key questions and challenges that pervade the field today. Toward this end, we first outline the unique advantages of EEG from a research strategy and experimental design perspective, then highlight an array of new sophisticated data analytic approaches and translational paradigms. Along the way, we provide illustrative examples from our own work and the broader literature to showcase how these innovations can be leveraged to spark new insights and stimulate progress across both basic science and translational applications of mindfulness. Ultimately, we argue that EEG still has much to contribute to contemplative neuroscience, and we hope to solicit the interest of other investigators to make full use of its capabilities in service of maximizing its potential within the field.
Collapse
Affiliation(s)
- Yanli Lin
- Department of Psychological Science, University of Arkansas, Fayetteville, Arkansas.
| | - Daniel A Atad
- Department of Counseling and Human Development, Faculty of Education, University of Haifa, Haifa, Israel; Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel; Edmond Safra Brain Research Center, Faculty of Education, University of Haifa, Haifa, Israel
| | - Anthony P Zanesco
- Department of Psychology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
2
|
Lewis-Peacock JA, Wager TD, Braver TS. Decoding Mindfulness With Multivariate Predictive Models. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:369-376. [PMID: 39542170 DOI: 10.1016/j.bpsc.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Identifying the brain mechanisms that underlie the salutary effects of mindfulness meditation and related practices is a critical goal of contemplative neuroscience. Here, we suggest that the use of multivariate predictive models represents a promising and powerful methodology that could be better leveraged to pursue this goal. This approach incorporates key principles of multivariate decoding, predictive classification, and model-based analyses, all of which represent a strong departure from conventional brain mapping approaches. We highlight 2 such research strategies-state induction and neuromarker identification-and provide illustrative examples of how these approaches have been used to examine central questions in mindfulness, such as the distinction between internally directed focused attention and mind wandering and the effects of mindfulness interventions on somatic pain and drug-related cravings. We conclude by discussing important issues to be addressed with future research, including key tradeoffs between using a personalized versus population-based approach to predictive modeling.
Collapse
Affiliation(s)
| | | | - Todd S Braver
- Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
3
|
Aviad N, Moskovich O, Orenstein O, Benger E, Delorme A, Bernstein A. Oscillating Mindfully: Using Machine Learning to Characterize Systems-Level Electrophysiological Activity During Focused Attention Meditation. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100423. [PMID: 39911539 PMCID: PMC11795585 DOI: 10.1016/j.bpsgos.2024.100423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 02/07/2025] Open
Abstract
Background There has been rapid growth of neuroelectrophysiological studies that aspire to uncover the "black box" of mindfulness and meditation. Reliance on traditional data analysis methods hinders understanding of the complex, nonlinear, multidimensional, and systemic nature of the functional neuroelectrophysiology of meditation states. Methods Thus, to reveal the complex systemic neuroelectrophysiology of meditation, we applied a machine learning extreme gradient boosting classification algorithm and 4 complementary feature importance methods to extract systemic electroencephalography features characterizing mindful states from electroencephalography recorded during a focused attention meditation and a control mind-wandering state among 26 experienced meditators. Results The algorithm classified meditation versus mind-wandering states with 83% accuracy, with an area under the receiver operating characteristic curve of 79% and F1 score of 74%. Feature importance techniques identified 10 electroencephalography features associated with increased power and coherence of high-frequency oscillations during focused attention meditation relative to an instructed mind-wandering state. Conclusions The findings help delineate the complex systemic oscillatory activity that characterizes meditation.
Collapse
Affiliation(s)
- Noga Aviad
- Observing Minds Laboratory, School of Psychological Science, University of Haifa, Haifa, Israel
| | | | | | - Etam Benger
- Rachel and Selim Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Arnaud Delorme
- Swartz Center for Computational Neuroscience, University of California, San Diego, La Jolla, California
- Centre de Recherche Cerveau et Cognition, Toulouse III University, Toulouse, France
| | - Amit Bernstein
- Observing Minds Laboratory, School of Psychological Science, University of Haifa, Haifa, Israel
- Center for Healthy Minds, Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
4
|
Gkintoni E, Aroutzidis A, Antonopoulou H, Halkiopoulos C. From Neural Networks to Emotional Networks: A Systematic Review of EEG-Based Emotion Recognition in Cognitive Neuroscience and Real-World Applications. Brain Sci 2025; 15:220. [PMID: 40149742 PMCID: PMC11940461 DOI: 10.3390/brainsci15030220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES This systematic review presents how neural and emotional networks are integrated into EEG-based emotion recognition, bridging the gap between cognitive neuroscience and practical applications. METHODS Following PRISMA, 64 studies were reviewed that outlined the latest feature extraction and classification developments using deep learning models such as CNNs and RNNs. RESULTS Indeed, the findings showed that the multimodal approaches were practical, especially the combinations involving EEG with physiological signals, thus improving the accuracy of classification, even surpassing 90% in some studies. Key signal processing techniques used during this process include spectral features, connectivity analysis, and frontal asymmetry detection, which helped enhance the performance of recognition. Despite these advances, challenges remain more significant in real-time EEG processing, where a trade-off between accuracy and computational efficiency limits practical implementation. High computational cost is prohibitive to the use of deep learning models in real-world applications, therefore indicating a need for the development and application of optimization techniques. Aside from this, the significant obstacles are inconsistency in labeling emotions, variation in experimental protocols, and the use of non-standardized datasets regarding the generalizability of EEG-based emotion recognition systems. DISCUSSION These challenges include developing adaptive, real-time processing algorithms, integrating EEG with other inputs like facial expressions and physiological sensors, and a need for standardized protocols for emotion elicitation and classification. Further, related ethical issues with respect to privacy, data security, and machine learning model biases need to be much more proclaimed to responsibly apply research on emotions to areas such as healthcare, human-computer interaction, and marketing. CONCLUSIONS This review provides critical insight into and suggestions for further development in the field of EEG-based emotion recognition toward more robust, scalable, and ethical applications by consolidating current methodologies and identifying their key limitations.
