1
|
Bruel A, Abadía I, Collin T, Sakr I, Lorach H, Luque NR, Ros E, Ijspeert A. The spinal cord facilitates cerebellar upper limb motor learning and control; inputs from neuromusculoskeletal simulation. PLoS Comput Biol 2024; 20:e1011008. [PMID: 38166093 PMCID: PMC10786408 DOI: 10.1371/journal.pcbi.1011008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 01/12/2024] [Accepted: 12/12/2023] [Indexed: 01/04/2024] Open
Abstract
Complex interactions between brain regions and the spinal cord (SC) govern body motion, which is ultimately driven by muscle activation. Motor planning or learning are mainly conducted at higher brain regions, whilst the SC acts as a brain-muscle gateway and as a motor control centre providing fast reflexes and muscle activity regulation. Thus, higher brain areas need to cope with the SC as an inherent and evolutionary older part of the body dynamics. Here, we address the question of how SC dynamics affects motor learning within the cerebellum; in particular, does the SC facilitate cerebellar motor learning or constitute a biological constraint? We provide an exploratory framework by integrating biologically plausible cerebellar and SC computational models in a musculoskeletal upper limb control loop. The cerebellar model, equipped with the main form of cerebellar plasticity, provides motor adaptation; whilst the SC model implements stretch reflex and reciprocal inhibition between antagonist muscles. The resulting spino-cerebellar model is tested performing a set of upper limb motor tasks, including external perturbation studies. A cerebellar model, lacking the implemented SC model and directly controlling the simulated muscles, was also tested in the same. The performances of the spino-cerebellar and cerebellar models were then compared, thus allowing directly addressing the SC influence on cerebellar motor adaptation and learning, and on handling external motor perturbations. Performance was assessed in both joint and muscle space, and compared with kinematic and EMG recordings from healthy participants. The differences in cerebellar synaptic adaptation between both models were also studied. We conclude that the SC facilitates cerebellar motor learning; when the SC circuits are in the loop, faster convergence in motor learning is achieved with simpler cerebellar synaptic weight distributions. The SC is also found to improve robustness against external perturbations, by better reproducing and modulating muscle cocontraction patterns.
Collapse
Affiliation(s)
- Alice Bruel
- Biorobotics Laboratory, EPFL, Lausanne, Switzerland
| | - Ignacio Abadía
- Research Centre for Information and Communication Technologies, Department of Computer Engineering, Automation and Robotics, University of Granada, Granada, Spain
| | | | - Icare Sakr
- NeuroRestore, EPFL, Lausanne, Switzerland
| | | | - Niceto R. Luque
- Research Centre for Information and Communication Technologies, Department of Computer Engineering, Automation and Robotics, University of Granada, Granada, Spain
| | - Eduardo Ros
- Research Centre for Information and Communication Technologies, Department of Computer Engineering, Automation and Robotics, University of Granada, Granada, Spain
| | | |
Collapse
|
2
|
Vijayan A, Diwakar S. A cerebellum inspired spiking neural network as a multi-model for pattern classification and robotic trajectory prediction. Front Neurosci 2022; 16:909146. [DOI: 10.3389/fnins.2022.909146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/02/2022] [Indexed: 11/29/2022] Open
Abstract
Spiking neural networks were introduced to understand spatiotemporal information processing in neurons and have found their application in pattern encoding, data discrimination, and classification. Bioinspired network architectures are considered for event-driven tasks, and scientists have looked at different theories based on the architecture and functioning. Motor tasks, for example, have networks inspired by cerebellar architecture where the granular layer recodes sparse representations of the mossy fiber (MF) inputs and has more roles in motor learning. Using abstractions from cerebellar connections and learning rules of deep learning network (DLN), patterns were discriminated within datasets, and the same algorithm was used for trajectory optimization. In the current work, a cerebellum-inspired spiking neural network with dynamics of cerebellar neurons and learning mechanisms attributed to the granular layer, Purkinje cell (PC) layer, and cerebellar nuclei interconnected by excitatory and inhibitory synapses was implemented. The model’s pattern discrimination capability was tested for two tasks on standard machine learning (ML) datasets and on following a trajectory of a low-cost sensor-free robotic articulator. Tuned for supervised learning, the pattern classification capability of the cerebellum-inspired network algorithm has produced more generalized models than data-specific precision models on smaller training datasets. The model showed an accuracy of 72%, which was comparable to standard ML algorithms, such as MLP (78%), Dl4jMlpClassifier (64%), RBFNetwork (71.4%), and libSVM-linear (85.7%). The cerebellar model increased the network’s capability and decreased storage, augmenting faster computations. Additionally, the network model could also implicitly reconstruct the trajectory of a 6-degree of freedom (DOF) robotic arm with a low error rate by reconstructing the kinematic parameters. The variability between the actual and predicted trajectory points was noted to be ± 3 cm (while moving to a position in a cuboid space of 25 × 30 × 40 cm). Although a few known learning rules were implemented among known types of plasticity in the cerebellum, the network model showed a generalized processing capability for a range of signals, modulating the data through the interconnected neural populations. In addition to potential use on sensor-free or feed-forward based controllers for robotic arms and as a generalized pattern classification algorithm, this model adds implications to motor learning theory.