Collapse
Affiliation(s)
- Evgenia Gkintoni
- Department of Educational Sciences and Social Work, University of Patras, 26504 Patras, Greece;
| | - Anthimos Aroutzidis
- Department of Management Science and Technology, University of Patras, 26334 Patras, Greece; (A.A.); (H.A.)
| | - Hera Antonopoulou
- Department of Management Science and Technology, University of Patras, 26334 Patras, Greece; (A.A.); (H.A.)
| | - Constantinos Halkiopoulos
- Department of Management Science and Technology, University of Patras, 26334 Patras, Greece; (A.A.); (H.A.)
| |
Collapse
|
5
|
Halkiopoulos C, Gkintoni E, Aroutzidis A, Antonopoulou H. Advances in Neuroimaging and Deep Learning for Emotion Detection: A Systematic Review of Cognitive Neuroscience and Algorithmic Innovations. Diagnostics (Basel) 2025; 15:456. [PMID: 40002607 PMCID: PMC11854508 DOI: 10.3390/diagnostics15040456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: The following systematic review integrates neuroimaging techniques with deep learning approaches concerning emotion detection. It, therefore, aims to merge cognitive neuroscience insights with advanced algorithmic methods in pursuit of an enhanced understanding and applications of emotion recognition. Methods: The study was conducted following PRISMA guidelines, involving a rigorous selection process that resulted in the inclusion of 64 empirical studies that explore neuroimaging modalities such as fMRI, EEG, and MEG, discussing their capabilities and limitations in emotion recognition. It further evaluates deep learning architectures, including neural networks, CNNs, and GANs, in terms of their roles in classifying emotions from various domains: human-computer interaction, mental health, marketing, and more. Ethical and practical challenges in implementing these systems are also analyzed. Results: The review identifies fMRI as a powerful but resource-intensive modality, while EEG and MEG are more accessible with high temporal resolution but limited by spatial accuracy. Deep learning models, especially CNNs and GANs, have performed well in classifying emotions, though they do not always require large and diverse datasets. Combining neuroimaging data with behavioral and cognitive features improves classification performance. However, ethical challenges, such as data privacy and bias, remain significant concerns. Conclusions: The study has emphasized the efficiencies of neuroimaging and deep learning in emotion detection, while various ethical and technical challenges were also highlighted. Future research should integrate behavioral and cognitive neuroscience advances, establish ethical guidelines, and explore innovative methods to enhance system reliability and applicability.
Collapse
Affiliation(s)
- Constantinos Halkiopoulos
- Department of Management Science and Technology, University of Patras, 26334 Patras, Greece; (C.H.); (A.A.); (H.A.)
| | - Evgenia Gkintoni
- Department of Educational Sciences and Social Work, University of Patras, 26504 Patras, Greece
| | - Anthimos Aroutzidis
- Department of Management Science and Technology, University of Patras, 26334 Patras, Greece; (C.H.); (A.A.); (H.A.)
| | - Hera Antonopoulou
- Department of Management Science and Technology, University of Patras, 26334 Patras, Greece; (C.H.); (A.A.); (H.A.)
| |
Collapse
|
6
|
Mitsea E, Drigas A, Skianis C. Digitally Assisted Mindfulness in Training Self-Regulation Skills for Sustainable Mental Health: A Systematic Review. Behav Sci (Basel) 2023; 13:1008. [PMID: 38131865 PMCID: PMC10740653 DOI: 10.3390/bs13121008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
The onset of the COVID-19 pandemic has led to an increased demand for mental health interventions, with a special focus on digitally assisted ones. Self-regulation describes a set of meta-skills that enable one to take control over his/her mental health and it is recognized as a vital indicator of well-being. Mindfulness training is a promising training strategy for promoting self-regulation, behavioral change, and mental well-being. A growing body of research outlines that smart technologies are ready to revolutionize the way mental health training programs take place. Artificial intelligence (AI); extended reality (XR) including virtual reality (VR), augmented reality (AR), and mixed reality (MR); as well as the advancements in brain computer interfaces (BCIs) are ready to transform these mental health training programs. Mindfulness-based interventions assisted by smart technologies for mental, emotional, and behavioral regulation seem to be a crucial yet under-investigated issue. The current systematic review paper aims to explore whether and how smart technologies can assist mindfulness training for the development of self-regulation skills among people at risk of mental health issues as well as populations with various clinical characteristics. The PRISMA 2020 methodology was utilized to respond to the objectives and research questions using a total of sixty-six experimental studies that met the inclusion criteria. The results showed that digitally assisted mindfulness interventions supported by smart technologies, including AI-based applications, chatbots, virtual coaches, immersive technologies, and brain-sensing headbands, can effectively assist trainees in developing a wide range of cognitive, emotional, and behavioral self-regulation skills, leading to a greater satisfaction of their psychological needs, and thus mental wellness. These results may provide positive feedback for developing smarter and more inclusive training environments, with a special focus on people with special training needs or disabilities.
Collapse
Affiliation(s)
- Eleni Mitsea
- Net Media Lab & Mind & Brain R&D, Institute of Informatics & Telecommunications, National Centre of Scientific Research ‘Demokritos’ Athens, Agia Paraskevi, 15341 Athens, Greece;
- Department of Information and Communication Systems Engineering, University of Aegean, 82300 Mytilene, Greece;
| | - Athanasios Drigas
- Net Media Lab & Mind & Brain R&D, Institute of Informatics & Telecommunications, National Centre of Scientific Research ‘Demokritos’ Athens, Agia Paraskevi, 15341 Athens, Greece;
| | - Charalabos Skianis
- Department of Information and Communication Systems Engineering, University of Aegean, 82300 Mytilene, Greece;
| |
Collapse
|
7
|
Wang Q, Smythe D, Cao J, Hu Z, Proctor KJ, Owens AP, Zhao Y. Characterisation of Cognitive Load Using Machine Learning Classifiers of Electroencephalogram Data. SENSORS (BASEL, SWITZERLAND) 2023; 23:8528. [PMID: 37896621 PMCID: PMC10611194 DOI: 10.3390/s23208528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
A high cognitive load can overload a person, potentially resulting in catastrophic accidents. It is therefore important to ensure the level of cognitive load associated with safety-critical tasks (such as driving a vehicle) remains manageable for drivers, enabling them to respond appropriately to changes in the driving environment. Although electroencephalography (EEG) has attracted significant interest in cognitive load research, few studies have used EEG to investigate cognitive load in the context of driving. This paper presents a feasibility study on the simulation of various levels of cognitive load through designing and implementing four driving tasks. We employ machine learning-based classification techniques using EEG recordings to differentiate driving conditions. An EEG dataset containing these four driving tasks from a group of 20 participants was collected to investigate whether EEG can be used as an indicator of changes in cognitive load. The collected dataset was used to train four Deep Neural Networks and four Support Vector Machine classification models. The results showed that the best model achieved a classification accuracy of 90.37%, utilising statistical features from multiple frequency bands in 24 EEG channels. Furthermore, the Gamma and Beta bands achieved higher classification accuracy than the Alpha and Theta bands during the analysis. The outcomes of this study have the potential to enhance the Human-Machine Interface of vehicles, contributing to improved safety.
Collapse
Affiliation(s)
- Qi Wang
- School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield MK43 0AL, UK; (Q.W.); (D.S.); (J.C.); (Z.H.)
| | - Daniel Smythe
- School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield MK43 0AL, UK; (Q.W.); (D.S.); (J.C.); (Z.H.)
| | - Jun Cao
- School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield MK43 0AL, UK; (Q.W.); (D.S.); (J.C.); (Z.H.)
| | - Zhilin Hu
- School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield MK43 0AL, UK; (Q.W.); (D.S.); (J.C.); (Z.H.)
| | - Karl J. Proctor
- Jaguar Land Rover Research, Coventry CV4 7AL, UK; (K.J.P.); (A.P.O.)
| | - Andrew P. Owens
- Jaguar Land Rover Research, Coventry CV4 7AL, UK; (K.J.P.); (A.P.O.)
| | - Yifan Zhao
- School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield MK43 0AL, UK; (Q.W.); (D.S.); (J.C.); (Z.H.)
| |
Collapse
|