Collapse
|
3
|
Migalev AS, Vigasina KD, Gotovtsev PM. A review of motor neural system robotic modeling approaches and instruments. BIOLOGICAL CYBERNETICS 2022; 116:271-306. [PMID: 35041073 DOI: 10.1007/s00422-021-00918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
In this review, we are considering an actively developing tool in neuroscience-robotic modeling. The new perspective and existing application fields, tools, and methods are discussed. We try to determine starting positions and approaches that are useful at the beginning of new research in this field. Among multiple directions of the research is robotic modeling on the level of muscles fibers and their afferents, skin surface sensors, muscles, and joints proprioceptors. Some examples of technical implementation for physical modeling are reviewed. They are software and hardware tools like event-related modeling algorithms, reduced neuron models, robotic drives constructions. We observe existing drives technologies and prospective electric motor types: switched reluctance and transverse flux motors. Next, we look at the existing examples and approaches for robotic modeling of the cerebellum and spinal cord neural networks. These examples show practical methods for the model neural network architecture and adaptation. Those methods allow the use of cortical and spinal cord reflexes for the network training and apply additional artificial blocks for data processing in other brain structures that transmit and receive data from biologically realistic models.
Collapse
Affiliation(s)
- Alexander S Migalev
- National Research Center "Kurchatov Intitute", 1, Akademika Kurchatova pl., Moscow, 123182, Russia
| | - Kristina D Vigasina
- Institute of Higher Nervous Activity and Neurophysiology of RAS, 5A, Butlerova st., Moscow, 117485, Russia
| | - Pavel M Gotovtsev
- National Research Center "Kurchatov Intitute", 1, Akademika Kurchatova pl., Moscow, 123182, Russia
- Moscow Institute of Physics and Technology 9, Institutsky per., Dolgoprudny, Moscow Region, 141701, Russian Federation
| |
Collapse
|
4
|
Javanshir A, Nguyen TT, Mahmud MAP, Kouzani AZ. Advancements in Algorithms and Neuromorphic Hardware for Spiking Neural Networks. Neural Comput 2022; 34:1289-1328. [PMID: 35534005 DOI: 10.1162/neco_a_01499] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/18/2022] [Indexed: 11/04/2022]
Abstract
Artificial neural networks (ANNs) have experienced a rapid advancement for their success in various application domains, including autonomous driving and drone vision. Researchers have been improving the performance efficiency and computational requirement of ANNs inspired by the mechanisms of the biological brain. Spiking neural networks (SNNs) provide a power-efficient and brain-inspired computing paradigm for machine learning applications. However, evaluating large-scale SNNs on classical von Neumann architectures (central processing units/graphics processing units) demands a high amount of power and time. Therefore, hardware designers have developed neuromorphic platforms to execute SNNs in and approach that combines fast processing and low power consumption. Recently, field-programmable gate arrays (FPGAs) have been considered promising candidates for implementing neuromorphic solutions due to their varied advantages, such as higher flexibility, shorter design, and excellent stability. This review aims to describe recent advances in SNNs and the neuromorphic hardware platforms (digital, analog, hybrid, and FPGA based) suitable for their implementation. We present that biological background of SNN learning, such as neuron models and information encoding techniques, followed by a categorization of SNN training. In addition, we describe state-of-the-art SNN simulators. Furthermore, we review and present FPGA-based hardware implementation of SNNs. Finally, we discuss some future directions for research in this field.
Collapse
Affiliation(s)
| | - Thanh Thi Nguyen
- School of Information Technology, Deakin University (Burwood Campus) Burwood, VIC 3125, Australia
| | - M A Parvez Mahmud
- School of Engineering, Deakin University, Geelong, VIC 3216, Australia
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
5
|
Computational epidemiology study of homeostatic compensation during sensorimotor aging. Neural Netw 2021; 146:316-333. [PMID: 34923219 DOI: 10.1016/j.neunet.2021.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/26/2021] [Accepted: 11/24/2021] [Indexed: 11/20/2022]
Abstract
The vestibulo-ocular reflex (VOR) stabilizes vision during head motion. Age-related changes of vestibular neuroanatomical properties predict a linear decay of VOR function. Nonetheless, human epidemiological data show a stable VOR function across the life span. In this study, we model cerebellum-dependent VOR adaptation to relate structural and functional changes throughout aging. We consider three neurosynaptic factors that may codetermine VOR adaptation during aging: the electrical coupling of inferior olive neurons, the long-term spike timing-dependent plasticity at parallel fiber - Purkinje cell synapses and mossy fiber - medial vestibular nuclei synapses, and the intrinsic plasticity of Purkinje cell synapses Our cross-sectional aging analyses suggest that long-term plasticity acts as a global homeostatic mechanism that underpins the stable temporal profile of VOR function. The results also suggest that the intrinsic plasticity of Purkinje cell synapses operates as a local homeostatic mechanism that further sustains the VOR at older ages. Importantly, the computational epidemiology approach presented in this study allows discrepancies among human cross-sectional studies to be understood in terms of interindividual variability in older individuals. Finally, our longitudinal aging simulations show that the amount of residual fibers coding for the peak and trough of the VOR cycle constitutes a predictive hallmark of VOR trajectories over a lifetime.
Collapse
|
6
|
Abstract
In recent years, spiking neural networks (SNNs) have attracted increasingly more researchers to study by virtue of its bio-interpretability and low-power computing. The SNN simulator is an essential tool to accomplish image classification, recognition, speech recognition, and other tasks using SNN. However, most of the existing simulators for spike neural networks are clock-driven, which has two main problems. First, the calculation result is affected by time slice, which obviously shows that when the calculation accuracy is low, the calculation speed is fast, but when the calculation accuracy is high, the calculation speed is unacceptable. The other is the failure of lateral inhibition, which severely affects SNN learning. In order to solve these problems, an event-driven high accurate simulator named EDHA (Event-Driven High Accuracy) for spike neural networks is proposed in this paper. EDHA takes full advantage of the event-driven characteristics of SNN and only calculates when a spike is generated, which is independent of the time slice. Compared with previous SNN simulators, EDHA is completely event-driven, which reduces a large amount of calculations and achieves higher computational accuracy. The calculation speed of EDHA in the MNIST classification task is more than 10 times faster than that of mainstream clock-driven simulators. By optimizing the spike encoding method, the former can even achieve more than 100 times faster than the latter. Due to the cross-platform characteristics of Java, EDHA can run on x86, amd64, ARM, and other platforms that support Java.
Collapse
|
7
|
Abadia I, Naveros F, Garrido JA, Ros E, Luque NR. On Robot Compliance: A Cerebellar Control Approach. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:2476-2489. [PMID: 31647453 DOI: 10.1109/tcyb.2019.2945498] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The work presented here is a novel biological approach for the compliant control of a robotic arm in real time (RT). We integrate a spiking cerebellar network at the core of a feedback control loop performing torque-driven control. The spiking cerebellar controller provides torque commands allowing for accurate and coordinated arm movements. To compute these output motor commands, the spiking cerebellar controller receives the robot's sensorial signals, the robot's goal behavior, and an instructive signal. These input signals are translated into a set of evolving spiking patterns representing univocally a specific system state at every point of time. Spike-timing-dependent plasticity (STDP) is then supported, allowing for building adaptive control. The spiking cerebellar controller continuously adapts the torque commands provided to the robot from experience as STDP is deployed. Adaptive torque commands, in turn, help the spiking cerebellar controller to cope with built-in elastic elements within the robot's actuators mimicking human muscles (inherently elastic). We propose a natural integration of a bioinspired control scheme, based on the cerebellum, with a compliant robot. We prove that our compliant approach outperforms the accuracy of the default factory-installed position control in a set of tasks used for addressing cerebellar motor behavior: controlling six degrees of freedom (DoF) in smooth movements, fast ballistic movements, and unstructured scenario compliant movements.
Collapse
|
8
|
Luque NR, Naveros F, Carrillo RR, Ros E, Arleo A. Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation. PLoS Comput Biol 2019; 15:e1006298. [PMID: 30860991 PMCID: PMC6430425 DOI: 10.1371/journal.pcbi.1006298] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 03/22/2019] [Accepted: 01/08/2019] [Indexed: 11/25/2022] Open
Abstract
Cerebellar Purkinje cells mediate accurate eye movement coordination. However, it remains unclear how oculomotor adaptation depends on the interplay between the characteristic Purkinje cell response patterns, namely tonic, bursting, and spike pauses. Here, a spiking cerebellar model assesses the role of Purkinje cell firing patterns in vestibular ocular reflex (VOR) adaptation. The model captures the cerebellar microcircuit properties and it incorporates spike-based synaptic plasticity at multiple cerebellar sites. A detailed Purkinje cell model reproduces the three spike-firing patterns that are shown to regulate the cerebellar output. Our results suggest that pauses following Purkinje complex spikes (bursts) encode transient disinhibition of target medial vestibular nuclei, critically gating the vestibular signals conveyed by mossy fibres. This gating mechanism accounts for early and coarse VOR acquisition, prior to the late reflex consolidation. In addition, properly timed and sized Purkinje cell bursts allow the ratio between long-term depression and potentiation (LTD/LTP) to be finely shaped at mossy fibre-medial vestibular nuclei synapses, which optimises VOR consolidation. Tonic Purkinje cell firing maintains the consolidated VOR through time. Importantly, pauses are crucial to facilitate VOR phase-reversal learning, by reshaping previously learnt synaptic weight distributions. Altogether, these results predict that Purkinje spike burst-pause dynamics are instrumental to VOR learning and reversal adaptation. Cerebellar Purkinje cells regulate accurate eye movement coordination. However, it remains unclear how cerebellar-dependent oculomotor adaptation depends on the interplay between Purkinje cell characteristic response patterns: tonic, high frequency bursting, and post-complex spike pauses. We explore the role of Purkinje spike burst-pause dynamics in VOR adaptation. A biophysical model of Purkinje cell is at the core of a spiking network model, which captures the cerebellar microcircuit properties and incorporates spike-based synaptic plasticity mechanisms at different cerebellar sites. We show that Purkinje spike burst-pause dynamics are critical for (1) gating the vestibular-motor response association during VOR acquisition; (2) mediating the LTD/LTP balance for VOR consolidation; (3) reshaping synaptic efficacy distributions for VOR phase-reversal adaptation; (4) explaining the reversal VOR gain discontinuities during sleeping.
Collapse
Affiliation(s)
- Niceto R. Luque
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- * E-mail: (NRL); (AA)
| | - Francisco Naveros
- Department of Computer Architecture and Technology, CITIC-University of Granada, Granada, Spain
| | - Richard R. Carrillo
- Department of Computer Architecture and Technology, CITIC-University of Granada, Granada, Spain
| | - Eduardo Ros
- Department of Computer Architecture and Technology, CITIC-University of Granada, Granada, Spain
| | - Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- * E-mail: (NRL); (AA)
| |
Collapse
|
9
|
Naveros F, Luque NR, Ros E, Arleo A. VOR Adaptation on a Humanoid iCub Robot Using a Spiking Cerebellar Model. IEEE TRANSACTIONS ON CYBERNETICS 2019; 50:4744-4757. [PMID: 30835236 DOI: 10.1109/tcyb.2019.2899246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We embed a spiking cerebellar model within an adaptive real-time (RT) control loop that is able to operate a real robotic body (iCub) when performing different vestibulo-ocular reflex (VOR) tasks. The spiking neural network computation, including event- and time-driven neural dynamics, neural activity, and spike-timing dependent plasticity (STDP) mechanisms, leads to a nondeterministic computation time caused by the neural activity volleys encountered during cerebellar simulation. This nondeterministic computation time motivates the integration of an RT supervisor module that is able to ensure a well-orchestrated neural computation time and robot operation. Actually, our neurorobotic experimental setup (VOR) benefits from the biological sensory motor delay between the cerebellum and the body to buffer the computational overloads as well as providing flexibility in adjusting the neural computation time and RT operation. The RT supervisor module provides for incremental countermeasures that dynamically slow down or speed up the cerebellar simulation by either halting the simulation or disabling certain neural computation features (i.e., STDP mechanisms, spike propagation, and neural updates) to cope with the RT constraints imposed by the real robot operation. This neurorobotic experimental setup is applied to different horizontal and vertical VOR adaptive tasks that are widely used by the neuroscientific community to address cerebellar functioning. We aim to elucidate the manner in which the combination of the cerebellar neural substrate and the distributed plasticity shapes the cerebellar neural activity to mediate motor adaptation. This paper underlies the need for a two-stage learning process to facilitate VOR acquisition.
Collapse
|